--- _id: '1295' abstract: - lang: eng text: Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls. acknowledgement: This work is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: 'Edelsbrunner H, Iglesias Ham M. Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. 2016;54:169-174. doi:10.1016/j.endm.2016.09.030' apa: 'Edelsbrunner, H., & Iglesias Ham, M. (2016). Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. Elsevier. https://doi.org/10.1016/j.endm.2016.09.030' chicago: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls II: Weighted Averages.” Electronic Notes in Discrete Mathematics. Elsevier, 2016. https://doi.org/10.1016/j.endm.2016.09.030.' ieee: 'H. Edelsbrunner and M. Iglesias Ham, “Multiple covers with balls II: Weighted averages,” Electronic Notes in Discrete Mathematics, vol. 54. Elsevier, pp. 169–174, 2016.' ista: 'Edelsbrunner H, Iglesias Ham M. 2016. Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. 54, 169–174.' mla: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls II: Weighted Averages.” Electronic Notes in Discrete Mathematics, vol. 54, Elsevier, 2016, pp. 169–74, doi:10.1016/j.endm.2016.09.030.' short: H. Edelsbrunner, M. Iglesias Ham, Electronic Notes in Discrete Mathematics 54 (2016) 169–174. date_created: 2018-12-11T11:51:12Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:49:41Z day: '01' department: - _id: HeEd doi: 10.1016/j.endm.2016.09.030 ec_funded: 1 intvolume: ' 54' language: - iso: eng month: '10' oa_version: None page: 169 - 174 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Electronic Notes in Discrete Mathematics publication_status: published publisher: Elsevier publist_id: '5976' quality_controlled: '1' scopus_import: 1 status: public title: 'Multiple covers with balls II: Weighted averages' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 54 year: '2016' ... --- _id: '1292' abstract: - lang: eng text: We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds. acknowledgement: "The authors are veryg rateful to Hansj ̈org Geiges \r\nfor fruitful discussions and advice and Christian Evers for helpful remarks on a draft version." author: - first_name: Sebastian full_name: Durst, Sebastian last_name: Durst - first_name: Marc full_name: Kegel, Marc last_name: Kegel - first_name: Mirko D full_name: Klukas, Mirko D id: 34927512-F248-11E8-B48F-1D18A9856A87 last_name: Klukas citation: ama: Durst S, Kegel M, Klukas MD. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 2016;150(2):441-455. doi:10.1007/s10474-016-0648-4 apa: Durst, S., Kegel, M., & Klukas, M. D. (2016). Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. Springer. https://doi.org/10.1007/s10474-016-0648-4 chicago: Durst, Sebastian, Marc Kegel, and Mirko D Klukas. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica. Springer, 2016. https://doi.org/10.1007/s10474-016-0648-4. ieee: S. Durst, M. Kegel, and M. D. Klukas, “Computing the Thurston–Bennequin invariant in open books,” Acta Mathematica Hungarica, vol. 150, no. 2. Springer, pp. 441–455, 2016. ista: Durst S, Kegel M, Klukas MD. 2016. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 150(2), 441–455. mla: Durst, Sebastian, et al. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica, vol. 150, no. 2, Springer, 2016, pp. 441–55, doi:10.1007/s10474-016-0648-4. short: S. Durst, M. Kegel, M.D. Klukas, Acta Mathematica Hungarica 150 (2016) 441–455. date_created: 2018-12-11T11:51:11Z date_published: 2016-12-01T00:00:00Z date_updated: 2021-01-12T06:49:40Z day: '01' department: - _id: HeEd doi: 10.1007/s10474-016-0648-4 intvolume: ' 150' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.00794 month: '12' oa: 1 oa_version: Preprint page: 441 - 455 publication: Acta Mathematica Hungarica publication_status: published publisher: Springer publist_id: '6023' quality_controlled: '1' scopus_import: 1 status: public title: Computing the Thurston–Bennequin invariant in open books type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 150 year: '2016' ... --- _id: '1330' abstract: - lang: eng text: In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K. acknowledgement: Supported by People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n°[291734]. Supported by the Russian Foundation for Basic Research grant 15-31-20403 (mol a ved), by the Russian Foundation for Basic Research grant 15-01-99563 A, in part by the Moebius Contest Foundation for Young Scientists, and in part by the Simons Foundation. author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy citation: ama: Akopyan A, Balitskiy A. Billiards in convex bodies with acute angles. Israel Journal of Mathematics. 2016;216(2):833-845. doi:10.1007/s11856-016-1429-z apa: Akopyan, A., & Balitskiy, A. (2016). Billiards in convex bodies with acute angles. Israel Journal of Mathematics. Springer. https://doi.org/10.1007/s11856-016-1429-z chicago: Akopyan, Arseniy, and Alexey Balitskiy. “Billiards in Convex Bodies with Acute Angles.” Israel Journal of Mathematics. Springer, 2016. https://doi.org/10.1007/s11856-016-1429-z. ieee: A. Akopyan and A. Balitskiy, “Billiards in convex bodies with acute angles,” Israel Journal of Mathematics, vol. 216, no. 2. Springer, pp. 833–845, 2016. ista: Akopyan A, Balitskiy A. 2016. Billiards in convex bodies with acute angles. Israel Journal of Mathematics. 216(2), 833–845. mla: Akopyan, Arseniy, and Alexey Balitskiy. “Billiards in Convex Bodies with Acute Angles.” Israel Journal of Mathematics, vol. 216, no. 2, Springer, 2016, pp. 833–45, doi:10.1007/s11856-016-1429-z. short: A. Akopyan, A. Balitskiy, Israel Journal of Mathematics 216 (2016) 833–845. date_created: 2018-12-11T11:51:24Z date_published: 2016-10-15T00:00:00Z date_updated: 2021-01-12T06:49:56Z day: '15' department: - _id: HeEd doi: 10.1007/s11856-016-1429-z ec_funded: 1 intvolume: ' 216' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1506.06014 month: '10' oa: 1 oa_version: Preprint page: 833 - 845 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Israel Journal of Mathematics publication_status: published publisher: Springer publist_id: '5938' quality_controlled: '1' scopus_import: 1 status: public title: Billiards in convex bodies with acute angles type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 216 year: '2016' ... --- _id: '1360' abstract: - lang: eng text: 'We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. ' acknowledgement: The first and third authors were supported by the Dynasty Foundation. The first, second and third authors were supported by the Russian Foundation for Basic Re- search grant 15-31-20403 (mol a ved). article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy - first_name: Roman full_name: Karasev, Roman last_name: Karasev - first_name: Anastasia full_name: Sharipova, Anastasia last_name: Sharipova citation: ama: Akopyan A, Balitskiy A, Karasev R, Sharipova A. Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. 2016;144(10):4501-4513. doi:10.1090/proc/13062 apa: Akopyan, A., Balitskiy, A., Karasev, R., & Sharipova, A. (2016). Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/13062 chicago: Akopyan, Arseniy, Alexey Balitskiy, Roman Karasev, and Anastasia Sharipova. “Elementary Approach to Closed Billiard Trajectories in Asymmetric Normed Spaces.” Proceedings of the American Mathematical Society. American Mathematical Society, 2016. https://doi.org/10.1090/proc/13062. ieee: A. Akopyan, A. Balitskiy, R. Karasev, and A. Sharipova, “Elementary approach to closed billiard trajectories in asymmetric normed spaces,” Proceedings of the American Mathematical Society, vol. 144, no. 10. American Mathematical Society, pp. 4501–4513, 2016. ista: Akopyan A, Balitskiy A, Karasev R, Sharipova A. 2016. Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. 144(10), 4501–4513. mla: Akopyan, Arseniy, et al. “Elementary Approach to Closed Billiard Trajectories in Asymmetric Normed Spaces.” Proceedings of the American Mathematical Society, vol. 144, no. 10, American Mathematical Society, 2016, pp. 4501–13, doi:10.1090/proc/13062. short: A. Akopyan, A. Balitskiy, R. Karasev, A. Sharipova, Proceedings of the American Mathematical Society 144 (2016) 4501–4513. date_created: 2018-12-11T11:51:34Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:50:09Z day: '01' department: - _id: HeEd doi: 10.1090/proc/13062 ec_funded: 1 intvolume: ' 144' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1401.0442 month: '10' oa: 1 oa_version: Preprint page: 4501 - 4513 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Proceedings of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '5885' quality_controlled: '1' scopus_import: 1 status: public title: Elementary approach to closed billiard trajectories in asymmetric normed spaces type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2016' ... --- _id: '1408' abstract: - lang: eng text: 'The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.' acknowledgement: 'Open access funding provided by Institute of Science and Technology (IST Austria). ' article_processing_charge: Yes (via OA deal) author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. On computability and triviality of well groups. Discrete & Computational Geometry. 2016;56(1):126-164. doi:10.1007/s00454-016-9794-2 apa: Franek, P., & Krcál, M. (2016). On computability and triviality of well groups. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-016-9794-2 chicago: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups.” Discrete & Computational Geometry. Springer, 2016. https://doi.org/10.1007/s00454-016-9794-2. ieee: P. Franek and M. Krcál, “On computability and triviality of well groups,” Discrete & Computational Geometry, vol. 56, no. 1. Springer, pp. 126–164, 2016. ista: Franek P, Krcál M. 2016. On computability and triviality of well groups. Discrete & Computational Geometry. 56(1), 126–164. mla: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups.” Discrete & Computational Geometry, vol. 56, no. 1, Springer, 2016, pp. 126–64, doi:10.1007/s00454-016-9794-2. short: P. Franek, M. Krcál, Discrete & Computational Geometry 56 (2016) 126–164. date_created: 2018-12-11T11:51:51Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-02-23T10:02:11Z day: '01' ddc: - '510' department: - _id: UlWa - _id: HeEd doi: 10.1007/s00454-016-9794-2 ec_funded: 1 file: - access_level: open_access checksum: e0da023abf6b72abd8c6a8c76740d53c content_type: application/pdf creator: system date_created: 2018-12-12T10:10:55Z date_updated: 2020-07-14T12:44:53Z file_id: '4846' file_name: IST-2016-614-v1+1_s00454-016-9794-2.pdf file_size: 905303 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 56' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 126 - 164 project: - _id: 25F8B9BC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M01980 name: Robust invariants of Nonlinear Systems - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '5799' pubrep_id: '614' quality_controlled: '1' related_material: record: - id: '1510' relation: earlier_version status: public scopus_import: 1 status: public title: On computability and triviality of well groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 56 year: '2016' ... --- _id: '1289' abstract: - lang: eng text: 'Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.' article_processing_charge: No author: - first_name: Olga full_name: Dunaeva, Olga last_name: Dunaeva - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Lukyanov, Anton last_name: Lukyanov - first_name: Michael full_name: Machin, Michael last_name: Machin - first_name: Daria full_name: Malkova, Daria last_name: Malkova - first_name: Roman full_name: Kuvaev, Roman last_name: Kuvaev - first_name: Sergey full_name: Kashin, Sergey last_name: Kashin citation: ama: Dunaeva O, Edelsbrunner H, Lukyanov A, et al. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 2016;83(1):13-22. doi:10.1016/j.patrec.2015.12.012 apa: Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., Malkova, D., Kuvaev, R., & Kashin, S. (2016). The classification of endoscopy images with persistent homology. Pattern Recognition Letters. Elsevier. https://doi.org/10.1016/j.patrec.2015.12.012 chicago: Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria Malkova, Roman Kuvaev, and Sergey Kashin. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters. Elsevier, 2016. https://doi.org/10.1016/j.patrec.2015.12.012. ieee: O. Dunaeva et al., “The classification of endoscopy images with persistent homology,” Pattern Recognition Letters, vol. 83, no. 1. Elsevier, pp. 13–22, 2016. ista: Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R, Kashin S. 2016. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 83(1), 13–22. mla: Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters, vol. 83, no. 1, Elsevier, 2016, pp. 13–22, doi:10.1016/j.patrec.2015.12.012. short: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, D. Malkova, R. Kuvaev, S. Kashin, Pattern Recognition Letters 83 (2016) 13–22. date_created: 2018-12-11T11:51:10Z date_published: 2016-11-01T00:00:00Z date_updated: 2023-02-23T10:04:40Z day: '01' ddc: - '004' - '514' department: - _id: HeEd doi: 10.1016/j.patrec.2015.12.012 file: - access_level: open_access checksum: 33458bbb8c32a339e1adeca6d5a1112d content_type: application/pdf creator: dernst date_created: 2019-04-17T07:55:51Z date_updated: 2020-07-14T12:44:42Z file_id: '6334' file_name: 2016-Edelsbrunner_The_classification.pdf file_size: 1921113 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 83' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 13 - 22 publication: Pattern Recognition Letters publication_status: published publisher: Elsevier publist_id: '6027' pubrep_id: '975' quality_controlled: '1' related_material: record: - id: '1568' relation: earlier_version status: public scopus_import: 1 status: public title: The classification of endoscopy images with persistent homology tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 83 year: '2016' ... --- _id: '1617' abstract: - lang: eng text: 'We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points.' acknowledgement: We are grateful to the referee whose suggestions greatly improved the quality and clarity of the exposition. author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Stefan full_name: Steinerberger, Stefan last_name: Steinerberger citation: ama: Pausinger F, Steinerberger S. On the discrepancy of jittered sampling. Journal of Complexity. 2016;33:199-216. doi:10.1016/j.jco.2015.11.003 apa: Pausinger, F., & Steinerberger, S. (2016). On the discrepancy of jittered sampling. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.11.003 chicago: Pausinger, Florian, and Stefan Steinerberger. “On the Discrepancy of Jittered Sampling.” Journal of Complexity. Academic Press, 2016. https://doi.org/10.1016/j.jco.2015.11.003. ieee: F. Pausinger and S. Steinerberger, “On the discrepancy of jittered sampling,” Journal of Complexity, vol. 33. Academic Press, pp. 199–216, 2016. ista: Pausinger F, Steinerberger S. 2016. On the discrepancy of jittered sampling. Journal of Complexity. 