@unpublished{7568,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e.manifolds defined as the zero set of some multivariate multivalued functionf:Rd→Rd−n.A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear(PL) approximation based on a triangulationTof the ambient spaceRd. In this paper, we giveconditions under which the PL-approximation of an isomanifold is topologically equivalent to theisomanifold. The conditions can always be met by taking a sufficiently fine triangulationT.},
author = {Boissonnat, Jean-Daniel and Wintraecken, Mathijs},
booktitle = {EUROCG 2020},
pages = {8},
title = {{The topological correctness of the PL-approximation of isomanifolds}},
year = {2020},
}
@phdthesis{7460,
abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.
For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.},
author = {Ölsböck, Katharina},
issn = {2663-337X},
keyword = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry},
pages = {155},
publisher = {IST Austria},
title = {{The hole system of triangulated shapes}},
doi = {10.15479/AT:ISTA:7460},
year = {2020},
}
@article{7554,
abstract = {Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
issn = {10957219},
journal = {Theory of Probability and its Applications},
number = {4},
pages = {595--614},
publisher = {SIAM},
title = {{Weighted Poisson–Delaunay mosaics}},
doi = {10.1137/S0040585X97T989726},
volume = {64},
year = {2020},
}
@article{7567,
abstract = {Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space.},
author = {Choudhary, Aruni and Kachanovich, Siargey and Wintraecken, Mathijs},
issn = {1661-8289},
journal = {Mathematics in Computer Science},
publisher = {Springer Nature},
title = {{Coxeter triangulations have good quality}},
doi = {10.1007/s11786-020-00461-5},
year = {2020},
}
@article{6515,
abstract = {We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature.},
author = {Dyer, Ramsay and Vegter, Gert and Wintraecken, Mathijs},
issn = {1920-180X},
journal = {Journal of Computational Geometry },
number = {1},
pages = {223–256},
publisher = {Carleton University},
title = {{Simplices modelled on spaces of constant curvature}},
doi = {10.20382/jocg.v10i1a9},
volume = {10},
year = {2019},
}
@inproceedings{6628,
abstract = {Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space.},
author = {Vegter, Gert and Wintraecken, Mathijs},
booktitle = {The 31st Canadian Conference in Computational Geometry},
location = {Edmonton, Canada},
pages = {275--279},
title = {{The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds}},
year = {2019},
}
@article{6793,
abstract = {The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry.},
author = {Akopyan, Arseniy and Izmestiev, Ivan},
issn = {14692120},
journal = {Bulletin of the London Mathematical Society},
number = {5},
pages = {765--775},
publisher = {London Mathematical Society},
title = {{The Regge symmetry, confocal conics, and the Schläfli formula}},
doi = {10.1112/blms.12276},
volume = {51},
year = {2019},
}
@inproceedings{6989,
abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with hole(s) to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special simple holes guarantee foldability. },
author = {Aichholzer, Oswin and Akitaya, Hugo A and Cheung, Kenneth C and Demaine, Erik D and Demaine, Martin L and Fekete, Sandor P and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane},
booktitle = {Proceedings of the 31st Canadian Conference on Computational Geometry},
location = {Edmonton, Canada},
pages = {164--170},
publisher = {Canadian Conference on Computational Geometry},
title = {{Folding polyominoes with holes into a cube}},
year = {2019},
}
@inproceedings{7216,
abstract = {We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.},
author = {Osang, Georg F and Cook, James and Fabrikant, Alex and Gruteser, Marco},
booktitle = {2019 IEEE Intelligent Transportation Systems Conference},
isbn = {9781538670248},
location = {Auckland, New Zealand},
publisher = {IEEE},
title = {{LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale}},
doi = {10.1109/ITSC.2019.8917514},
year = {2019},
}
@inproceedings{6648,
abstract = {Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory
needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.},
