@inbook{84,
abstract = {The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind.},
author = {Edelsbrunner, Herbert and Koehl, Patrice},
booktitle = {Handbook of Discrete and Computational Geometry, Third Edition},
editor = {Toth, Csaba and O'Rourke, Joseph and Goodman, Jacob},
pages = {1709 -- 1735},
publisher = {CRC Press},
title = {{Computational topology for structural molecular biology}},
doi = {10.1201/9781315119601},
year = {2017},
}
@article{909,
abstract = {We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor ½ cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.},
author = {Akopyan, Arseniy and Vysotsky, Vladislav},
issn = {00029890},
journal = {The American Mathematical Monthly},
number = {7},
pages = {588 -- 596},
publisher = {Mathematical Association of America},
title = {{On the lengths of curves passing through boundary points of a planar convex shape}},
doi = {10.4169/amer.math.monthly.124.7.588},
volume = {124},
year = {2017},
}
@article{1180,
abstract = {In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.},
author = {Akopyan, Arseniy and Bárány, Imre and Robins, Sinai},
issn = {00018708},
journal = {Advances in Mathematics},
pages = {627 -- 644},
publisher = {Academic Press},
title = {{Algebraic vertices of non-convex polyhedra}},
doi = {10.1016/j.aim.2016.12.026},
volume = {308},
year = {2017},
}
@article{1433,
abstract = {Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.},
author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan and Wagner, Hubert},
issn = { 07477171},
journal = {Journal of Symbolic Computation},
pages = {76 -- 90},
publisher = {Academic Press},
title = {{Phat - Persistent homology algorithms toolbox}},
doi = {10.1016/j.jsc.2016.03.008},
volume = {78},
year = {2017},
}
@article{1022,
abstract = {We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.},
author = {Pranav, Pratyush and Edelsbrunner, Herbert and Van De Weygaert, Rien and Vegter, Gert and Kerber, Michael and Jones, Bernard and Wintraecken, Mathijs},
issn = {00358711},
journal = {Monthly Notices of the Royal Astronomical Society},
number = {4},
pages = {4281 -- 4310},
publisher = {Oxford University Press},
title = {{The topology of the cosmic web in terms of persistent Betti numbers}},
doi = {10.1093/mnras/stw2862},
volume = {465},
year = {2017},
}
@article{1065,
abstract = {We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.},
author = {Chatterjee, Krishnendu and Osang, Georg F},
issn = {00200190},
journal = {Information Processing Letters},
pages = {25 -- 29},
publisher = {Elsevier},
title = {{Pushdown reachability with constant treewidth}},
doi = {10.1016/j.ipl.2017.02.003},
volume = {122},
year = {2017},
}
@article{1072,
abstract = {Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.},
author = {Bauer, Ulrich and Edelsbrunner, Herbert},
journal = {Transactions of the American Mathematical Society},
number = {5},
pages = {3741 -- 3762},
publisher = {American Mathematical Society},
title = {{The Morse theory of Čech and delaunay complexes}},
volume = {369},
year = {2017},
}
@article{1173,
abstract = {We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.},
author = {Edelsbrunner, Herbert and Glazyrin, Alexey and Musin, Oleg and Nikitenko, Anton},
issn = {02099683},
journal = {Combinatorica},
number = {5},
pages = {887 -- 910},
publisher = {Springer},
title = {{The Voronoi functional is maximized by the Delaunay triangulation in the plane}},
doi = {10.1007/s00493-016-3308-y},
volume = {37},
year = {2017},
}
@article{1617,
abstract = {We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points.},
author = {Pausinger, Florian and Steinerberger, Stefan},
journal = {Journal of Complexity},
pages = {199 -- 216},
publisher = {Academic Press},
title = {{On the discrepancy of jittered sampling}},
doi = {10.1016/j.jco.2015.11.003},
volume = {33},
year = {2016},
}
@article{1662,
abstract = {We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball.},
author = {Edelsbrunner, Herbert and Pausinger, Florian},
journal = {Advances in Mathematics},
pages = {674 -- 703},