33, 199–216. mla: Pausinger, Florian, and Stefan Steinerberger. “On the Discrepancy of Jittered Sampling.” Journal of Complexity, vol. 33, Academic Press, 2016, pp. 199–216, doi:10.1016/j.jco.2015.11.003. short: F. Pausinger, S. Steinerberger, Journal of Complexity 33 (2016) 199–216. date_created: 2018-12-11T11:53:03Z date_published: 2016-04-01T00:00:00Z date_updated: 2021-01-12T06:52:02Z day: '01' department: - _id: HeEd doi: 10.1016/j.jco.2015.11.003 intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1510.00251 month: '04' oa: 1 oa_version: Submitted Version page: 199 - 216 publication: Journal of Complexity publication_status: published publisher: Academic Press publist_id: '5549' quality_controlled: '1' scopus_import: 1 status: public title: On the discrepancy of jittered sampling type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2016' ... --- _id: '5806' abstract: - lang: eng text: Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Biswas R, Bhowmick P. On functionality of quadraginta octants of naive sphere with application to circle drawing. In: Discrete Geometry for Computer Imagery. Vol 9647. Cham: Springer Nature; 2016:256-267. doi:10.1007/978-3-319-32360-2_20' apa: 'Biswas, R., & Bhowmick, P. (2016). On functionality of quadraginta octants of naive sphere with application to circle drawing. In Discrete Geometry for Computer Imagery (Vol. 9647, pp. 256–267). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-32360-2_20' chicago: 'Biswas, Ranita, and Partha Bhowmick. “On Functionality of Quadraginta Octants of Naive Sphere with Application to Circle Drawing.” In Discrete Geometry for Computer Imagery, 9647:256–67. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-32360-2_20.' ieee: R. Biswas and P. Bhowmick, “On functionality of quadraginta octants of naive sphere with application to circle drawing,” in Discrete Geometry for Computer Imagery, Nantes, France, 2016, vol. 9647, pp. 256–267. ista: 'Biswas R, Bhowmick P. 2016. On functionality of quadraginta octants of naive sphere with application to circle drawing. Discrete Geometry for Computer Imagery. DGCI: International Conference on Discrete Geometry for Computer Imagery, LNCS, vol. 9647, 256–267.' mla: Biswas, Ranita, and Partha Bhowmick. “On Functionality of Quadraginta Octants of Naive Sphere with Application to Circle Drawing.” Discrete Geometry for Computer Imagery, vol. 9647, Springer Nature, 2016, pp. 256–67, doi:10.1007/978-3-319-32360-2_20. short: R. Biswas, P. Bhowmick, in:, Discrete Geometry for Computer Imagery, Springer Nature, Cham, 2016, pp. 256–267. conference: end_date: 2016-04-20 location: Nantes, France name: 'DGCI: International Conference on Discrete Geometry for Computer Imagery' start_date: 2016-04-18 date_created: 2019-01-08T20:44:37Z date_published: 2016-04-09T00:00:00Z date_updated: 2022-01-28T08:10:11Z day: '09' department: - _id: HeEd doi: 10.1007/978-3-319-32360-2_20 extern: '1' intvolume: ' 9647' language: - iso: eng month: '04' oa_version: None page: 256-267 place: Cham publication: Discrete Geometry for Computer Imagery publication_identifier: eisbn: - 978-3-319-32360-2 isbn: - 978-3-319-32359-6 issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On functionality of quadraginta octants of naive sphere with application to circle drawing type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9647 year: '2016' ... --- _id: '5805' abstract: - lang: eng text: Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy. alternative_title: - LNCS article_processing_charge: No author: - first_name: Nabhasmita full_name: Sen, Nabhasmita last_name: Sen - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Sen N, Biswas R, Bhowmick P. On some local topological properties of naive discrete sphere. In: Computational Topology in Image Context. Vol 9667. Cham: Springer Nature; 2016:253-264. doi:10.1007/978-3-319-39441-1_23' apa: 'Sen, N., Biswas, R., & Bhowmick, P. (2016). On some local topological properties of naive discrete sphere. In Computational Topology in Image Context (Vol. 9667, pp. 253–264). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-39441-1_23' chicago: 'Sen, Nabhasmita, Ranita Biswas, and Partha Bhowmick. “On Some Local Topological Properties of Naive Discrete Sphere.” In Computational Topology in Image Context, 9667:253–64. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-39441-1_23.' ieee: 'N. Sen, R. Biswas, and P. Bhowmick, “On some local topological properties of naive discrete sphere,” in Computational Topology in Image Context, vol. 9667, Cham: Springer Nature, 2016, pp. 253–264.' ista: 'Sen N, Biswas R, Bhowmick P. 2016.On some local topological properties of naive discrete sphere. In: Computational Topology in Image Context. LNCS, vol. 9667, 253–264.' mla: Sen, Nabhasmita, et al. “On Some Local Topological Properties of Naive Discrete Sphere.” Computational Topology in Image Context, vol. 9667, Springer Nature, 2016, pp. 253–64, doi:10.1007/978-3-319-39441-1_23. short: N. Sen, R. Biswas, P. Bhowmick, in:, Computational Topology in Image Context, Springer Nature, Cham, 2016, pp. 253–264. conference: end_date: 2016-06-17 location: Marseille, France name: 'CTIC: Computational Topology in Image Context' start_date: 2016-06-15 date_created: 2019-01-08T20:44:24Z date_published: 2016-06-02T00:00:00Z date_updated: 2022-01-28T08:01:22Z day: '02' department: - _id: HeEd doi: 10.1007/978-3-319-39441-1_23 extern: '1' intvolume: ' 9667' language: - iso: eng month: '06' oa_version: None page: 253-264 place: Cham publication: Computational Topology in Image Context publication_identifier: eisbn: - 978-3-319-39441-1 eissn: - 1611-3349 isbn: - 978-3-319-39440-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On some local topological properties of naive discrete sphere type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9667 year: '2016' ... --- _id: '5809' abstract: - lang: eng text: A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness. article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick - first_name: Valentin E. full_name: Brimkov, Valentin E. last_name: Brimkov citation: ama: 'Biswas R, Bhowmick P, Brimkov VE. On the connectivity and smoothness of discrete spherical circles. In: Combinatorial Image Analysis. Vol 9448. Cham: Springer Nature; 2016:86-100. doi:10.1007/978-3-319-26145-4_7' apa: 'Biswas, R., Bhowmick, P., & Brimkov, V. E. (2016). On the connectivity and smoothness of discrete spherical circles. In Combinatorial image analysis (Vol. 9448, pp. 86–100). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-26145-4_7' chicago: 'Biswas, Ranita, Partha Bhowmick, and Valentin E. Brimkov. “On the Connectivity and Smoothness of Discrete Spherical Circles.” In Combinatorial Image Analysis, 9448:86–100. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-26145-4_7.' ieee: 'R. Biswas, P. Bhowmick, and V. E. Brimkov, “On the connectivity and smoothness of discrete spherical circles,” in Combinatorial image analysis, vol. 9448, Cham: Springer Nature, 2016, pp. 86–100.' ista: 'Biswas R, Bhowmick P, Brimkov VE. 2016.On the connectivity and smoothness of discrete spherical circles. In: Combinatorial image analysis. vol. 9448, 86–100.' mla: Biswas, Ranita, et al. “On the Connectivity and Smoothness of Discrete Spherical Circles.” Combinatorial Image Analysis, vol. 9448, Springer Nature, 2016, pp. 86–100, doi:10.1007/978-3-319-26145-4_7. short: R. Biswas, P. Bhowmick, V.E. Brimkov, in:, Combinatorial Image Analysis, Springer Nature, Cham, 2016, pp. 86–100. conference: end_date: 2015-11-27 location: Kolkata, India name: 'IWCIA: International Workshop on Combinatorial Image Analysis' start_date: 2015-11-24 date_created: 2019-01-08T20:45:19Z date_published: 2016-01-06T00:00:00Z date_updated: 2022-01-28T08:13:03Z day: '06' department: - _id: HeEd doi: 10.1007/978-3-319-26145-4_7 extern: '1' intvolume: ' 9448' language: - iso: eng month: '01' oa_version: None page: 86-100 place: Cham publication: Combinatorial image analysis publication_identifier: eisbn: - 978-3-319-26145-4 eissn: - 1611-3349 isbn: - 978-3-319-26144-7 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On the connectivity and smoothness of discrete spherical circles type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9448 year: '2016' ... --- _id: '1662' abstract: - lang: eng text: We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball. acknowledgement: "This research is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme.\r\nBoth authors thank Anne Marie Svane for her comments on an early version of this paper. The second author wishes to thank Eva B. Vedel Jensen and Markus Kiderlen from Aarhus University for enlightening discussions and their kind hospitality during a visit of their department in 2014." author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 citation: ama: Edelsbrunner H, Pausinger F. Approximation and convergence of the intrinsic volume. Advances in Mathematics. 2016;287:674-703. doi:10.1016/j.aim.2015.10.004 apa: Edelsbrunner, H., & Pausinger, F. (2016). Approximation and convergence of the intrinsic volume. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2015.10.004 chicago: Edelsbrunner, Herbert, and Florian Pausinger. “Approximation and Convergence of the Intrinsic Volume.” Advances in Mathematics. Academic Press, 2016. https://doi.org/10.1016/j.aim.2015.10.004. ieee: H. Edelsbrunner and F. Pausinger, “Approximation and convergence of the intrinsic volume,” Advances in Mathematics, vol. 287. Academic Press, pp. 674–703, 2016. ista: Edelsbrunner H, Pausinger F. 2016. Approximation and convergence of the intrinsic volume. Advances in Mathematics. 287, 674–703. mla: Edelsbrunner, Herbert, and Florian Pausinger. “Approximation and Convergence of the Intrinsic Volume.” Advances in Mathematics, vol. 287, Academic Press, 2016, pp. 674–703, doi:10.1016/j.aim.2015.10.004. short: H. Edelsbrunner, F. Pausinger, Advances in Mathematics 287 (2016) 674–703. date_created: 2018-12-11T11:53:20Z date_published: 2016-01-10T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '10' ddc: - '004' department: - _id: HeEd doi: 10.1016/j.aim.2015.10.004 ec_funded: 1 file: - access_level: open_access checksum: f8869ec110c35c852ef6a37425374af7 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:10Z date_updated: 2020-07-14T12:45:10Z file_id: '4928' file_name: IST-2017-774-v1+1_2016-J-03-FirstIntVolume.pdf file_size: 248985 relation: main_file file_date_updated: 2020-07-14T12:45:10Z has_accepted_license: '1' intvolume: ' 287' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 674 - 703 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Advances in Mathematics publication_status: published publisher: Academic Press publist_id: '5488' pubrep_id: '774' quality_controlled: '1' related_material: record: - id: '1399' relation: dissertation_contains status: public scopus_import: 1 status: public title: Approximation and convergence of the intrinsic volume tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 287 year: '2016' ... --- _id: '1424' abstract: - lang: eng text: We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data. acknowledgement: This work was partially supported by the Austrian Science FUnd, project no. KLI 00012. alternative_title: - Advances in Neural Information Processing Systems author: - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Marc full_name: Niethammer, Marc last_name: Niethammer - first_name: Weili full_name: Lin, Weili last_name: Lin - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 citation: ama: 'Kwitt R, Huber S, Niethammer M, Lin W, Bauer U. Statistical topological data analysis-A kernel perspective. In: Vol 28. Neural Information Processing Systems; 2015:3070-3078.' apa: 'Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis-A kernel perspective (Vol. 28, pp. 3070–3078). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.' chicago: Kwitt, Roland, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. “Statistical Topological Data Analysis-A Kernel Perspective,” 28:3070–78. Neural Information Processing Systems, 2015. ieee: 'R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-A kernel perspective,” presented at the NIPS: Neural Information Processing Systems, Montreal, Canada, 2015, vol. 28, pp. 3070–3078.' ista: 'Kwitt R, Huber S, Niethammer M, Lin W, Bauer U. 2015. Statistical topological data analysis-A kernel perspective. NIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, vol. 28, 3070–3078.' mla: Kwitt, Roland, et al. Statistical Topological Data Analysis-A Kernel Perspective. Vol. 28, Neural Information Processing Systems, 2015, pp. 3070–78. short: R. Kwitt, S. Huber, M. Niethammer, W. Lin, U. Bauer, in:, Neural Information Processing Systems, 2015, pp. 3070–3078. conference: end_date: 2015-12-12 location: Montreal, Canada name: 'NIPS: Neural Information Processing Systems' start_date: 2015-12-07 date_created: 2018-12-11T11:51:56Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:50:38Z day: '01' department: - _id: HeEd intvolume: ' 28' language: - iso: eng main_file_link: - open_access: '1' url: https://papers.nips.cc/paper/5887-statistical-topological-data-analysis-a-kernel-perspective month: '12' oa: 1 oa_version: Submitted Version page: 3070 - 3078 publication_status: published publisher: Neural Information Processing Systems publist_id: '5782' quality_controlled: '1' status: public title: Statistical topological data analysis-A kernel perspective type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2015' ... --- _id: '1483' abstract: - lang: eng text: Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes. author: - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt citation: ama: 'Reininghaus J, Huber S, Bauer U, Kwitt R. A stable multi-scale kernel for topological machine learning. In: IEEE; 2015:4741-4748. doi:10.1109/CVPR.2015.7299106' apa: 'Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning (pp. 4741–4748). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7299106' chicago: Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106. ieee: 'J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale kernel for topological machine learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 4741–4748.' ista: 'Reininghaus J, Huber S, Bauer U, Kwitt R. 2015. A stable multi-scale kernel for topological machine learning. CVPR: Computer Vision and Pattern Recognition, 4741–4748.' mla: Reininghaus, Jan, et al. A Stable Multi-Scale Kernel for Topological Machine Learning. IEEE, 2015, pp. 4741–48, doi:10.1109/CVPR.2015.7299106. short: J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, in:, IEEE, 2015, pp. 4741–4748. conference: end_date: 2015-06-12 location: Boston, MA, USA name: 'CVPR: Computer Vision and Pattern Recognition' start_date: 2015-06-07 date_created: 2018-12-11T11:52:17Z date_published: 2015-10-14T00:00:00Z date_updated: 2021-01-12T06:51:03Z day: '14' department: - _id: HeEd doi: 10.1109/CVPR.2015.7299106 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1412.6821 month: '10' oa: 1 oa_version: Preprint page: 4741 - 4748 publication_identifier: eisbn: - '978-1-4673-6964-0 ' publication_status: published publisher: IEEE publist_id: '5709' scopus_import: 1 status: public title: A stable multi-scale kernel for topological machine learning type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1495' abstract: - lang: eng text: 'Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. ' author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham - first_name: Vitaliy full_name: Kurlin, Vitaliy last_name: Kurlin citation: ama: 'Edelsbrunner H, Iglesias Ham M, Kurlin V. Relaxed disk packing. In: Proceedings of the 27th Canadian Conference on Computational Geometry. Vol 2015-August. Queen’s University; 2015:128-135.' apa: 'Edelsbrunner, H., Iglesias Ham, M., & Kurlin, V. (2015). Relaxed disk packing. In Proceedings of the 27th Canadian Conference on Computational Geometry (Vol. 2015–August, pp. 128–135). Ontario, Canada: Queen’s University.' chicago: Edelsbrunner, Herbert, Mabel Iglesias Ham, and Vitaliy Kurlin. “Relaxed Disk Packing.” In Proceedings of the 27th Canadian Conference on Computational Geometry, 2015–August:128–35. Queen’s University, 2015. ieee: H. Edelsbrunner, M. Iglesias Ham, and V. Kurlin, “Relaxed disk packing,” in Proceedings of the 27th Canadian Conference on Computational Geometry, Ontario, Canada, 2015, vol. 2015–August, pp. 128–135. ista: 'Edelsbrunner H, Iglesias Ham M, Kurlin V. 2015. Relaxed disk packing. Proceedings of the 27th Canadian Conference on Computational Geometry. CCCG: Canadian Conference on Computational Geometry vol. 2015–August, 128–135.' mla: Edelsbrunner, Herbert, et al. “Relaxed Disk Packing.” Proceedings of the 27th Canadian Conference on Computational Geometry, vol. 2015–August, Queen’s University, 2015, pp. 128–35. short: H. Edelsbrunner, M. Iglesias Ham, V. Kurlin, in:, Proceedings of the 27th Canadian Conference on Computational Geometry, Queen’s University, 2015, pp. 128–135. conference: end_date: 2015-08-12 location: Ontario, Canada name: 'CCCG: Canadian Conference on Computational Geometry' start_date: 2015-08-10 date_created: 2018-12-11T11:52:21Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:09Z day: '01' department: - _id: HeEd ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1505.03402 month: '08' oa: 1 oa_version: Submitted Version page: 128-135 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the 27th Canadian Conference on Computational Geometry publication_status: published publisher: Queen's University publist_id: '5684' quality_controlled: '1' scopus_import: 1 status: public title: Relaxed disk packing type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2015-August year: '2015' ... --- _id: '1510' abstract: - lang: eng text: 'The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f'' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. ' alternative_title: - LIPIcs author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: 'Franek P, Krcál M. On computability and triviality of well groups. In: Vol 34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2015:842-856. doi:10.4230/LIPIcs.SOCG.2015.842' apa: 'Franek, P., & Krcál, M. (2015). On computability and triviality of well groups (Vol. 34, pp. 842–856). Presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SOCG.2015.842' chicago: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups,” 34:842–56. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. https://doi.org/10.4230/LIPIcs.SOCG.2015.842. ieee: 'P. Franek and M. Krcál, “On computability and triviality of well groups,” presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands, 2015, vol. 34, pp. 842–856.' ista: 'Franek P, Krcál M. 2015. On computability and triviality of well groups. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 34, 842–856.' mla: Franek, Peter, and Marek Krcál. On Computability and Triviality of Well Groups. Vol. 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 842–56, doi:10.4230/LIPIcs.SOCG.2015.842. short: P. Franek, M. Krcál, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 842–856. conference: end_date: 2015-06-25 location: Eindhoven, Netherlands name: 'SoCG: Symposium on Computational Geometry' start_date: 2015-06-22 date_created: 2018-12-11T11:52:26Z date_published: 2015-06-11T00:00:00Z date_updated: 2023-02-21T17:02:57Z day: '11' ddc: - '510' department: - _id: UlWa - _id: HeEd doi: 10.4230/LIPIcs.SOCG.2015.842 ec_funded: 1 file: - access_level: open_access checksum: 49eb5021caafaabe5356c65b9c5f8c9c content_type: application/pdf creator: system date_created: 2018-12-12T10:13:19Z date_updated: 2020-07-14T12:44:59Z file_id: '5001' file_name: IST-2016-503-v1+1_32.pdf file_size: 623563 relation: main_file file_date_updated: 2020-07-14T12:44:59Z has_accepted_license: '1' intvolume: ' 34' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 842 - 856 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '5667' pubrep_id: '503' quality_controlled: '1' related_material: record: - id: '1408' relation: later_version status: public scopus_import: 1 status: public title: On computability and triviality of well groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1531' abstract: - lang: eng text: The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece. alternative_title: - Mathematics and Visualization article_processing_charge: No author: - first_name: Valentin full_name: Zobel, Valentin last_name: Zobel - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz citation: ama: 'Zobel V, Reininghaus J, Hotz I. Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In: Hotz I, Schultz T, eds. Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Vol 40. 1st ed. Springer; 2015:257-267. doi:10.1007/978-3-319-15090-1_13' apa: Zobel, V., Reininghaus, J., & Hotz, I. (2015). Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In I. Hotz & T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data (1st ed., Vol. 40, pp. 257–267). Springer. https://doi.org/10.1007/978-3-319-15090-1_13 chicago: Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., 40:257–67. Springer, 2015. https://doi.org/10.1007/978-3-319-15090-1_13. ieee: V. Zobel, J. Reininghaus, and I. Hotz, “Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature,” in Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, 1st ed., vol. 40, I. Hotz and T. Schultz, Eds. Springer, 2015, pp. 257–267. ista: 'Zobel V, Reininghaus J, Hotz I. 2015.Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, vol. 40, 257–267.' mla: Zobel, Valentin, et al. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., vol. 40, Springer, 2015, pp. 257–67, doi:10.1007/978-3-319-15090-1_13. short: V. Zobel, J. Reininghaus, I. Hotz, in:, I. Hotz, T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, 1st ed., Springer, 2015, pp. 257–267. date_created: 2018-12-11T11:52:33Z date_published: 2015-01-01T00:00:00Z date_updated: 2022-06-10T09:50:14Z day: '01' department: - _id: HeEd doi: 10.1007/978-3-319-15090-1_13 edition: '1' editor: - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Thomas full_name: Schultz, Thomas last_name: Schultz intvolume: ' 40' language: - iso: eng month: '01' oa_version: None page: 257 - 267 publication: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data publication_identifier: isbn: - 978-3-319-15089-5 publication_status: published publisher: Springer publist_id: '5640' quality_controlled: '1' scopus_import: '1' status: public title: Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 40 year: '2015' ... --- _id: '1555' abstract: - lang: eng text: We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations. acknowledgement: Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria (pawel.pilarczyk@ist.ac.at). This author’s work was partially supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 622033, by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE—Programa Operacional Factores de Competitividade (POFC), by the Portuguese national funds through Funda ̧caoparaaCiˆencia e a Tecnologia (FCT) in the framework of the research project FCOMP-01-0124-FEDER-010645 (ref. FCT PTDC/MAT/098871/2008), and by European Research Council through StG 259559 in the framework of the EPIDELAY project. article_processing_charge: No article_type: original author: - first_name: Diána full_name: Knipl, Diána last_name: Knipl - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk - first_name: Gergely full_name: Röst, Gergely last_name: Röst citation: ama: Knipl D, Pilarczyk P, Röst G. Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. 2015;14(2):980-1017. doi:10.1137/140993934 apa: Knipl, D., Pilarczyk, P., & Röst, G. (2015). Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140993934 chicago: Knipl, Diána, Pawel Pilarczyk, and Gergely Röst. “Rich Bifurcation Structure in a Two Patch Vaccination Model.” SIAM Journal on Applied Dynamical Systems. Society for Industrial and Applied Mathematics , 2015. https://doi.org/10.1137/140993934. ieee: D. Knipl, P. Pilarczyk, and G. Röst, “Rich bifurcation structure in a two patch vaccination model,” SIAM Journal on Applied Dynamical Systems, vol. 14, no. 2. Society for Industrial and Applied Mathematics , pp. 980–1017, 2015. ista: Knipl D, Pilarczyk P, Röst G. 2015. Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. 14(2), 980–1017. mla: Knipl, Diána, et al. “Rich Bifurcation Structure in a Two Patch Vaccination Model.” SIAM Journal on Applied Dynamical Systems, vol. 14, no. 2, Society for Industrial and Applied Mathematics , 2015, pp. 980–1017, doi:10.1137/140993934. short: D. Knipl, P. Pilarczyk, G. Röst, SIAM Journal on Applied Dynamical Systems 14 (2015) 980–1017. date_created: 2018-12-11T11:52:42Z date_published: 2015-01-01T00:00:00Z date_updated: 2021-01-12T06:51:34Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1137/140993934 ec_funded: 1 intvolume: ' 14' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: http://discovery.ucl.ac.uk/1473750/1/99393.pdf month: '01' oa: 1 oa_version: Published Version page: 980 - 1017 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: SIAM Journal on Applied Dynamical Systems publication_identifier: eissn: - 1536-0040 publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '5616' quality_controlled: '1' scopus_import: 1 status: public title: Rich bifurcation structure in a two patch vaccination model type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2015' ... --- _id: '1568' abstract: - lang: eng text: Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. acknowledgement: This research is supported by the project No. 477 of P.G. Demidov Yaroslavl State University within State Assignment for Research. author: - first_name: Olga full_name: Dunaeva, Olga last_name: Dunaeva - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Lukyanov, Anton last_name: Lukyanov - first_name: Michael full_name: Machin, Michael last_name: Machin - first_name: Daria full_name: Malkova, Daria last_name: Malkova citation: ama: 'Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D. The classification of endoscopy images with persistent homology. In: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE; 2015:7034731. doi:10.1109/SYNASC.2014.81' apa: 'Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., & Malkova, D. (2015). The classification of endoscopy images with persistent homology. In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (p. 7034731). Timisoara, Romania: IEEE. https://doi.org/10.1109/SYNASC.2014.81' chicago: Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, and Daria Malkova. “The Classification of Endoscopy Images with Persistent Homology.” In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 7034731. IEEE, 2015. https://doi.org/10.1109/SYNASC.2014.81. ieee: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, and D. Malkova, “The classification of endoscopy images with persistent homology,” in Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 2015, p. 7034731. ista: 'Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D. 2015. The classification of endoscopy images with persistent homology. Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. SYNASC: Symbolic and Numeric Algorithms for Scientific Computing, 7034731.' mla: Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE, 2015, p. 7034731, doi:10.1109/SYNASC.2014.81. short: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, D. Malkova, in:, Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE, 2015, p. 7034731. conference: end_date: 2014-09-25 location: Timisoara, Romania name: 'SYNASC: Symbolic and Numeric Algorithms for Scientific Computing' start_date: 2014-09-22 date_created: 2018-12-11T11:52:46Z date_published: 2015-02-05T00:00:00Z date_updated: 2023-02-21T16:57:29Z day: '05' department: - _id: HeEd doi: 10.1109/SYNASC.2014.81 language: - iso: eng month: '02' oa_version: None page: '7034731' publication: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing publication_status: published publisher: IEEE publist_id: '5603' quality_controlled: '1' related_material: record: - id: '1289' relation: later_version status: public scopus_import: 1 status: public title: The classification of endoscopy images with persistent homology type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1567' abstract: - lang: eng text: My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations. alternative_title: - LNCS article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: 'Edelsbrunner H. Shape, homology, persistence, and stability. In: 23rd International Symposium. Vol 9411. Springer Nature; 2015.' apa: 'Edelsbrunner, H. (2015). Shape, homology, persistence, and stability. In 23rd International Symposium (Vol. 9411). Los Angeles, CA, United States: Springer Nature.' chicago: Edelsbrunner, Herbert. “Shape, Homology, Persistence, and Stability.” In 23rd International Symposium, Vol. 9411. Springer Nature, 2015. ieee: H. Edelsbrunner, “Shape, homology, persistence, and stability,” in 23rd International Symposium, Los Angeles, CA, United States, 2015, vol. 9411. ista: 'Edelsbrunner H. 2015. Shape, homology, persistence, and stability. 23rd International Symposium. GD: Graph Drawing and Network Visualization, LNCS, vol. 9411.' mla: Edelsbrunner, Herbert. “Shape, Homology, Persistence, and Stability.” 23rd International Symposium, vol. 9411, Springer Nature, 2015. short: H. Edelsbrunner, in:, 23rd International Symposium, Springer Nature, 2015. conference: end_date: 2015-09-26 location: Los Angeles, CA, United States name: 'GD: Graph Drawing and Network Visualization' start_date: 2015-09-24 date_created: 2018-12-11T11:52:46Z date_published: 2015-01-01T00:00:00Z date_updated: 2022-01-28T08:25:00Z day: '01' department: - _id: HeEd intvolume: ' 9411' language: - iso: eng month: '01' oa_version: None publication: 23rd International Symposium publication_status: published publisher: Springer Nature publist_id: '5604' quality_controlled: '1' scopus_import: '1' status: public title: Shape, homology, persistence, and stability type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9411 year: '2015' ... --- _id: '1563' abstract: - lang: eng text: For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}. author: - first_name: Grzegorz full_name: Graff, Grzegorz last_name: Graff - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Graff G, Pilarczyk P. An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. 2015;45(1):273-286. doi:10.12775/TMNA.2015.014 apa: Graff, G., & Pilarczyk, P. (2015). An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies. https://doi.org/10.12775/TMNA.2015.014 chicago: Graff, Grzegorz, and Pawel Pilarczyk. “An Algorithmic Approach to Estimating the Minimal Number of Periodic Points for Smooth Self-Maps of Simply-Connected Manifolds.” Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies, 2015. https://doi.org/10.12775/TMNA.2015.014. ieee: G. Graff and P. Pilarczyk, “An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds,” Topological Methods in Nonlinear Analysis, vol. 45, no. 1. Juliusz Schauder Center for Nonlinear Studies, pp. 273–286, 2015. ista: Graff G, Pilarczyk P. 2015. An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. 