author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert},
booktitle = {35th International Symposium on Computational Geometry},
isbn = {9783959771047},
location = {Portland, OR, United States},
pages = {31:1--31:14},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Topological data analysis in information space}},
doi = {10.4230/LIPICS.SOCG.2019.31},
volume = {129},
year = {2019},
}
@article{6756,
abstract = {We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.},
author = {Pranav, Pratyush and Adler, Robert J. and Buchert, Thomas and Edelsbrunner, Herbert and Jones, Bernard J.T. and Schwartzman, Armin and Wagner, Hubert and Van De Weygaert, Rien},
issn = {14320746},
journal = {Astronomy and Astrophysics},
publisher = {EDP Sciences},
title = {{Unexpected topology of the temperature fluctuations in the cosmic microwave background}},
doi = {10.1051/0004-6361/201834916},
volume = {627},
year = {2019},
}
@article{6050,
abstract = {We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. },
author = {Akopyan, Arseniy and Fedorov, Roman},
journal = {Proceedings of the American Mathematical Society},
pages = {91--102},
publisher = {AMS},
title = {{Two circles and only a straightedge}},
doi = {10.1090/proc/14240},
volume = {147},
year = {2019},
}
@article{6671,
abstract = {In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.},
author = {Boissonnat, Jean-Daniel and Lieutier, André and Wintraecken, Mathijs},
issn = {2367-1734},
journal = {Journal of Applied and Computational Topology},
number = {1-2},
pages = {29–58},
publisher = {Springer Nature},
title = {{The reach, metric distortion, geodesic convexity and the variation of tangent spaces}},
doi = {10.1007/s41468-019-00029-8},
volume = {3},
year = {2019},
}
@article{6828,
abstract = {In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group .},
author = {Brown, Adam},
issn = {0021-8693},
journal = {Journal of Algebra},
pages = {261--289},
publisher = {Elsevier},
title = {{Arakawa-Suzuki functors for Whittaker modules}},
doi = {10.1016/j.jalgebra.2019.07.027},
volume = {538},
year = {2019},
}
@article{5678,
abstract = {The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
issn = {14320444},
journal = {Discrete and Computational Geometry},
number = {4},
pages = {865–878},
publisher = {Springer},
title = {{Poisson–Delaunay Mosaics of Order k}},
doi = {10.1007/s00454-018-0049-2},
volume = {62},
year = {2019},
}
@article{6634,
abstract = {In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.},
author = {Akopyan, Arseniy and Hubard, Alfredo and Karasev, Roman},
journal = {Topological Methods in Nonlinear Analysis},
number = {2},
pages = {457--490},
publisher = {Akademicka Platforma Czasopism},
title = {{Lower and upper bounds for the waists of different spaces}},
doi = {10.12775/TMNA.2019.008},
volume = {53},
year = {2019},
}
@article{6608,
abstract = {We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.},
author = {Edelsbrunner, Herbert and Ölsböck, Katharina},
journal = {Computer Aided Geometric Design},
pages = {1--15},
publisher = {Elsevier},
title = {{Holes and dependences in an ordered complex}},
doi = {10.1016/j.cagd.2019.06.003},
volume = {73},
year = {2019},
}
@inproceedings{193,
abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.},
author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal},
booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security},
location = {Incheon, Republic of Korea},
pages = {51 -- 65},
publisher = {ACM},
title = {{On the memory hardness of data independent password hashing functions}},
doi = {10.1145/3196494.3196534},
year = {2018},
}
@phdthesis{201,
abstract = {We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.},
author = {Iglesias Ham, Mabel},
pages = {171},
publisher = {IST Austria},
title = {{Multiple covers with balls}},
doi = {10.15479/AT:ISTA:th_1026},
year = {2018},
}
@article{458,
abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.},
author = {Akopyan, Arseniy and Bobenko, Alexander},
journal = {Transactions of the American Mathematical Society},
number = {4},
pages = {2825 -- 2854},
publisher = {American Mathematical Society},
title = {{Incircular nets and confocal conics}},
doi = {10.1090/tran/7292},
volume = {370},
year = {2018},
}