@inproceedings{9345, abstract = {Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.}, author = {Edelsbrunner, Herbert and Heiss, Teresa and Kurlin , Vitaliy and Smith, Philip and Wintraecken, Mathijs}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, issn = {1868-8969}, location = {Virtual}, pages = {32:1--32:16}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The density fingerprint of a periodic point set}}, doi = {10.4230/LIPIcs.SoCG.2021.32}, volume = {189}, year = {2021}, } @inproceedings{9604, abstract = {Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.}, author = {Biswas, Ranita and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Saghafian, Morteza}, booktitle = {Leibniz International Proceedings in Informatics}, isbn = {9783959771849}, issn = {18688969}, location = {Online}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Counting cells of order-k voronoi tessellations in ℝ3 with morse theory}}, doi = {10.4230/LIPIcs.SoCG.2021.16}, volume = {189}, year = {2021}, } @inproceedings{9824, abstract = {We define a new compact coordinate system in which each integer triplet addresses a voxel in the BCC grid, and we investigate some of its properties. We propose a characterization of 3D discrete analytical planes with their topological features (in the Cartesian and in the new coordinate system) such as the interrelation between the thickness of the plane and the separability constraint we aim to obtain.}, author = {Čomić, Lidija and Zrour, Rita and Largeteau-Skapin, Gaëlle and Biswas, Ranita and Andres, Eric}, booktitle = {Discrete Geometry and Mathematical Morphology}, isbn = {9783030766566}, issn = {16113349}, location = {Uppsala, Sweden}, pages = {152--163}, publisher = {Springer Nature}, title = {{Body centered cubic grid - coordinate system and discrete analytical plane definition}}, doi = {10.1007/978-3-030-76657-3_10}, volume = {12708}, year = {2021}, } @article{8317, abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special “basic” holes guarantee foldability.}, author = {Aichholzer, Oswin and Akitaya, Hugo A. and Cheung, Kenneth C. and Demaine, Erik D. and Demaine, Martin L. and Fekete, Sándor P. and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane}, issn = {09257721}, journal = {Computational Geometry: Theory and Applications}, publisher = {Elsevier}, title = {{Folding polyominoes with holes into a cube}}, doi = {10.1016/j.comgeo.2020.101700}, volume = {93}, year = {2021}, } @article{8773, abstract = {Let g be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g-modules Y(χ,η) introduced by Kostant. We prove that the set of all contravariant forms on Y(χ,η) forms a vector space whose dimension is given by the cardinality of the Weyl group of g. We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M(χ,η) introduced by McDowell.}, author = {Brown, Adam and Romanov, Anna}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, keywords = {Applied Mathematics, General Mathematics}, number = {1}, pages = {37--52}, publisher = {American Mathematical Society}, title = {{Contravariant forms on Whittaker modules}}, doi = {10.1090/proc/15205}, volume = {149}, year = {2021}, }