publisher = {Academic Press},
title = {{Approximation and convergence of the intrinsic volume}},
doi = {10.1016/j.aim.2015.10.004},
volume = {287},
year = {2016},
}
@article{1216,
abstract = {A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.},
author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek},
journal = {Archives of Mechanics},
number = {1},
pages = {55 -- 80},
publisher = {Polish Academy of Sciences Publishing House},
title = {{Acceleration feature points of unsteady shear flows}},
volume = {68},
year = {2016},
}
@article{1222,
abstract = {We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.},
author = {Musin, Oleg and Nikitenko, Anton},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {1 -- 20},
publisher = {Springer},
title = {{Optimal packings of congruent circles on a square flat torus}},
doi = {10.1007/s00454-015-9742-6},
volume = {55},
year = {2016},
}
@inproceedings{1237,
abstract = {Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.},
author = {Krcál, Marek and Pilarczyk, Pawel},
location = {Marseille, France},
pages = {140 -- 151},
publisher = {Springer},
title = {{Computation of cubical Steenrod squares}},
doi = {10.1007/978-3-319-39441-1_13},
volume = {9667},
year = {2016},
}
@article{1252,
abstract = {We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points.},
author = {Harker, Shaun and Kokubu, Hiroshi and Mischaikow, Konstantin and Pilarczyk, Pawel},
journal = {Proceedings of the American Mathematical Society},
number = {4},
pages = {1787 -- 1801},
publisher = {American Mathematical Society},
title = {{Inducing a map on homology from a correspondence}},
doi = {10.1090/proc/12812},
volume = {144},
year = {2016},
}
@article{1254,
abstract = {We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/.},
author = {Golmakani, Ali and Luzzatto, Stefano and Pilarczyk, Pawel},
journal = {Experimental Mathematics},
number = {2},
pages = {116 -- 124},
publisher = {Taylor and Francis},
title = {{Uniform expansivity outside a critical neighborhood in the quadratic family}},
doi = {10.1080/10586458.2015.1048011},
volume = {25},
year = {2016},
}
@article{1272,
abstract = {We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.},
author = {Held, Martin and Huber, Stefan and Palfrader, Peter},
journal = {Computer-Aided Design and Applications},
number = {5},
pages = {712 -- 721},
publisher = {Taylor and Francis},
title = {{Generalized offsetting of planar structures using skeletons}},
doi = {10.1080/16864360.2016.1150718},
volume = {13},
year = {2016},
}
@article{1289,
abstract = {Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.},
author = {Dunaeva, Olga and Edelsbrunner, Herbert and Lukyanov, Anton and Machin, Michael and Malkova, Daria and Kuvaev, Roman and Kashin, Sergey},
journal = {Pattern Recognition Letters},
number = {1},
pages = {13 -- 22},
publisher = {Elsevier},
title = {{The classification of endoscopy images with persistent homology}},
doi = {10.1016/j.patrec.2015.12.012},
volume = {83},
year = {2016},
}
@article{1292,
abstract = {We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.},
author = {Durst, Sebastian and Kegel, Marc and Klukas, Mirko D},
journal = {Acta Mathematica Hungarica},
number = {2},
pages = {441 -- 455},
publisher = {Springer},
title = {{Computing the Thurston–Bennequin invariant in open books}},
doi = {10.1007/s10474-016-0648-4},
volume = {150},
year = {2016},
}
@article{1295,
abstract = {Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
journal = {Electronic Notes in Discrete Mathematics},
pages = {169 -- 174},
publisher = {Elsevier},
title = {{Multiple covers with balls II: Weighted averages}},
doi = {10.1016/j.endm.2016.09.030},
volume = {54},
year = {2016},
}
@article{1330,
abstract = {In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K.},
author = {Akopyan, Arseniy and Balitskiy, Alexey},
journal = {Israel Journal of Mathematics},
number = {2},
pages = {833 -- 845},
publisher = {Springer},
title = {{Billiards in convex bodies with acute angles}},
doi = {10.1007/s11856-016-1429-z},
volume = {216},
year = {2016},
}