45(1), 273–286. mla: Graff, Grzegorz, and Pawel Pilarczyk. “An Algorithmic Approach to Estimating the Minimal Number of Periodic Points for Smooth Self-Maps of Simply-Connected Manifolds.” Topological Methods in Nonlinear Analysis, vol. 45, no. 1, Juliusz Schauder Center for Nonlinear Studies, 2015, pp. 273–86, doi:10.12775/TMNA.2015.014. short: G. Graff, P. Pilarczyk, Topological Methods in Nonlinear Analysis 45 (2015) 273–286. date_created: 2018-12-11T11:52:44Z date_published: 2015-03-01T00:00:00Z date_updated: 2021-01-12T06:51:37Z day: '01' department: - _id: HeEd doi: 10.12775/TMNA.2015.014 intvolume: ' 45' issue: '1' language: - iso: eng month: '03' oa_version: None page: 273 - 286 publication: Topological Methods in Nonlinear Analysis publication_status: published publisher: Juliusz Schauder Center for Nonlinear Studies publist_id: '5608' quality_controlled: '1' scopus_import: 1 status: public title: An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 45 year: '2015' ... --- _id: '1578' abstract: - lang: eng text: We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations. acknowledgement: "The research of the second author is partially supported by NSF under grant DBI-0820624 and by DARPA under grants HR011-05-1-0057 and HR0011-09-006\r\n" author: - first_name: Thanhtung full_name: Cao, Thanhtung last_name: Cao - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Tiowseng full_name: Tan, Tiowseng last_name: Tan citation: ama: Cao T, Edelsbrunner H, Tan T. Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. 2015;48(7):507-519. doi:10.1016/j.comgeo.2015.04.001 apa: Cao, T., Edelsbrunner, H., & Tan, T. (2015). Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. Elsevier. https://doi.org/10.1016/j.comgeo.2015.04.001 chicago: Cao, Thanhtung, Herbert Edelsbrunner, and Tiowseng Tan. “Triangulations from Topologically Correct Digital Voronoi Diagrams.” Computational Geometry. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2015.04.001. ieee: T. Cao, H. Edelsbrunner, and T. Tan, “Triangulations from topologically correct digital Voronoi diagrams,” Computational Geometry, vol. 48, no. 7. Elsevier, pp. 507–519, 2015. ista: Cao T, Edelsbrunner H, Tan T. 2015. Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. 48(7), 507–519. mla: Cao, Thanhtung, et al. “Triangulations from Topologically Correct Digital Voronoi Diagrams.” Computational Geometry, vol. 48, no. 7, Elsevier, 2015, pp. 507–19, doi:10.1016/j.comgeo.2015.04.001. short: T. Cao, H. Edelsbrunner, T. Tan, Computational Geometry 48 (2015) 507–519. date_created: 2018-12-11T11:52:49Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:43Z day: '01' department: - _id: HeEd doi: 10.1016/j.comgeo.2015.04.001 intvolume: ' 48' issue: '7' language: - iso: eng month: '08' oa_version: None page: 507 - 519 publication: Computational Geometry publication_status: published publisher: Elsevier publist_id: '5593' quality_controlled: '1' scopus_import: 1 status: public title: Triangulations from topologically correct digital Voronoi diagrams type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1584' abstract: - lang: eng text: We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Dominik full_name: Kaaser, Dominik last_name: Kaaser - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 2015;48(5):429-442. doi:10.1016/j.comgeo.2015.01.004' apa: 'Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2015.01.004' chicago: 'Biedl, Therese, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. “Reprint of: Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2015.01.004.' ieee: 'T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Reprint of: Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 5. Elsevier, pp. 429–442, 2015.' ista: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. 2015. Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 48(5), 429–442.' mla: 'Biedl, Therese, et al. “Reprint of: Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications, vol. 48, no. 5, Elsevier, 2015, pp. 429–42, doi:10.1016/j.comgeo.2015.01.004.' short: 'T. Biedl, M. Held, S. Huber, D. Kaaser, P. Palfrader, Computational Geometry: Theory and Applications 48 (2015) 429–442.' date_created: 2018-12-11T11:52:51Z date_published: 2015-07-01T00:00:00Z date_updated: 2023-02-23T10:05:22Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.comgeo.2015.01.004 file: - access_level: open_access checksum: 5b33719a86f7f4c8e5dc62c1b6893f49 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:36Z date_updated: 2020-07-14T12:45:03Z file_id: '5292' file_name: IST-2016-475-v1+1_1-s2.0-S092577211500005X-main.pdf file_size: 508379 relation: main_file file_date_updated: 2020-07-14T12:45:03Z has_accepted_license: '1' intvolume: ' 48' issue: '5' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 429 - 442 publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '5587' pubrep_id: '475' quality_controlled: '1' related_material: record: - id: '1582' relation: other status: public scopus_import: 1 status: public title: 'Reprint of: Weighted straight skeletons in the plane' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1582' abstract: - lang: eng text: We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Dominik full_name: Kaaser, Dominik last_name: Kaaser - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 2015;48(2):120-133. doi:10.1016/j.comgeo.2014.08.006' apa: 'Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.006' chicago: 'Biedl, Therese, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. “Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2014.08.006.' ieee: 'T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 2. Elsevier, pp. 120–133, 2015.' ista: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. 2015. Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 48(2), 120–133.' mla: 'Biedl, Therese, et al. “Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications, vol. 48, no. 2, Elsevier, 2015, pp. 120–33, doi:10.1016/j.comgeo.2014.08.006.' short: 'T. Biedl, M. Held, S. Huber, D. Kaaser, P. Palfrader, Computational Geometry: Theory and Applications 48 (2015) 120–133.' date_created: 2018-12-11T11:52:51Z date_published: 2015-02-01T00:00:00Z date_updated: 2023-02-23T10:05:27Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.comgeo.2014.08.006 file: - access_level: open_access checksum: c1ef67f6ec925e12f73a96b8fe285ab4 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:28Z date_updated: 2020-07-14T12:45:02Z file_id: '5215' file_name: IST-2016-474-v1+1_1-s2.0-S0925772114000807-main.pdf file_size: 505987 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 48' issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 120 - 133 publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '5589' pubrep_id: '474' quality_controlled: '1' related_material: record: - id: '1584' relation: other status: public scopus_import: 1 status: public title: Weighted straight skeletons in the plane tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1583' abstract: - lang: eng text: We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon. author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Dominik full_name: Kaaser, Dominik last_name: Kaaser - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: Biedl T, Held M, Huber S, Kaaser D, Palfrader P. A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. 2015;115(2):243-247. doi:10.1016/j.ipl.2014.09.021 apa: Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. Elsevier. https://doi.org/10.1016/j.ipl.2014.09.021 chicago: Biedl, Therese, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. “A Simple Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.” Information Processing Letters. Elsevier, 2015. https://doi.org/10.1016/j.ipl.2014.09.021. ieee: T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “A simple algorithm for computing positively weighted straight skeletons of monotone polygons,” Information Processing Letters, vol. 115, no. 2. Elsevier, pp. 243–247, 2015. ista: Biedl T, Held M, Huber S, Kaaser D, Palfrader P. 2015. A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. 115(2), 243–247. mla: Biedl, Therese, et al. “A Simple Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.” Information Processing Letters, vol. 115, no. 2, Elsevier, 2015, pp. 243–47, doi:10.1016/j.ipl.2014.09.021. short: T. Biedl, M. Held, S. Huber, D. Kaaser, P. Palfrader, Information Processing Letters 115 (2015) 243–247. date_created: 2018-12-11T11:52:51Z date_published: 2015-02-01T00:00:00Z date_updated: 2021-01-12T06:51:45Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.ipl.2014.09.021 file: - access_level: open_access checksum: 2779a648610c9b5c86d0b51a62816d23 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:45Z date_updated: 2020-07-14T12:45:03Z file_id: '5367' file_name: IST-2016-473-v1+1_1-s2.0-S0020019014001987-main.pdf file_size: 270137 relation: main_file file_date_updated: 2020-07-14T12:45:03Z has_accepted_license: '1' intvolume: ' 115' issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 243 - 247 publication: Information Processing Letters publication_status: published publisher: Elsevier publist_id: '5588' pubrep_id: '473' quality_controlled: '1' scopus_import: 1 status: public title: A simple algorithm for computing positively weighted straight skeletons of monotone polygons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 115 year: '2015' ... --- _id: '1590' abstract: - lang: eng text: 'The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Thomas full_name: Hackl, Thomas last_name: Hackl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader - first_name: Birgit full_name: Vogtenhuber, Birgit last_name: Vogtenhuber citation: ama: 'Aichholzer O, Biedl T, Hackl T, et al. Representing directed trees as straight skeletons. In: Graph Drawing and Network Visualization. Vol 9411. Springer Nature; 2015:335-347. doi:10.1007/978-3-319-27261-0_28' apa: 'Aichholzer, O., Biedl, T., Hackl, T., Held, M., Huber, S., Palfrader, P., & Vogtenhuber, B. (2015). Representing directed trees as straight skeletons. In Graph Drawing and Network Visualization (Vol. 9411, pp. 335–347). Los Angeles, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-319-27261-0_28' chicago: Aichholzer, Oswin, Therese Biedl, Thomas Hackl, Martin Held, Stefan Huber, Peter Palfrader, and Birgit Vogtenhuber. “Representing Directed Trees as Straight Skeletons.” In Graph Drawing and Network Visualization, 9411:335–47. Springer Nature, 2015. https://doi.org/10.1007/978-3-319-27261-0_28. ieee: O. Aichholzer et al., “Representing directed trees as straight skeletons,” in Graph Drawing and Network Visualization, vol. 9411, Springer Nature, 2015, pp. 335–347. ista: 'Aichholzer O, Biedl T, Hackl T, Held M, Huber S, Palfrader P, Vogtenhuber B. 2015.Representing directed trees as straight skeletons. In: Graph Drawing and Network Visualization. LNCS, vol. 9411, 335–347.' mla: Aichholzer, Oswin, et al. “Representing Directed Trees as Straight Skeletons.” Graph Drawing and Network Visualization, vol. 9411, Springer Nature, 2015, pp. 335–47, doi:10.1007/978-3-319-27261-0_28. short: O. Aichholzer, T. Biedl, T. Hackl, M. Held, S. Huber, P. Palfrader, B. Vogtenhuber, in:, Graph Drawing and Network Visualization, Springer Nature, 2015, pp. 335–347. conference: end_date: 2015-09-26 location: Los Angeles, CA, United States name: 'GD: International Symposium on Graph Drawing' start_date: 2015-09-24 date_created: 2018-12-11T11:52:54Z date_published: 2015-11-27T00:00:00Z date_updated: 2022-01-28T09:10:37Z day: '27' department: - _id: HeEd doi: 10.1007/978-3-319-27261-0_28 intvolume: ' 9411' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1508.01076 month: '11' oa: 1 oa_version: Preprint page: 335 - 347 publication: Graph Drawing and Network Visualization publication_identifier: eisbn: - 978-3-319-27261-0 isbn: - 978-3-319-27260-3 publication_status: published publisher: Springer Nature publist_id: '5581' quality_controlled: '1' scopus_import: '1' status: public title: Representing directed trees as straight skeletons type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9411 year: '2015' ... --- _id: '1682' abstract: - lang: eng text: 'We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.' article_number: '26' author: - first_name: Peter full_name: Franek, Peter last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. Robust satisfiability of systems of equations. Journal of the ACM. 2015;62(4). doi:10.1145/2751524 apa: Franek, P., & Krcál, M. (2015). Robust satisfiability of systems of equations. Journal of the ACM. ACM. https://doi.org/10.1145/2751524 chicago: Franek, Peter, and Marek Krcál. “Robust Satisfiability of Systems of Equations.” Journal of the ACM. ACM, 2015. https://doi.org/10.1145/2751524. ieee: P. Franek and M. Krcál, “Robust satisfiability of systems of equations,” Journal of the ACM, vol. 62, no. 4. ACM, 2015. ista: Franek P, Krcál M. 2015. Robust satisfiability of systems of equations. Journal of the ACM. 62(4), 26. mla: Franek, Peter, and Marek Krcál. “Robust Satisfiability of Systems of Equations.” Journal of the ACM, vol. 62, no. 4, 26, ACM, 2015, doi:10.1145/2751524. short: P. Franek, M. Krcál, Journal of the ACM 62 (2015). date_created: 2018-12-11T11:53:27Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:52:30Z day: '01' department: - _id: UlWa - _id: HeEd doi: 10.1145/2751524 intvolume: ' 62' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1402.0858 month: '08' oa: 1 oa_version: Preprint publication: Journal of the ACM publication_status: published publisher: ACM publist_id: '5466' quality_controlled: '1' scopus_import: 1 status: public title: Robust satisfiability of systems of equations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 62 year: '2015' ... --- _id: '1710' abstract: - lang: eng text: 'We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.' author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander full_name: Plakhov, Alexander last_name: Plakhov citation: ama: Akopyan A, Plakhov A. Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. 2015;47(4):2754-2769. doi:10.1137/140993843 apa: Akopyan, A., & Plakhov, A. (2015). Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. SIAM. https://doi.org/10.1137/140993843 chicago: Akopyan, Arseniy, and Alexander Plakhov. “Minimal Resistance of Curves under the Single Impact Assumption.” Society for Industrial and Applied Mathematics. SIAM, 2015. https://doi.org/10.1137/140993843. ieee: A. Akopyan and A. Plakhov, “Minimal resistance of curves under the single impact assumption,” Society for Industrial and Applied Mathematics, vol. 47, no. 4. SIAM, pp. 2754–2769, 2015. ista: Akopyan A, Plakhov A. 2015. Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. 47(4), 2754–2769. mla: Akopyan, Arseniy, and Alexander Plakhov. “Minimal Resistance of Curves under the Single Impact Assumption.” Society for Industrial and Applied Mathematics, vol. 47, no. 4, SIAM, 2015, pp. 2754–69, doi:10.1137/140993843. short: A. Akopyan, A. Plakhov, Society for Industrial and Applied Mathematics 47 (2015) 2754–2769. date_created: 2018-12-11T11:53:36Z date_published: 2015-07-14T00:00:00Z date_updated: 2021-01-12T06:52:41Z day: '14' department: - _id: HeEd doi: 10.1137/140993843 ec_funded: 1 intvolume: ' 47' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1410.3736 month: '07' oa: 1 oa_version: Preprint page: 2754 - 2769 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Society for Industrial and Applied Mathematics publication_status: published publisher: SIAM publist_id: '5423' quality_controlled: '1' scopus_import: 1 status: public title: Minimal resistance of curves under the single impact assumption type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 47 year: '2015' ... --- _id: '1828' abstract: - lang: eng text: We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Sergey full_name: Pirogov, Sergey last_name: Pirogov - first_name: Aleksandr full_name: Rybko, Aleksandr last_name: Rybko citation: ama: Akopyan A, Pirogov S, Rybko A. Invariant measures of genetic recombination process. Journal of Statistical Physics. 