@article{909,
abstract = {We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor ½ cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.},
author = {Akopyan, Arseniy and Vysotsky, Vladislav},
issn = {00029890},
journal = {The American Mathematical Monthly},
number = {7},
pages = {588 -- 596},
publisher = {Mathematical Association of America},
title = {{On the lengths of curves passing through boundary points of a planar convex shape}},
doi = {10.4169/amer.math.monthly.124.7.588},
volume = {124},
year = {2017},
}
@article{1272,
abstract = {We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.},
author = {Held, Martin and Huber, Stefan and Palfrader, Peter},
journal = {Computer-Aided Design and Applications},
number = {5},
pages = {712 -- 721},
publisher = {Taylor and Francis},
title = {{Generalized offsetting of planar structures using skeletons}},
doi = {10.1080/16864360.2016.1150718},
volume = {13},
year = {2016},
}
@article{1289,
abstract = {Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.},
author = {Dunaeva, Olga and Edelsbrunner, Herbert and Lukyanov, Anton and Machin, Michael and Malkova, Daria and Kuvaev, Roman and Kashin, Sergey},
journal = {Pattern Recognition Letters},
number = {1},
pages = {13 -- 22},
publisher = {Elsevier},
title = {{The classification of endoscopy images with persistent homology}},
doi = {10.1016/j.patrec.2015.12.012},
volume = {83},
year = {2016},
}
@article{1292,
abstract = {We give explicit formulas and algorithms for the computation of the Thurstonâ€“Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.},
author = {Durst, Sebastian and Kegel, Marc and Klukas, Mirko D},
journal = {Acta Mathematica Hungarica},
number = {2},
pages = {441 -- 455},
publisher = {Springer},
title = {{Computing the Thurstonâ€“Bennequin invariant in open books}},
doi = {10.1007/s10474-016-0648-4},
volume = {150},
year = {2016},
}
@article{1295,
abstract = {Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
journal = {Electronic Notes in Discrete Mathematics},
pages = {169 -- 174},
publisher = {Elsevier},
title = {{Multiple covers with balls II: Weighted averages}},
doi = {10.1016/j.endm.2016.09.030},
volume = {54},
year = {2016},
}