@article{9317,
abstract = {Given a locally finite X⊆Rd and a radius r≥0, the k-fold cover of X and r consists of all points in Rd that have k or more points of X within distance r. We consider two filtrations—one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k—and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in Rd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module of Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.},
author = {Edelsbrunner, Herbert and Osang, Georg F},
issn = {14320444},
journal = {Discrete and Computational Geometry},
publisher = {Springer Nature},
title = {{The multi-cover persistence of Euclidean balls}},
doi = {10.1007/s00454-021-00281-9},
year = {2021},
}
@inproceedings{9345,
abstract = {Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.},
author = {Edelsbrunner, Herbert and Heiss, Teresa and Kurlin , Vitaliy and Smith, Philip and Wintraecken, Mathijs},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
issn = {1868-8969},
location = {Online},
pages = {32:1--32:16},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The density fingerprint of a periodic point set}},
doi = {10.4230/LIPIcs.SoCG.2021.32},
volume = {189},
year = {2021},
}
@inproceedings{9441,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. },
author = {Boissonnat, Jean-Daniel and Kachanovich, Siargey and Wintraecken, Mathijs},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
isbn = {978-3-95977-184-9},
issn = {1868-8969},
location = {Online},
pages = {17:1--17:16},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations}},
doi = {10.4230/LIPIcs.SoCG.2021.17},
volume = {189},
year = {2021},
}
@article{9465,
abstract = {Given a locally finite set 𝑋⊆ℝ𝑑 and an integer 𝑘≥0, we consider the function 𝐰𝑘:Del𝑘(𝑋)→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton and Osang, Georg F},
issn = {14208997},
journal = {Journal of Geometry},
number = {1},
publisher = {Springer Nature},
title = {{A step in the Delaunay mosaic of order k}},
doi = {10.1007/s00022-021-00577-4},
volume = {112},
year = {2021},
}
@article{7962,
abstract = {A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.},
author = {Pach, János and Reed, Bruce and Yuditsky, Yelena},
issn = {14320444},
journal = {Discrete and Computational Geometry},
number = {4},
pages = {888--917},
publisher = {Springer Nature},
title = {{Almost all string graphs are intersection graphs of plane convex sets}},
doi = {10.1007/s00454-020-00213-z},
volume = {63},
year = {2020},
}