2015;160(1):163-167. doi:10.1007/s10955-015-1238-5 apa: Akopyan, A., Pirogov, S., & Rybko, A. (2015). Invariant measures of genetic recombination process. Journal of Statistical Physics. Springer. https://doi.org/10.1007/s10955-015-1238-5 chicago: Akopyan, Arseniy, Sergey Pirogov, and Aleksandr Rybko. “Invariant Measures of Genetic Recombination Process.” Journal of Statistical Physics. Springer, 2015. https://doi.org/10.1007/s10955-015-1238-5. ieee: A. Akopyan, S. Pirogov, and A. Rybko, “Invariant measures of genetic recombination process,” Journal of Statistical Physics, vol. 160, no. 1. Springer, pp. 163–167, 2015. ista: Akopyan A, Pirogov S, Rybko A. 2015. Invariant measures of genetic recombination process. Journal of Statistical Physics. 160(1), 163–167. mla: Akopyan, Arseniy, et al. “Invariant Measures of Genetic Recombination Process.” Journal of Statistical Physics, vol. 160, no. 1, Springer, 2015, pp. 163–67, doi:10.1007/s10955-015-1238-5. short: A. Akopyan, S. Pirogov, A. Rybko, Journal of Statistical Physics 160 (2015) 163–167. date_created: 2018-12-11T11:54:14Z date_published: 2015-07-01T00:00:00Z date_updated: 2021-01-12T06:53:28Z day: '01' department: - _id: HeEd doi: 10.1007/s10955-015-1238-5 ec_funded: 1 intvolume: ' 160' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: arxiv.org/abs/1406.5313 month: '07' oa: 1 oa_version: Preprint page: 163 - 167 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Statistical Physics publication_status: published publisher: Springer publist_id: '5276' quality_controlled: '1' scopus_import: 1 status: public title: Invariant measures of genetic recombination process type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 160 year: '2015' ... --- _id: '1938' abstract: - lang: eng text: 'We numerically investigate the distribution of extrema of ''chaotic'' Laplacian eigenfunctions on two-dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small number of randomly added edges and show the behavior to coincide with the 1957 prediction of Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in space than the grid Z2.' acknowledgement: "F.P. was supported by the Graduate School of IST Austria. S.S. was partially supported by CRC1060 of the DFG\r\nThe authors thank Olga Symonova and Michael Kerber for sharing their implementation of the persistence algorithm. " author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Stefan full_name: Steinerberger, Stefan last_name: Steinerberger citation: ama: Pausinger F, Steinerberger S. On the distribution of local extrema in quantum chaos. Physics Letters, Section A. 2015;379(6):535-541. doi:10.1016/j.physleta.2014.12.010 apa: Pausinger, F., & Steinerberger, S. (2015). On the distribution of local extrema in quantum chaos. Physics Letters, Section A. Elsevier. https://doi.org/10.1016/j.physleta.2014.12.010 chicago: Pausinger, Florian, and Stefan Steinerberger. “On the Distribution of Local Extrema in Quantum Chaos.” Physics Letters, Section A. Elsevier, 2015. https://doi.org/10.1016/j.physleta.2014.12.010. ieee: F. Pausinger and S. Steinerberger, “On the distribution of local extrema in quantum chaos,” Physics Letters, Section A, vol. 379, no. 6. Elsevier, pp. 535–541, 2015. ista: Pausinger F, Steinerberger S. 2015. On the distribution of local extrema in quantum chaos. Physics Letters, Section A. 379(6), 535–541. mla: Pausinger, Florian, and Stefan Steinerberger. “On the Distribution of Local Extrema in Quantum Chaos.” Physics Letters, Section A, vol. 379, no. 6, Elsevier, 2015, pp. 535–41, doi:10.1016/j.physleta.2014.12.010. short: F. Pausinger, S. Steinerberger, Physics Letters, Section A 379 (2015) 535–541. date_created: 2018-12-11T11:54:49Z date_published: 2015-03-06T00:00:00Z date_updated: 2021-01-12T06:54:12Z day: '06' department: - _id: HeEd doi: 10.1016/j.physleta.2014.12.010 intvolume: ' 379' issue: '6' language: - iso: eng month: '03' oa_version: None page: 535 - 541 publication: Physics Letters, Section A publication_status: published publisher: Elsevier publist_id: '5152' quality_controlled: '1' scopus_import: 1 status: public title: On the distribution of local extrema in quantum chaos type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 379 year: '2015' ... --- _id: '2035' abstract: - lang: eng text: "Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility.\r\n" acknowledgement: This research is partially supported by the Toposys project FP7-ICT-318493-STREP, by ESF under the ACAT Research Network Programme, by the Russian Government under mega project 11.G34.31.0053, and by the Polish National Science Center under Grant No. N201 419639. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: Marian full_name: Mrozek, Marian last_name: Mrozek citation: ama: Edelsbrunner H, Jablonski G, Mrozek M. The persistent homology of a self-map. Foundations of Computational Mathematics. 2015;15(5):1213-1244. doi:10.1007/s10208-014-9223-y apa: Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2015). The persistent homology of a self-map. Foundations of Computational Mathematics. Springer. https://doi.org/10.1007/s10208-014-9223-y chicago: Edelsbrunner, Herbert, Grzegorz Jablonski, and Marian Mrozek. “The Persistent Homology of a Self-Map.” Foundations of Computational Mathematics. Springer, 2015. https://doi.org/10.1007/s10208-014-9223-y. ieee: H. Edelsbrunner, G. Jablonski, and M. Mrozek, “The persistent homology of a self-map,” Foundations of Computational Mathematics, vol. 15, no. 5. Springer, pp. 1213–1244, 2015. ista: Edelsbrunner H, Jablonski G, Mrozek M. 2015. The persistent homology of a self-map. Foundations of Computational Mathematics. 15(5), 1213–1244. mla: Edelsbrunner, Herbert, et al. “The Persistent Homology of a Self-Map.” Foundations of Computational Mathematics, vol. 15, no. 5, Springer, 2015, pp. 1213–44, doi:10.1007/s10208-014-9223-y. short: H. Edelsbrunner, G. Jablonski, M. Mrozek, Foundations of Computational Mathematics 15 (2015) 1213–1244. date_created: 2018-12-11T11:55:20Z date_published: 2015-10-01T00:00:00Z date_updated: 2021-01-12T06:54:53Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1007/s10208-014-9223-y ec_funded: 1 file: - access_level: open_access checksum: 3566f3a8b0c1bc550e62914a88c584ff content_type: application/pdf creator: system date_created: 2018-12-12T10:08:10Z date_updated: 2020-07-14T12:45:26Z file_id: '4670' file_name: IST-2016-486-v1+1_s10208-014-9223-y.pdf file_size: 1317546 relation: main_file file_date_updated: 2020-07-14T12:45:26Z has_accepted_license: '1' intvolume: ' 15' issue: '5' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 1213 - 1244 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Foundations of Computational Mathematics publication_status: published publisher: Springer publist_id: '5022' pubrep_id: '486' quality_controlled: '1' scopus_import: 1 status: public title: The persistent homology of a self-map tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2015' ... --- _id: '1805' abstract: - lang: eng text: 'We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology H∗(X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in double-struck R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on double-struck S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.' author: - first_name: Dominique full_name: Attali, Dominique last_name: Attali - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Olivier full_name: Devillers, Olivier last_name: Devillers - first_name: Marc full_name: Glisse, Marc last_name: Glisse - first_name: André full_name: Lieutier, André last_name: Lieutier citation: ama: 'Attali D, Bauer U, Devillers O, Glisse M, Lieutier A. Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. 2015;48(8):606-621. doi:10.1016/j.comgeo.2014.08.010' apa: 'Attali, D., Bauer, U., Devillers, O., Glisse, M., & Lieutier, A. (2015). Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.010' chicago: 'Attali, Dominique, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. “Homological Reconstruction and Simplification in R3.” Computational Geometry: Theory and Applications. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2014.08.010.' ieee: 'D. Attali, U. Bauer, O. Devillers, M. Glisse, and A. Lieutier, “Homological reconstruction and simplification in R3,” Computational Geometry: Theory and Applications, vol. 48, no. 8. Elsevier, pp. 606–621, 2015.' ista: 'Attali D, Bauer U, Devillers O, Glisse M, Lieutier A. 2015. Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. 48(8), 606–621.' mla: 'Attali, Dominique, et al. “Homological Reconstruction and Simplification in R3.” Computational Geometry: Theory and Applications, vol. 48, no. 8, Elsevier, 2015, pp. 606–21, doi:10.1016/j.comgeo.2014.08.010.' short: 'D. Attali, U. Bauer, O. Devillers, M. Glisse, A. Lieutier, Computational Geometry: Theory and Applications 48 (2015) 606–621.' date_created: 2018-12-11T11:54:06Z date_published: 2015-06-03T00:00:00Z date_updated: 2023-02-23T10:59:19Z day: '03' department: - _id: HeEd doi: 10.1016/j.comgeo.2014.08.010 ec_funded: 1 intvolume: ' 48' issue: '8' language: - iso: eng month: '06' oa_version: None page: 606 - 621 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '5305' quality_controlled: '1' related_material: record: - id: '2812' relation: earlier_version status: public scopus_import: 1 status: public title: Homological reconstruction and simplification in R3 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1793' abstract: - lang: eng text: We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth. article_number: e0127657 author: - first_name: Olga full_name: Symonova, Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova - first_name: Christopher full_name: Topp, Christopher last_name: Topp - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: 'Symonova O, Topp C, Edelsbrunner H. DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. 2015;10(6). doi:10.1371/journal.pone.0127657' apa: 'Symonova, O., Topp, C., & Edelsbrunner, H. (2015). DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657' chicago: 'Symonova, Olga, Christopher Topp, and Herbert Edelsbrunner. “DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.” PLoS One. Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0127657.' ieee: 'O. Symonova, C. Topp, and H. Edelsbrunner, “DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots,” PLoS One, vol. 10, no. 6. Public Library of Science, 2015.' ista: 'Symonova O, Topp C, Edelsbrunner H. 2015. DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. 10(6), e0127657.' mla: 'Symonova, Olga, et al. “DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.” PLoS One, vol. 10, no. 6, e0127657, Public Library of Science, 2015, doi:10.1371/journal.pone.0127657.' short: O. Symonova, C. Topp, H. Edelsbrunner, PLoS One 10 (2015). date_created: 2018-12-11T11:54:02Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T14:06:33Z day: '01' ddc: - '000' department: - _id: MaJö - _id: HeEd doi: 10.1371/journal.pone.0127657 file: - access_level: open_access checksum: d20f26461ca575276ad3ed9ce4bfc787 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:30Z date_updated: 2020-07-14T12:45:16Z file_id: '5150' file_name: IST-2016-454-v1+1_journal.pone.0127657.pdf file_size: 1850825 relation: main_file file_date_updated: 2020-07-14T12:45:16Z has_accepted_license: '1' intvolume: ' 10' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5318' pubrep_id: '454' quality_controlled: '1' related_material: record: - id: '9737' relation: research_data status: public scopus_import: 1 status: public title: 'DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2015' ... --- _id: '9737' article_processing_charge: No author: - first_name: Olga full_name: Symonova, Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova - first_name: Christopher full_name: Topp, Christopher last_name: Topp - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Symonova O, Topp C, Edelsbrunner H. Root traits computed by DynamicRoots for the maize root shown in fig 2. 2015. doi:10.1371/journal.pone.0127657.s001 apa: Symonova, O., Topp, C., & Edelsbrunner, H. (2015). Root traits computed by DynamicRoots for the maize root shown in fig 2. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657.s001 chicago: Symonova, Olga, Christopher Topp, and Herbert Edelsbrunner. “Root Traits Computed by DynamicRoots for the Maize Root Shown in Fig 2.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0127657.s001. ieee: O. Symonova, C. Topp, and H. Edelsbrunner, “Root traits computed by DynamicRoots for the maize root shown in fig 2.” Public Library of Science, 2015. ista: Symonova O, Topp C, Edelsbrunner H. 2015. Root traits computed by DynamicRoots for the maize root shown in fig 2, Public Library of Science, 10.1371/journal.pone.0127657.s001. mla: Symonova, Olga, et al. Root Traits Computed by DynamicRoots for the Maize Root Shown in Fig 2. Public Library of Science, 2015, doi:10.1371/journal.pone.0127657.s001. short: O. Symonova, C. Topp, H. Edelsbrunner, (2015). date_created: 2021-07-28T06:20:13Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T10:14:42Z day: '01' department: - _id: MaJö - _id: HeEd doi: 10.1371/journal.pone.0127657.s001 month: '06' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1793' relation: used_in_publication status: public status: public title: Root traits computed by DynamicRoots for the maize root shown in fig 2 type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '1792' abstract: - lang: eng text: Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology. acknowledgement: F.P. is supported by the Graduate School of IST Austria, A.M.S is supported by the Centre for Stochastic Geometry and Advanced Bioimaging funded by a grant from the Villum Foundation. author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Anne full_name: Svane, Anne last_name: Svane citation: ama: Pausinger F, Svane A. A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. 2015;31(6):773-797. doi:10.1016/j.jco.2015.06.002 apa: Pausinger, F., & Svane, A. (2015). A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.06.002 chicago: Pausinger, Florian, and Anne Svane. “A Koksma-Hlawka Inequality for General Discrepancy Systems.” Journal of Complexity. Academic Press, 2015. https://doi.org/10.1016/j.jco.2015.06.002. ieee: F. Pausinger and A. Svane, “A Koksma-Hlawka inequality for general discrepancy systems,” Journal of Complexity, vol. 31, no. 6. Academic Press, pp. 773–797, 2015. ista: Pausinger F, Svane A. 2015. A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. 