@article{8317,
abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special “basic” holes guarantee foldability.},
author = {Aichholzer, Oswin and Akitaya, Hugo A. and Cheung, Kenneth C. and Demaine, Erik D. and Demaine, Martin L. and Fekete, Sándor P. and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
publisher = {Elsevier},
title = {{Folding polyominoes with holes into a cube}},
doi = {10.1016/j.comgeo.2020.101700},
volume = {93},
year = {2021},
}
@article{8773,
abstract = {Let g be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g-modules Y(χ,η) introduced by Kostant. We prove that the set of all contravariant forms on Y(χ,η) forms a vector space whose dimension is given by the cardinality of the Weyl group of g. We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M(χ,η) introduced by McDowell.},
author = {Brown, Adam and Romanov, Anna},
issn = {1088-6826},
journal = {Proceedings of the American Mathematical Society},
keywords = {Applied Mathematics, General Mathematics},
number = {1},
pages = {37--52},
publisher = {American Mathematical Society},
title = {{Contravariant forms on Whittaker modules}},
doi = {10.1090/proc/15205},
volume = {149},
year = {2021},
}
@article{8940,
abstract = {We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.},
author = {Boissonnat, Jean-Daniel and Kachanovich, Siargey and Wintraecken, Mathijs},
issn = {0179-5376},
journal = {Discrete & Computational Geometry},
keywords = {Theoretical Computer Science, Computational Theory and Mathematics, Geometry and Topology, Discrete Mathematics and Combinatorics},
number = {1},
pages = {386--434},
publisher = {Springer Nature},
title = {{Triangulating submanifolds: An elementary and quantified version of Whitney’s method}},
doi = {10.1007/s00454-020-00250-8},
volume = {66},
year = {2021},
}
@phdthesis{9056,
abstract = {In this thesis we study persistence of multi-covers of Euclidean balls and the geometric structures underlying their computation, in particular Delaunay mosaics and Voronoi tessellations.
The k-fold cover for some discrete input point set consists of the space where at least k balls of radius r around the input points overlap. Persistence is a notion that captures, in some sense, the topology of the shape underlying the input. While persistence is usually computed for the union of balls, the k-fold cover is of interest as it captures local density,
and thus might approximate the shape of the input better if the input data is noisy. To compute persistence of these k-fold covers, we need a discretization that is provided by higher-order Delaunay mosaics.
We present and implement a simple and efficient algorithm for the computation of higher-order Delaunay mosaics, and use it to give experimental results for their combinatorial properties. The algorithm makes use of a new geometric structure, the rhomboid tiling. It contains the higher-order Delaunay mosaics as slices, and by introducing a filtration
function on the tiling, we also obtain higher-order α-shapes as slices. These allow us to compute persistence of the multi-covers for varying radius r; the computation for varying k is less straight-foward and involves the rhomboid tiling directly. We apply our algorithms to experimental sphere packings to shed light on their structural properties. Finally, inspired by periodic structures in packings and materials, we propose and implement an algorithm for periodic Delaunay triangulations to be integrated into the Computational Geometry Algorithms Library (CGAL), and discuss
the implications on persistence for periodic data sets.},
author = {Osang, Georg F},
issn = {2663-337X},
pages = {134},
publisher = {IST Austria},
title = {{Multi-cover persistence and Delaunay mosaics}},
doi = {10.15479/AT:ISTA:9056},
year = {2021},
}
@article{9111,
abstract = {We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.},
author = {Brown, Adam and Bobrowski, Omer and Munch, Elizabeth and Wang, Bei},
issn = {2367-1726},
journal = {Journal of Applied and Computational Topology},
number = {1},
pages = {99--140},
publisher = {Springer Nature},
title = {{Probabilistic convergence and stability of random mapper graphs}},
doi = {10.1007/s41468-020-00063-x},
volume = {5},
year = {2021},
}
@inproceedings{9296,
abstract = { matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.},
author = {Aichholzer, Oswin and Arroyo Guevara, Alan M and Masárová, Zuzana and Parada, Irene and Perz, Daniel and Pilz, Alexander and Tkadlec, Josef and Vogtenhuber, Birgit},
booktitle = {15th International Conference on Algorithms and Computation},
isbn = {9783030682101},
issn = {16113349},
location = {Yangon, Myanmar},
pages = {221--233},
publisher = {Springer Nature},
title = {{On compatible matchings}},
doi = {10.1007/978-3-030-68211-8_18},
volume = {12635},
year = {2021},
}
@inproceedings{9345,
abstract = {Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.},
author = {Edelsbrunner, Herbert and Heiss, Teresa and Kurlin , Vitaliy and Smith, Philip and Wintraecken, Mathijs},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
issn = {1868-8969},
location = {Virtual},
pages = {32:1--32:16},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The density fingerprint of a periodic point set}},
doi = {10.4230/LIPIcs.SoCG.2021.32},
volume = {189},
year = {2021},
}
@inproceedings{9441,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. },
author = {Boissonnat, Jean-Daniel and Kachanovich, Siargey and Wintraecken, Mathijs},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
isbn = {978-3-95977-184-9},
issn = {1868-8969},
location = {Virtual},
pages = {17:1--17:16},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations}},
doi = {10.4230/LIPIcs.SoCG.2021.17},
volume = {189},
year = {2021},
}
@article{9465,
abstract = {Given a locally finite set 𝑋⊆ℝ𝑑 and an integer 𝑘≥0, we consider the function 𝐰𝑘:Del𝑘(𝑋)→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton and Osang, Georg F},
issn = {14208997},
journal = {Journal of Geometry},
number = {1},
publisher = {Springer Nature},
title = {{A step in the Delaunay mosaic of order k}},
doi = {10.1007/s00022-021-00577-4},
volume = {112},
year = {2021},
}
@inproceedings{9604,
abstract = {Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.},
author = {Biswas, Ranita and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Saghafian, Morteza},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {9783959771849},
issn = {18688969},
location = {Online},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Counting cells of order-k voronoi tessellations in ℝ^{3} with morse theory}},
doi = {10.4230/LIPIcs.SoCG.2021.16},
volume = {189},
year = {2021},
}