31(6), 773–797. mla: Pausinger, Florian, and Anne Svane. “A Koksma-Hlawka Inequality for General Discrepancy Systems.” Journal of Complexity, vol. 31, no. 6, Academic Press, 2015, pp. 773–97, doi:10.1016/j.jco.2015.06.002. short: F. Pausinger, A. Svane, Journal of Complexity 31 (2015) 773–797. date_created: 2018-12-11T11:54:02Z date_published: 2015-12-01T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '01' department: - _id: HeEd doi: 10.1016/j.jco.2015.06.002 intvolume: ' 31' issue: '6' language: - iso: eng month: '12' oa_version: None page: 773 - 797 publication: Journal of Complexity publication_status: published publisher: Academic Press publist_id: '5320' quality_controlled: '1' related_material: record: - id: '1399' relation: dissertation_contains status: public scopus_import: 1 status: public title: A Koksma-Hlawka inequality for general discrepancy systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2015' ... --- _id: '1399' abstract: - lang: eng text: This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 citation: ama: Pausinger F. On the approximation of intrinsic volumes. 2015. apa: Pausinger, F. (2015). On the approximation of intrinsic volumes. Institute of Science and Technology Austria. chicago: Pausinger, Florian. “On the Approximation of Intrinsic Volumes.” Institute of Science and Technology Austria, 2015. ieee: F. Pausinger, “On the approximation of intrinsic volumes,” Institute of Science and Technology Austria, 2015. ista: Pausinger F. 2015. On the approximation of intrinsic volumes. Institute of Science and Technology Austria. mla: Pausinger, Florian. On the Approximation of Intrinsic Volumes. Institute of Science and Technology Austria, 2015. short: F. Pausinger, On the Approximation of Intrinsic Volumes, Institute of Science and Technology Austria, 2015. date_created: 2018-12-11T11:51:48Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '01' degree_awarded: PhD department: - _id: HeEd language: - iso: eng month: '06' oa_version: None page: '144' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5808' related_material: record: - id: '1662' relation: part_of_dissertation status: public - id: '1792' relation: part_of_dissertation status: public - id: '2255' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: On the approximation of intrinsic volumes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2015' ... --- _id: '10893' abstract: - lang: eng text: Saddle periodic orbits are an essential and stable part of the topological skeleton of a 3D vector field. Nevertheless, there is currently no efficient algorithm to robustly extract these features. In this chapter, we present a novel technique to extract saddle periodic orbits. Exploiting the analytic properties of such an orbit, we propose a scalar measure based on the finite-time Lyapunov exponent (FTLE) that indicates its presence. Using persistent homology, we can then extract the robust cycles of this field. These cycles thereby represent the saddle periodic orbits of the given vector field. We discuss the different existing FTLE approximation schemes regarding their applicability to this specific problem and propose an adapted version of FTLE called Normalized Velocity Separation. Finally, we evaluate our method using simple analytic vector field data. acknowledgement: First, we thank the reviewers of this paper for their ideas and critical comments. In addition, we thank Ronny Peikert and Filip Sadlo for a fruitful discussions. This research is supported by the European Commission under the TOPOSYS project FP7-ICT-318493-STREP, the European Social Fund (ESF App. No. 100098251), and the European Science Foundation under the ACAT Research Network Program. article_processing_charge: No author: - first_name: Jens full_name: Kasten, Jens last_name: Kasten - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Wieland full_name: Reich, Wieland last_name: Reich - first_name: Gerik full_name: Scheuermann, Gerik last_name: Scheuermann citation: ama: 'Kasten J, Reininghaus J, Reich W, Scheuermann G. Toward the extraction of saddle periodic orbits. In: Bremer P-T, Hotz I, Pascucci V, Peikert R, eds. Topological Methods in Data Analysis and Visualization III . Vol 1. Mathematics and Visualization. Cham: Springer; 2014:55-69. doi:10.1007/978-3-319-04099-8_4' apa: 'Kasten, J., Reininghaus, J., Reich, W., & Scheuermann, G. (2014). Toward the extraction of saddle periodic orbits. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (Vol. 1, pp. 55–69). Cham: Springer. https://doi.org/10.1007/978-3-319-04099-8_4' chicago: 'Kasten, Jens, Jan Reininghaus, Wieland Reich, and Gerik Scheuermann. “Toward the Extraction of Saddle Periodic Orbits.” In Topological Methods in Data Analysis and Visualization III , edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 1:55–69. Mathematics and Visualization. Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_4.' ieee: 'J. Kasten, J. Reininghaus, W. Reich, and G. Scheuermann, “Toward the extraction of saddle periodic orbits,” in Topological Methods in Data Analysis and Visualization III , vol. 1, P.-T. Bremer, I. Hotz, V. Pascucci, and R. Peikert, Eds. Cham: Springer, 2014, pp. 55–69.' ista: 'Kasten J, Reininghaus J, Reich W, Scheuermann G. 2014.Toward the extraction of saddle periodic orbits. In: Topological Methods in Data Analysis and Visualization III . vol. 1, 55–69.' mla: Kasten, Jens, et al. “Toward the Extraction of Saddle Periodic Orbits.” Topological Methods in Data Analysis and Visualization III , edited by Peer-Timo Bremer et al., vol. 1, Springer, 2014, pp. 55–69, doi:10.1007/978-3-319-04099-8_4. short: J. Kasten, J. Reininghaus, W. Reich, G. Scheuermann, in:, P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III , Springer, Cham, 2014, pp. 55–69. date_created: 2022-03-21T07:11:23Z date_published: 2014-03-19T00:00:00Z date_updated: 2022-06-21T12:01:47Z day: '19' department: - _id: HeEd doi: 10.1007/978-3-319-04099-8_4 ec_funded: 1 editor: - first_name: Peer-Timo full_name: Bremer, Peer-Timo last_name: Bremer - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Valerio full_name: Pascucci, Valerio last_name: Pascucci - first_name: Ronald full_name: Peikert, Ronald last_name: Peikert intvolume: ' 1' language: - iso: eng month: '03' oa_version: None page: 55-69 place: Cham project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: 'Topological Methods in Data Analysis and Visualization III ' publication_identifier: eisbn: - '9783319040998' eissn: - 2197-666X isbn: - '9783319040981' issn: - 1612-3786 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' series_title: Mathematics and Visualization status: public title: Toward the extraction of saddle periodic orbits type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2014' ... --- _id: '1816' abstract: - lang: eng text: Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques. acknowledgement: 'Work by Martin Held and Stefan Huber was supported by Austrian Science Fund (FWF): L367-N15 and P25816-N15.' author: - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Peter full_name: Meerwald, Peter last_name: Meerwald - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt citation: ama: Huber S, Held M, Meerwald P, Kwitt R. Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. 2014;24(1):61-86. doi:10.1142/S0218195914500034 apa: Huber, S., Held, M., Meerwald, P., & Kwitt, R. (2014). Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. World Scientific Publishing. https://doi.org/10.1142/S0218195914500034 chicago: Huber, Stefan, Martin Held, Peter Meerwald, and Roland Kwitt. “Topology-Preserving Watermarking of Vector Graphics.” International Journal of Computational Geometry and Applications. World Scientific Publishing, 2014. https://doi.org/10.1142/S0218195914500034. ieee: S. Huber, M. Held, P. Meerwald, and R. Kwitt, “Topology-preserving watermarking of vector graphics,” International Journal of Computational Geometry and Applications, vol. 24, no. 1. World Scientific Publishing, pp. 61–86, 2014. ista: Huber S, Held M, Meerwald P, Kwitt R. 2014. Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. 24(1), 61–86. mla: Huber, Stefan, et al. “Topology-Preserving Watermarking of Vector Graphics.” International Journal of Computational Geometry and Applications, vol. 24, no. 1, World Scientific Publishing, 2014, pp. 61–86, doi:10.1142/S0218195914500034. short: S. Huber, M. Held, P. Meerwald, R. Kwitt, International Journal of Computational Geometry and Applications 24 (2014) 61–86. date_created: 2018-12-11T11:54:10Z date_published: 2014-03-16T00:00:00Z date_updated: 2021-01-12T06:53:23Z day: '16' ddc: - '000' department: - _id: HeEd doi: 10.1142/S0218195914500034 file: - access_level: open_access checksum: be45c133ab4d43351260e21beaa8f4b1 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:43Z date_updated: 2020-07-14T12:45:17Z file_id: '4704' file_name: IST-2016-443-v1+1_S0218195914500034.pdf file_size: 991734 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 24' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 61 - 86 publication: International Journal of Computational Geometry and Applications publication_status: published publisher: World Scientific Publishing publist_id: '5290' pubrep_id: '443' quality_controlled: '1' scopus_import: 1 status: public title: Topology-preserving watermarking of vector graphics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2014' ... --- _id: '1842' abstract: - lang: eng text: We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices. acknowledgement: Marek Krčál was supported by the ERC Advanced Grant No. 267165. author: - first_name: Josef full_name: Cibulka, Josef last_name: Cibulka - first_name: Pu full_name: Gao, Pu last_name: Gao - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál - first_name: Tomáš full_name: Valla, Tomáš last_name: Valla - first_name: Pavel full_name: Valtr, Pavel last_name: Valtr citation: ama: Cibulka J, Gao P, Krcál M, Valla T, Valtr P. On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. 2014;53(1):64-79. doi:10.1007/s00454-014-9646-x apa: Cibulka, J., Gao, P., Krcál, M., Valla, T., & Valtr, P. (2014). On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-014-9646-x chicago: Cibulka, Josef, Pu Gao, Marek Krcál, Tomáš Valla, and Pavel Valtr. “On the Geometric Ramsey Number of Outerplanar Graphs.” Discrete & Computational Geometry. Springer, 2014. https://doi.org/10.1007/s00454-014-9646-x. ieee: J. Cibulka, P. Gao, M. Krcál, T. Valla, and P. Valtr, “On the geometric ramsey number of outerplanar graphs,” Discrete & Computational Geometry, vol. 53, no. 1. Springer, pp. 64–79, 2014. ista: Cibulka J, Gao P, Krcál M, Valla T, Valtr P. 2014. On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. 53(1), 64–79. mla: Cibulka, Josef, et al. “On the Geometric Ramsey Number of Outerplanar Graphs.” Discrete & Computational Geometry, vol. 53, no. 1, Springer, 2014, pp. 64–79, doi:10.1007/s00454-014-9646-x. short: J. Cibulka, P. Gao, M. Krcál, T. Valla, P. Valtr, Discrete & Computational Geometry 53 (2014) 64–79. date_created: 2018-12-11T11:54:18Z date_published: 2014-11-14T00:00:00Z date_updated: 2021-01-12T06:53:33Z day: '14' department: - _id: UlWa - _id: HeEd doi: 10.1007/s00454-014-9646-x intvolume: ' 53' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1310.7004 month: '11' oa: 1 oa_version: Submitted Version page: 64 - 79 publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '5260' scopus_import: 1 status: public title: On the geometric ramsey number of outerplanar graphs type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 53 year: '2014' ... --- _id: '1876' abstract: - lang: eng text: We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets. article_processing_charge: No article_type: original author: - first_name: Nikolai full_name: Dolbilin, Nikolai last_name: Dolbilin - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Alexey full_name: Glazyrin, Alexey last_name: Glazyrin - first_name: Oleg full_name: Musin, Oleg last_name: Musin citation: ama: Dolbilin N, Edelsbrunner H, Glazyrin A, Musin O. Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. 2014;14(3):491-504. doi:10.17323/1609-4514-2014-14-3-491-504 apa: Dolbilin, N., Edelsbrunner, H., Glazyrin, A., & Musin, O. (2014). Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. Independent University of Moscow. https://doi.org/10.17323/1609-4514-2014-14-3-491-504 chicago: Dolbilin, Nikolai, Herbert Edelsbrunner, Alexey Glazyrin, and Oleg Musin. “Functionals on Triangulations of Delaunay Sets.” Moscow Mathematical Journal. Independent University of Moscow, 2014. https://doi.org/10.17323/1609-4514-2014-14-3-491-504. ieee: N. Dolbilin, H. Edelsbrunner, A. Glazyrin, and O. Musin, “Functionals on triangulations of delaunay sets,” Moscow Mathematical Journal, vol. 14, no. 3. Independent University of Moscow, pp. 491–504, 2014. ista: Dolbilin N, Edelsbrunner H, Glazyrin A, Musin O. 2014. Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. 14(3), 491–504. mla: Dolbilin, Nikolai, et al. “Functionals on Triangulations of Delaunay Sets.” Moscow Mathematical Journal, vol. 14, no. 3, Independent University of Moscow, 2014, pp. 491–504, doi:10.17323/1609-4514-2014-14-3-491-504. short: N. Dolbilin, H. Edelsbrunner, A. Glazyrin, O. Musin, Moscow Mathematical Journal 14 (2014) 491–504. date_created: 2018-12-11T11:54:29Z date_published: 2014-07-01T00:00:00Z date_updated: 2022-03-03T11:47:09Z day: '01' department: - _id: HeEd doi: 10.17323/1609-4514-2014-14-3-491-504 external_id: arxiv: - '1211.7053' intvolume: ' 14' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1211.7053 month: '07' oa: 1 oa_version: Submitted Version page: 491 - 504 publication: Moscow Mathematical Journal publication_identifier: issn: - '16093321' publication_status: published publisher: Independent University of Moscow publist_id: '5220' quality_controlled: '1' scopus_import: '1' status: public title: Functionals on triangulations of delaunay sets type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2014' ... --- _id: '1929' abstract: - lang: eng text: We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales. acknowledgement: We would like to offer our special thanks to students of the Department of Mathematics of Demidov Yaroslavl State University A. A. Gorokhov and V. N. Knyazev for participation in developing the program and assistance in preparation of test data. This work was supported by grant 11.G34.31.0053 from the government of the Russian Federation. article_processing_charge: No article_type: original author: - first_name: V V full_name: Alexeev, V V last_name: Alexeev - first_name: V G full_name: Bogaevskaya, V G last_name: Bogaevskaya - first_name: M M full_name: Preobrazhenskaya, M M last_name: Preobrazhenskaya - first_name: A Y full_name: Ukhalov, A Y last_name: Ukhalov - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Olga full_name: Yakimova, Olga last_name: Yakimova citation: ama: Alexeev VV, Bogaevskaya VG, Preobrazhenskaya MM, Ukhalov AY, Edelsbrunner H, Yakimova O. An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. 2014;203(6):754-760. doi:10.1007/s10958-014-2165-8 apa: Alexeev, V. V., Bogaevskaya, V. G., Preobrazhenskaya, M. M., Ukhalov, A. Y., Edelsbrunner, H., & Yakimova, O. (2014). An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. Springer. https://doi.org/10.1007/s10958-014-2165-8 chicago: Alexeev, V V, V G Bogaevskaya, M M Preobrazhenskaya, A Y Ukhalov, Herbert Edelsbrunner, and Olga Yakimova. “An Algorithm for Cartographic Generalization That Preserves Global Topology.” Journal of Mathematical Sciences. Springer, 2014. https://doi.org/10.1007/s10958-014-2165-8. ieee: V. V. Alexeev, V. G. Bogaevskaya, M. M. Preobrazhenskaya, A. Y. Ukhalov, H. Edelsbrunner, and O. Yakimova, “An algorithm for cartographic generalization that preserves global topology,” Journal of Mathematical Sciences, vol. 203, no. 6. Springer, pp. 754–760, 2014. ista: Alexeev VV, Bogaevskaya VG, Preobrazhenskaya MM, Ukhalov AY, Edelsbrunner H, Yakimova O. 2014. An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. 203(6), 754–760. mla: Alexeev, V. V., et al. “An Algorithm for Cartographic Generalization That Preserves Global Topology.” Journal of Mathematical Sciences, vol. 203, no. 6, Springer, 2014, pp. 754–60, doi:10.1007/s10958-014-2165-8. short: V.V. Alexeev, V.G. Bogaevskaya, M.M. Preobrazhenskaya, A.Y. Ukhalov, H. Edelsbrunner, O. Yakimova, Journal of Mathematical Sciences 203 (2014) 754–760. date_created: 2018-12-11T11:54:46Z date_published: 2014-11-16T00:00:00Z date_updated: 2022-05-24T10:39:06Z day: '16' department: - _id: HeEd doi: 10.1007/s10958-014-2165-8 intvolume: ' 203' issue: '6' language: - iso: eng month: '11' oa_version: None page: 754 - 760 publication: Journal of Mathematical Sciences publication_identifier: eissn: - 1573-8795 issn: - 1072-3374 publication_status: published publisher: Springer publist_id: '5165' quality_controlled: '1' scopus_import: '1' status: public title: An algorithm for cartographic generalization that preserves global topology type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 203 year: '2014' ... --- _id: '1930' abstract: - lang: eng text: (Figure Presented) Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. acknowledgement: RTRA Digiteoproject; ERC grant; SNF award; Intel Doctoral Fellowship; MPC-VCC author: - first_name: David full_name: Günther, David last_name: Günther - first_name: Alec full_name: Jacobson, Alec last_name: Jacobson - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Hans full_name: Seidel, Hans last_name: Seidel - first_name: Olga full_name: Sorkine Hornung, Olga last_name: Sorkine Hornung - first_name: Tino full_name: Weinkauf, Tino last_name: Weinkauf citation: ama: Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 2014;20(12):2585-2594. doi:10.1109/TVCG.2014.2346432 apa: Günther, D., Jacobson, A., Reininghaus, J., Seidel, H., Sorkine Hornung, O., & Weinkauf, T. (2014). Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2014.2346432 chicago: Günther, David, Alec Jacobson, Jan Reininghaus, Hans Seidel, Olga Sorkine Hornung, and Tino Weinkauf. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2346432. ieee: D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine Hornung, and T. Weinkauf, “Fast and memory-efficient topological denoising of 2D and 3D scalar fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12. IEEE, pp. 2585–2594, 2014. ista: Günther D, Jacobson A, Reininghaus J, Seidel H, Sorkine Hornung O, Weinkauf T. 2014. Fast and memory-efficient topological denoising of 2D and 3D scalar fields. IEEE Transactions on Visualization and Computer Graphics. 20(12), 2585–2594. mla: Günther, David, et al. “Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, IEEE, 2014, pp. 2585–94, doi:10.1109/TVCG.2014.2346432. short: D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine Hornung, T. Weinkauf, IEEE Transactions on Visualization and Computer Graphics 20 (2014) 2585–2594. date_created: 2018-12-11T11:54:46Z date_published: 2014-12-31T00:00:00Z date_updated: 2021-01-12T06:54:09Z day: '31' department: - _id: HeEd doi: 10.1109/TVCG.2014.2346432 intvolume: ' 20' issue: '12' language: - iso: eng month: '12' oa_version: None page: 2585 - 2594 publication: IEEE Transactions on Visualization and Computer Graphics publication_status: published publisher: IEEE publist_id: '5164' quality_controlled: '1' scopus_import: 1 status: public title: Fast and memory-efficient topological denoising of 2D and 3D scalar fields type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2014' ... --- _id: '2043' abstract: - lang: eng text: Persistent homology is a popular and powerful tool for capturing topological features of data. Advances in algorithms for computing persistent homology have reduced the computation time drastically – as long as the algorithm does not exhaust the available memory. Following up on a recently presented parallel method for persistence computation on shared memory systems [1], we demonstrate that a simple adaption of the standard reduction algorithm leads to a variant for distributed systems. Our algorithmic design ensures that the data is distributed over the nodes without redundancy; this permits the computation of much larger instances than on a single machine. Moreover, we observe that the parallelism at least compensates for the overhead caused by communication between nodes, and often even speeds up the computation compared to sequential and even parallel shared memory algorithms. In our experiments, we were able to compute the persistent homology of filtrations with more than a billion (109) elements within seconds on a cluster with 32 nodes using less than 6GB of memory per node. author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Michael full_name: Kerber, Michael last_name: Kerber orcid: 0000-0002-8030-9299 - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus citation: ama: 'Bauer U, Kerber M, Reininghaus J. Distributed computation of persistent homology. In: McGeoch C, Meyer U, eds. Proceedings of the Workshop on Algorithm Engineering and Experiments. Society of Industrial and Applied Mathematics; 2014:31-38. doi:10.1137/1.9781611973198.4' apa: 'Bauer, U., Kerber, M., & Reininghaus, J. (2014). Distributed computation of persistent homology. In C. McGeoch & U. Meyer (Eds.), Proceedings of the Workshop on Algorithm Engineering and Experiments (pp. 31–38). Portland, USA: Society of Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611973198.4' chicago: Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Distributed Computation of Persistent Homology.” In Proceedings of the Workshop on Algorithm Engineering and Experiments, edited by Catherine McGeoch and Ulrich Meyer, 31–38. Society of Industrial and Applied Mathematics, 2014. https://doi.org/10.1137/1.9781611973198.4. ieee: U. Bauer, M. Kerber, and J. Reininghaus, “Distributed computation of persistent homology,” in Proceedings of the Workshop on Algorithm Engineering and Experiments, Portland, USA, 2014, pp. 31–38. ista: 'Bauer U, Kerber M, Reininghaus J. 2014. Distributed computation of persistent homology. Proceedings of the Workshop on Algorithm Engineering and Experiments. ALENEX: Algorithm Engineering and Experiments, 31–38.' mla: Bauer, Ulrich, et al. “Distributed Computation of Persistent Homology.” Proceedings of the Workshop on Algorithm Engineering and Experiments, edited by Catherine McGeoch and Ulrich Meyer, Society of Industrial and Applied Mathematics, 2014, pp. 31–38, doi:10.1137/1.9781611973198.4. short: U. Bauer, M. Kerber, J. Reininghaus, in:, C. McGeoch, U. Meyer (Eds.), Proceedings of the Workshop on Algorithm Engineering and Experiments, Society of Industrial and Applied Mathematics, 2014, pp. 31–38. conference: end_date: 2014-01-05 location: Portland, USA name: 'ALENEX: Algorithm Engineering and Experiments' start_date: 2014-01-05 date_created: 2018-12-11T11:55:23Z date_published: 2014-01-01T00:00:00Z date_updated: 2021-01-12T06:54:56Z day: '01' department: - _id: HeEd doi: 10.1137/1.9781611973198.4 ec_funded: 1 editor: - first_name: Catherine full_name: ' McGeoch, Catherine' last_name: ' McGeoch' - first_name: Ulrich full_name: Meyer, Ulrich last_name: Meyer language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1310.0710 month: '01' oa: 1 oa_version: Submitted Version page: 31 - 38 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the Workshop on Algorithm Engineering and Experiments publication_status: published publisher: Society of Industrial and Applied Mathematics publist_id: '5008' quality_controlled: '1' scopus_import: 1 status: public title: Distributed computation of persistent homology type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2044' abstract: - lang: eng text: We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Günther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation. author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Michael full_name: Kerber, Michael last_name: Kerber orcid: 0000-0002-8030-9299 - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus citation: ama: 'Bauer U, Kerber M, Reininghaus J. Clear and Compress: Computing Persistent Homology in Chunks. In: Bremer P-T, Hotz I, Pascucci V, Peikert R, eds. Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer; 2014:103-117. doi:10.1007/978-3-319-04099-8_7' apa: 'Bauer, U., Kerber, M., & Reininghaus, J. (2014). Clear and Compress: Computing Persistent Homology in Chunks. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (pp. 103–117). Springer. https://doi.org/10.1007/978-3-319-04099-8_7' chicago: 'Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Persistent Homology in Chunks.” In Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 103–17. Mathematics and Visualization. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_7.' ieee: 'U. Bauer, M. Kerber, and J. Reininghaus, “Clear and Compress: Computing Persistent Homology in Chunks,” in Topological Methods in Data Analysis and Visualization III, P.-T. Bremer, I. Hotz, V. Pascucci, and R. Peikert, Eds. Springer, 2014, pp. 103–117.' ista: 'Bauer U, Kerber M, Reininghaus J. 2014.Clear and Compress: Computing Persistent Homology in Chunks. In: Topological Methods in Data Analysis and Visualization III. , 103–117.' mla: 'Bauer, Ulrich, et al. “Clear and Compress: Computing Persistent Homology in Chunks.” Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer et al., Springer, 2014, pp. 103–17, doi:10.1007/978-3-319-04099-8_7.' short: U. Bauer, M. Kerber, J. Reininghaus, in:, P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III, Springer, 2014, pp. 103–117. date_created: 2018-12-11T11:55:23Z date_published: 2014-03-19T00:00:00Z date_updated: 2021-01-12T06:54:56Z day: '19' department: - _id: HeEd doi: 10.1007/978-3-319-04099-8_7 ec_funded: 1 editor: - first_name: Peer-Timo full_name: Bremer, Peer-Timo last_name: Bremer - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Valerio full_name: Pascucci, Valerio last_name: Pascucci - first_name: Ronald full_name: Peikert, Ronald last_name: Peikert language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1303.0477 month: '03' oa: 1 oa_version: Submitted Version page: 103 - 117 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Topological Methods in Data Analysis and Visualization III publication_status: published publisher: Springer publist_id: '5007' quality_controlled: '1' scopus_import: 1 series_title: Mathematics and Visualization status: public title: 'Clear and Compress: Computing Persistent Homology in Chunks' type: book_chapter user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2153' abstract: - lang: eng text: 'We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N. Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of ker f and coker f . As an immediate corollary, we obtain a new proof of the algebraic stability theorem for persistence barcodes [5, 9], a fundamental result in the theory of persistent homology. In contrast to previous proofs, ours shows explicitly how a δ-interleaving morphism between two persistence modules induces a δ-matching between the barcodes of the two modules. Our main result also specializes to a structure theorem for submodules and quotients of persistence modules. Copyright is held by the owner/author(s).' author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Michael full_name: Lesnick, Michael last_name: Lesnick citation: ama: 'Bauer U, Lesnick M. Induced matchings of barcodes and the algebraic stability of persistence. In: Proceedings of the Annual Symposium on Computational Geometry. ACM; 2014:355-364. doi:10.1145/2582112.2582168' apa: 'Bauer, U., & Lesnick, M. (2014). Induced matchings of barcodes and the algebraic stability of persistence. In Proceedings of the Annual Symposium on Computational Geometry (pp. 355–364). Kyoto, Japan: ACM. https://doi.org/10.1145/2582112.2582168' chicago: Bauer, Ulrich, and Michael Lesnick. “Induced Matchings of Barcodes and the Algebraic Stability of Persistence.” In Proceedings of the Annual Symposium on Computational Geometry, 355–64. ACM, 2014. https://doi.org/10.1145/2582112.2582168. ieee: U. Bauer and M. Lesnick, “Induced matchings of barcodes and the algebraic stability of persistence,” in Proceedings of the Annual Symposium on Computational Geometry, Kyoto, Japan, 2014, pp. 355–364. ista: 'Bauer U, Lesnick M. 2014. Induced matchings of barcodes and the algebraic stability of persistence. Proceedings of the Annual Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, 355–364.' mla: Bauer, Ulrich, and Michael Lesnick. “Induced Matchings of Barcodes and the Algebraic Stability of Persistence.” Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 355–64, doi:10.1145/2582112.2582168. short: U. Bauer, M. Lesnick, in:, Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 355–364. conference: end_date: 2014-06-11 location: Kyoto, Japan name: 'SoCG: Symposium on Computational Geometry' start_date: 2014-06-08 date_created: 2018-12-11T11:56:01Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:55:38Z day: '01' department: - _id: HeEd doi: 10.1145/2582112.2582168 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1311.3681 month: '06' oa: 1 oa_version: Submitted Version page: 355 - 364 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the Annual Symposium on Computational Geometry publication_status: published publisher: ACM publist_id: '4853' quality_controlled: '1' scopus_import: 1 status: public title: Induced matchings of barcodes and the algebraic stability of persistence type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2156' abstract: - lang: eng text: We propose a metric for Reeb graphs, called the functional distortion distance. Under this distance, the Reeb graph is stable against small changes of input functions. At the same time, it remains discriminative at differentiating input functions. In particular, the main result is that the functional distortion distance between two Reeb graphs is bounded from below by the bottleneck distance between both the ordinary and extended persistence diagrams for appropriate dimensions. As an application of our results, we analyze a natural simplification scheme for Reeb graphs, and show that persistent features in Reeb graph remains persistent under simplification. Understanding the stability of important features of the Reeb graph under simplification is an interesting problem on its own right, and critical to the practical usage of Reeb graphs. Copyright is held by the owner/author(s). acknowledgement: National Science Foundation under grants CCF-1319406, CCF-1116258. author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Xiaoyin full_name: Ge, Xiaoyin last_name: Ge - first_name: Yusu full_name: Wang, Yusu last_name: Wang citation: ama: 'Bauer U, Ge X, Wang Y. Measuring distance between Reeb graphs. In: Proceedings of the Annual Symposium on Computational Geometry. ACM; 2014:464-473. doi:10.1145/2582112.2582169' apa: 'Bauer, U., Ge, X., & Wang, Y. (2014). Measuring distance between Reeb graphs. In Proceedings of the Annual Symposium on Computational Geometry (pp. 464–473). Kyoto, Japan: ACM. https://doi.org/10.1145/2582112.2582169' chicago: Bauer, Ulrich, Xiaoyin Ge, and Yusu Wang. “Measuring Distance between Reeb Graphs.” In Proceedings of the Annual Symposium on Computational Geometry, 464–73. ACM, 2014. https://doi.org/10.1145/2582112.2582169. ieee: U. Bauer, X. Ge, and Y. Wang, “Measuring distance between Reeb graphs,” in Proceedings of the Annual Symposium on Computational Geometry, Kyoto, Japan, 2014, pp. 464–473. ista: 'Bauer U, Ge X, Wang Y. 2014. Measuring distance between Reeb graphs. Proceedings of the Annual Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, 464–473.' mla: Bauer, Ulrich, et al. “Measuring Distance between Reeb Graphs.” Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 464–73, doi:10.1145/2582112.2582169. short: U. Bauer, X. Ge, Y. Wang, in:, Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 464–473. conference: end_date: 2014-06-11 location: Kyoto, Japan name: 'SoCG: Symposium on Computational Geometry' start_date: 2014-06-08 date_created: 2018-12-11T11:56:02Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:55:39Z day: '01' department: - _id: HeEd doi: 10.1145/2582112.2582169 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1307.2839 month: '06' oa: 1 oa_version: Submitted Version page: 464 - 473 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the Annual Symposium on Computational Geometry publication_status: published publisher: ACM publist_id: '4850' quality_controlled: '1' scopus_import: 1 status: public title: Measuring distance between Reeb graphs type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2155' abstract: - lang: eng text: Given a finite set of points in Rn and a positive radius, we study the Čech, Delaunay-Čech, alpha, and wrap complexes as instances of a generalized discrete Morse theory. We prove that the latter three complexes are simple-homotopy equivalent. Our results have applications in topological data analysis and in the reconstruction of shapes from sampled data. Copyright is held by the owner/author(s). acknowledgement: This research is partially supported by ESF under the ACAT Research Network Programme, and by the Russian Government under mega project 11.G34.31.0053 author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: 'Bauer U, Edelsbrunner H. The morse theory of Čech and Delaunay filtrations. In: Proceedings of the Annual Symposium on Computational Geometry. ACM; 2014:484-490. doi:10.1145/2582112.2582167' apa: 'Bauer, U., & Edelsbrunner, H. (2014). The morse theory of Čech and Delaunay filtrations. In Proceedings of the Annual Symposium on Computational Geometry (pp. 484–490). Kyoto, Japan: ACM. https://doi.org/10.1145/2582112.2582167' chicago: Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Filtrations.” In Proceedings of the Annual Symposium on Computational Geometry, 484–90. ACM, 2014. https://doi.org/10.1145/2582112.2582167. ieee: U. Bauer and H. Edelsbrunner, “The morse theory of Čech and Delaunay filtrations,” in Proceedings of the Annual Symposium on Computational Geometry, Kyoto, Japan, 2014, pp. 484–490. ista: 'Bauer U, Edelsbrunner H. 2014. The morse theory of Čech and Delaunay filtrations. Proceedings of the Annual Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, 484–490.' mla: Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Filtrations.” Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 484–90, doi:10.1145/2582112.2582167. short: U. Bauer, H. Edelsbrunner, in:, Proceedings of the Annual Symposium on Computational Geometry, ACM, 2014, pp. 484–490. conference: end_date: 2014-06-11 location: Kyoto, Japan name: 'SoCG: Symposium on Computational Geometry' start_date: 2014-06-08 date_created: 2018-12-11T11:56:01Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:55:38Z day: '01' department: - _id: HeEd doi: 10.1145/2582112.2582167 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1312.1231 month: '06' oa: 1 oa_version: Submitted Version page: 484 - 490 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the Annual Symposium on Computational Geometry publication_status: published publisher: ACM publist_id: '4851' quality_controlled: '1' scopus_import: 1 status: public title: The morse theory of Čech and Delaunay filtrations type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2177' abstract: - lang: eng text: We give evidence for the difficulty of computing Betti numbers of simplicial complexes over a finite field. We do this by reducing the rank computation for sparse matrices with to non-zero entries to computing Betti numbers of simplicial complexes consisting of at most a constant times to simplices. Together with the known reduction in the other direction, this implies that the two problems have the same computational complexity. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Salman full_name: Parsa, Salman id: 4BDBD4F2-F248-11E8-B48F-1D18A9856A87 last_name: Parsa citation: ama: 'Edelsbrunner H, Parsa S. On the computational complexity of betti numbers reductions from matrix rank. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM; 2014:152-160. doi:10.1137/1.9781611973402.11' apa: 'Edelsbrunner, H., & Parsa, S. (2014). On the computational complexity of betti numbers reductions from matrix rank. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 152–160). Portland, USA: SIAM. https://doi.org/10.1137/1.9781611973402.11' chicago: Edelsbrunner, Herbert, and Salman Parsa. “On the Computational Complexity of Betti Numbers Reductions from Matrix Rank.” In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 152–60. SIAM, 2014. https://doi.org/10.1137/1.9781611973402.11. ieee: H. Edelsbrunner and S. Parsa, “On the computational complexity of betti numbers reductions from matrix rank,” in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Portland, USA, 2014, pp. 152–160. ista: 'Edelsbrunner H, Parsa S. 2014. On the computational complexity of betti numbers reductions from matrix rank. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 152–160.' mla: Edelsbrunner, Herbert, and Salman Parsa. “On the Computational Complexity of Betti Numbers Reductions from Matrix Rank.” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2014, pp. 152–60, doi:10.1137/1.9781611973402.11. short: H. Edelsbrunner, S. Parsa, in:, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2014, pp. 152–160. conference: end_date: 2014-01-07 location: Portland, USA name: 'SODA: Symposium on Discrete Algorithms' start_date: 2014-01-05 date_created: 2018-12-11T11:56:09Z date_published: 2014-01-01T00:00:00Z date_updated: 2021-01-12T06:55:48Z day: '01' department: - _id: HeEd doi: 10.1137/1.9781611973402.11 language: - iso: eng month: '01' oa_version: None page: 152 - 160 publication: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms publication_status: published publisher: SIAM publist_id: '4805' quality_controlled: '1' scopus_import: 1 status: public title: On the computational complexity of betti numbers reductions from matrix rank type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '2184' abstract: - lang: eng text: 'Given topological spaces X,Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X→ Y. We consider a computational version, where X,Y are given as finite simplicial complexes, and the goal is to compute [X,Y], that is, all homotopy classes of suchmaps.We solve this problem in the stable range, where for some d ≥ 2, we have dim X ≤ 2d-2 and Y is (d-1)-connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A ⊂ X and a map A→ Y and ask whether it extends to a map X → Y, or computing the Z2-index-everything in the stable range. Outside the stable range, the extension problem is undecidable.' acknowledgement: The research by M. K. was supported by project GAUK 49209. The research by M. K. was also supported by project 1M0545 by the Ministry of Education of the Czech Republic and by Center of Excellence { Inst. for Theor. Comput. Sci., Prague (project P202/12/G061 of GACR). The research by U. W. was supported by the Swiss National Science Foundation (SNF Projects 200021-125309, 200020-138230, and PP00P2-138948). article_number: '17 ' author: - first_name: Martin full_name: Čadek, Martin last_name: Čadek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál - first_name: Jiří full_name: Matoušek, Jiří last_name: Matoušek - first_name: Francis full_name: Sergeraert, Francis last_name: Sergeraert - first_name: Lukáš full_name: Vokřínek, Lukáš last_name: Vokřínek - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: Čadek M, Krcál M, Matoušek J, Sergeraert F, Vokřínek L, Wagner U. Computing all maps into a sphere. Journal of the ACM. 2014;61(3). doi:10.1145/2597629 apa: Čadek, M., Krcál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., & Wagner, U. (2014). Computing all maps into a sphere. Journal of the ACM. ACM. https://doi.org/10.1145/2597629 chicago: Čadek, Martin, Marek Krcál, Jiří Matoušek, Francis Sergeraert, Lukáš Vokřínek, and Uli Wagner. “Computing All Maps into a Sphere.” Journal of the ACM. ACM, 2014. https://doi.org/10.1145/2597629. ieee: M. Čadek, M. Krcál, J. Matoušek, F. Sergeraert, L. Vokřínek, and U. Wagner, “Computing all maps into a sphere,” Journal of the ACM, vol. 61, no. 3. ACM, 2014. ista: Čadek M, Krcál M, Matoušek J, Sergeraert F, Vokřínek L, Wagner U. 2014. Computing all maps into a sphere. Journal of the ACM. 61(3), 17. mla: Čadek, Martin, et al. “Computing All Maps into a Sphere.” Journal of the ACM, vol. 61, no. 3, 17, ACM, 2014, doi:10.1145/2597629. short: M. Čadek, M. Krcál, J. Matoušek, F. Sergeraert, L. Vokřínek, U. Wagner, Journal of the ACM 61 (2014). date_created: 2018-12-11T11:56:12Z date_published: 2014-05-01T00:00:00Z date_updated: 2021-01-12T06:55:50Z day: '01' department: - _id: UlWa - _id: HeEd doi: 10.1145/2597629 intvolume: ' 61' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1105.6257 month: '05' oa: 1 oa_version: Preprint publication: Journal of the ACM publication_status: published publisher: ACM publist_id: '4797' quality_controlled: '1' scopus_import: 1 status: public title: Computing all maps into a sphere type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2014' ... --- _id: '2905' abstract: - lang: eng text: "Persistent homology is a recent grandchild of homology that has found use in\r\nscience and engineering as well as in mathematics. This paper surveys the method as well\r\nas the applications, neglecting completeness in favor of highlighting ideas and directions." acknowledgement: This research is partially supported by NSF under grant DBI-0820624, by ESF under the Research Networking Programme, and by the Russian Government Project 11.G34.31.0053. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Dmitriy full_name: Morozovy, Dmitriy last_name: Morozovy citation: ama: 'Edelsbrunner H, Morozovy D. Persistent homology: Theory and practice. In: European Mathematical Society Publishing House; 2014:31-50. doi:10.4171/120-1/3' apa: 'Edelsbrunner, H., & Morozovy, D. (2014). Persistent homology: Theory and practice (pp. 31–50). Presented at the ECM: European Congress of Mathematics, Kraków, Poland: European Mathematical Society Publishing House. https://doi.org/10.4171/120-1/3' chicago: 'Edelsbrunner, Herbert, and Dmitriy Morozovy. “Persistent Homology: Theory and Practice,” 31–50. European Mathematical Society Publishing House, 2014. https://doi.org/10.4171/120-1/3.' ieee: 'H. Edelsbrunner and D. Morozovy, “Persistent homology: Theory and practice,” presented at the ECM: European Congress of Mathematics, Kraków, Poland, 2014, pp. 31–50.' ista: 'Edelsbrunner H, Morozovy D. 2014. Persistent homology: Theory and practice. ECM: European Congress of Mathematics, 31–50.' mla: 'Edelsbrunner, Herbert, and Dmitriy Morozovy. Persistent Homology: Theory and Practice. European Mathematical Society Publishing House, 2014, pp. 31–50, doi:10.4171/120-1/3.' short: H. Edelsbrunner, D. Morozovy, in:, European Mathematical Society Publishing House, 2014, pp. 31–50. conference: end_date: 2012-07-07 location: Kraków, Poland name: 'ECM: European Congress of Mathematics' start_date: 2012-07-02 date_created: 2018-12-11T12:00:16Z date_published: 2014-01-01T00:00:00Z date_updated: 2021-01-12T07:00:36Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.4171/120-1/3 file: - access_level: open_access checksum: 1d4a046f1af945c407c5c4d411d4c5e4 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:43Z date_updated: 2020-07-14T12:45:52Z file_id: '5232' file_name: IST-2016-544-v1+1_2012-P-11-PHTheoryPractice.pdf file_size: 435320 relation: main_file file_date_updated: 2020-07-14T12:45:52Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 31 - 50 publication_status: published publisher: European Mathematical Society Publishing House publist_id: '3842' pubrep_id: '544' quality_controlled: '1' status: public title: 'Persistent homology: Theory and practice' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '10892' abstract: - lang: eng text: "In this paper, we introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist.\r\nUsing our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings." acknowledgement: 'T. Biedl was supported by NSERC and the Ross and Muriel Cheriton Fellowship. P. Palfrader was supported by Austrian Science Fund (FWF): P25816-N15.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: 'Biedl T, Huber S, Palfrader P. Planar matchings for weighted straight skeletons. In: 25th International Symposium, ISAAC 2014. Vol 8889. Springer Nature; 2014:117-127. doi:10.1007/978-3-319-13075-0_10' apa: 'Biedl, T., Huber, S., & Palfrader, P. (2014). Planar matchings for weighted straight skeletons. In 25th International Symposium, ISAAC 2014 (Vol. 8889, pp. 117–127). Jeonju, Korea: Springer Nature. https://doi.org/10.1007/978-3-319-13075-0_10' chicago: Biedl, Therese, Stefan Huber, and Peter Palfrader. “Planar Matchings for Weighted Straight Skeletons.” In 25th International Symposium, ISAAC 2014, 8889:117–27. Springer Nature, 2014. https://doi.org/10.1007/978-3-319-13075-0_10. ieee: T. Biedl, S. Huber, and P. Palfrader, “Planar matchings for weighted straight skeletons,” in 25th International Symposium, ISAAC 2014, Jeonju, Korea, 2014, vol. 8889, pp. 117–127. ista: 'Biedl T, Huber S, Palfrader P. 2014. Planar matchings for weighted straight skeletons. 25th International Symposium, ISAAC 2014. ISAAC: International Symposium on Algorithms and Computation, LNCS, vol. 8889, 117–127.' mla: Biedl, Therese, et al. “Planar Matchings for Weighted Straight Skeletons.” 25th International Symposium, ISAAC 2014, vol. 8889, Springer Nature, 2014, pp. 117–27, doi:10.1007/978-3-319-13075-0_10. short: T. Biedl, S. Huber, P. Palfrader, in:, 25th International Symposium, ISAAC 2014, Springer Nature, 2014, pp. 117–127. conference: end_date: 2014-12-17 location: Jeonju, Korea name: 'ISAAC: International Symposium on Algorithms and Computation' start_date: 2014-12-15 date_created: 2022-03-21T07:09:03Z date_published: 2014-11-08T00:00:00Z date_updated: 2023-02-23T12:20:55Z day: '08' department: - _id: HeEd doi: 10.1007/978-3-319-13075-0_10 intvolume: ' 8889' language: - iso: eng month: '11' oa_version: None page: 117-127 publication: 25th International Symposium, ISAAC 2014 publication_identifier: eisbn: - '9783319130750' eissn: - 1611-3349 isbn: - '9783319130743' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '481' relation: later_version status: public scopus_import: '1' status: public title: Planar matchings for weighted straight skeletons type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8889 year: '2014' ...