--- _id: '8703' abstract: - lang: eng text: 'Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity. ' alternative_title: - LIPIcs article_number: '75' article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: Mael full_name: Rouxel-Labbé, Mael last_name: Rouxel-Labbé - first_name: Monique full_name: Teillaud, Monique last_name: Teillaud citation: ama: 'Osang GF, Rouxel-Labbé M, Teillaud M. Generalizing CGAL periodic Delaunay triangulations. In: 28th Annual European Symposium on Algorithms. Vol 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.ESA.2020.75' apa: 'Osang, G. F., Rouxel-Labbé, M., & Teillaud, M. (2020). Generalizing CGAL periodic Delaunay triangulations. In 28th Annual European Symposium on Algorithms (Vol. 173). Virtual, Online; Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.75' chicago: Osang, Georg F, Mael Rouxel-Labbé, and Monique Teillaud. “Generalizing CGAL Periodic Delaunay Triangulations.” In 28th Annual European Symposium on Algorithms, Vol. 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ESA.2020.75. ieee: G. F. Osang, M. Rouxel-Labbé, and M. Teillaud, “Generalizing CGAL periodic Delaunay triangulations,” in 28th Annual European Symposium on Algorithms, Virtual, Online; Pisa, Italy, 2020, vol. 173. ista: 'Osang GF, Rouxel-Labbé M, Teillaud M. 2020. Generalizing CGAL periodic Delaunay triangulations. 28th Annual European Symposium on Algorithms. ESA: Annual European Symposium on Algorithms, LIPIcs, vol. 173, 75.' mla: Osang, Georg F., et al. “Generalizing CGAL Periodic Delaunay Triangulations.” 28th Annual European Symposium on Algorithms, vol. 173, 75, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.ESA.2020.75. short: G.F. Osang, M. Rouxel-Labbé, M. Teillaud, in:, 28th Annual European Symposium on Algorithms, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-09 location: Virtual, Online; Pisa, Italy name: 'ESA: Annual European Symposium on Algorithms' start_date: 2020-09-07 date_created: 2020-10-25T23:01:18Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-09-07T13:29:00Z day: '26' ddc: - '000' department: - _id: HeEd doi: 10.4230/LIPIcs.ESA.2020.75 ec_funded: 1 file: - access_level: open_access checksum: fe0f7c49a99ed870c671b911e10d5496 content_type: application/pdf creator: cziletti date_created: 2020-10-27T14:31:52Z date_updated: 2020-10-27T14:31:52Z file_id: '8712' file_name: 2020_LIPIcs_Osang.pdf file_size: 733291 relation: main_file success: 1 file_date_updated: 2020-10-27T14:31:52Z has_accepted_license: '1' intvolume: ' 173' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '08' oa: 1 oa_version: Published Version project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: 28th Annual European Symposium on Algorithms publication_identifier: isbn: - '9783959771627' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '9056' relation: dissertation_contains status: public scopus_import: '1' status: public title: Generalizing CGAL periodic Delaunay triangulations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 173 year: '2020' ... --- _id: '8163' abstract: - lang: eng text: Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces. acknowledgement: "The authors are greatly indebted to Dror Atariah, Günther Rote and John Sullivan for discussion and suggestions. The authors also thank Jean-Daniel Boissonnat, Ramsay Dyer, David de Laat and Rien van de Weijgaert for discussion. This work has been supported in part by the European Union’s Seventh Framework Programme for Research of the\r\nEuropean Commission, under FET-Open grant number 255827 (CGL Computational Geometry Learning) and ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions), the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement number 754411,and the Austrian Science Fund (FWF): Z00342 N31." article_processing_charge: No article_type: original author: - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Vegter G, Wintraecken M. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 2020;57(2):193-199. doi:10.1556/012.2020.57.2.1454 apa: Vegter, G., & Wintraecken, M. (2020). Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó. https://doi.org/10.1556/012.2020.57.2.1454 chicago: Vegter, Gert, and Mathijs Wintraecken. “Refutation of a Claim Made by Fejes Tóth on the Accuracy of Surface Meshes.” Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó, 2020. https://doi.org/10.1556/012.2020.57.2.1454. ieee: G. Vegter and M. Wintraecken, “Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes,” Studia Scientiarum Mathematicarum Hungarica, vol. 57, no. 2. Akadémiai Kiadó, pp. 193–199, 2020. ista: Vegter G, Wintraecken M. 2020. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 57(2), 193–199. mla: Vegter, Gert, and Mathijs Wintraecken. “Refutation of a Claim Made by Fejes Tóth on the Accuracy of Surface Meshes.” Studia Scientiarum Mathematicarum Hungarica, vol. 57, no. 2, Akadémiai Kiadó, 2020, pp. 193–99, doi:10.1556/012.2020.57.2.1454. short: G. Vegter, M. Wintraecken, Studia Scientiarum Mathematicarum Hungarica 57 (2020) 193–199. date_created: 2020-07-24T07:09:18Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-10-10T13:05:27Z day: '24' ddc: - '510' department: - _id: HeEd doi: 10.1556/012.2020.57.2.1454 ec_funded: 1 external_id: isi: - '000570978400005' file: - access_level: open_access content_type: application/pdf creator: mwintrae date_created: 2020-07-24T07:09:06Z date_updated: 2020-07-24T07:09:06Z file_id: '8164' file_name: 57-2-05_4214-1454Vegter-Wintraecken_OpenAccess_CC-BY-NC.pdf file_size: 1476072 relation: main_file file_date_updated: 2020-07-24T07:09:06Z has_accepted_license: '1' intvolume: ' 57' isi: 1 issue: '2' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '07' oa: 1 oa_version: Published Version page: 193-199 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: Studia Scientiarum Mathematicarum Hungarica publication_identifier: eissn: - 1588-2896 issn: - 0081-6906 publication_status: published publisher: Akadémiai Kiadó quality_controlled: '1' scopus_import: '1' status: public title: Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2020' ... --- _id: '9157' abstract: - lang: eng text: Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy. acknowledgement: "The authors of this paper thank Roland Roth for suggesting the analysis of the weighted\r\ncurvature derivatives for the purpose of improving molecular dynamics simulations and for his continued encouragement. They also thank Patrice Koehl for the implementation of the formulas and for his encouragement and advise along the road. Finally, they thank two anonymous reviewers for their constructive criticism.\r\nThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Akopyan A, Edelsbrunner H. The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 2020;8(1):51-67. doi:10.1515/cmb-2020-0100 apa: Akopyan, A., & Edelsbrunner, H. (2020). The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. De Gruyter. https://doi.org/10.1515/cmb-2020-0100 chicago: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Mean Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics. De Gruyter, 2020. https://doi.org/10.1515/cmb-2020-0100. ieee: A. Akopyan and H. Edelsbrunner, “The weighted mean curvature derivative of a space-filling diagram,” Computational and Mathematical Biophysics, vol. 8, no. 1. De Gruyter, pp. 51–67, 2020. ista: Akopyan A, Edelsbrunner H. 2020. The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 8(1), 51–67. mla: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Mean Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics, vol. 8, no. 1, De Gruyter, 2020, pp. 51–67, doi:10.1515/cmb-2020-0100. short: A. Akopyan, H. Edelsbrunner, Computational and Mathematical Biophysics 8 (2020) 51–67. date_created: 2021-02-17T15:13:01Z date_published: 2020-06-20T00:00:00Z date_updated: 2023-10-17T12:34:51Z day: '20' ddc: - '510' department: - _id: HeEd doi: 10.1515/cmb-2020-0100 ec_funded: 1 file: - access_level: open_access checksum: cea41de9937d07a3b927d71ee8b4e432 content_type: application/pdf creator: dernst date_created: 2021-02-19T13:56:24Z date_updated: 2021-02-19T13:56:24Z file_id: '9171' file_name: 2020_CompMathBiophysics_Akopyan2.pdf file_size: 562359 relation: main_file success: 1 file_date_updated: 2021-02-19T13:56:24Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '06' oa: 1 oa_version: Published Version page: 51-67 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computational and Mathematical Biophysics publication_identifier: issn: - 2544-7297 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: The weighted mean curvature derivative of a space-filling diagram tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2020' ... --- _id: '9156' abstract: - lang: eng text: The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy. acknowledgement: "The authors of this paper thank Roland Roth for suggesting the analysis of theweighted\r\ncurvature derivatives for the purpose of improving molecular dynamics simulations. They also thank Patrice Koehl for the implementation of the formulas and for his encouragement and advise along the road. Finally, they thank two anonymous reviewers for their constructive criticism.\r\nThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Akopyan A, Edelsbrunner H. The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 2020;8(1):74-88. doi:10.1515/cmb-2020-0101 apa: Akopyan, A., & Edelsbrunner, H. (2020). The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. De Gruyter. https://doi.org/10.1515/cmb-2020-0101 chicago: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics. De Gruyter, 2020. https://doi.org/10.1515/cmb-2020-0101. ieee: A. Akopyan and H. Edelsbrunner, “The weighted Gaussian curvature derivative of a space-filling diagram,” Computational and Mathematical Biophysics, vol. 8, no. 1. De Gruyter, pp. 74–88, 2020. ista: Akopyan A, Edelsbrunner H. 2020. The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 8(1), 74–88. mla: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics, vol. 8, no. 1, De Gruyter, 2020, pp. 74–88, doi:10.1515/cmb-2020-0101. short: A. Akopyan, H. Edelsbrunner, Computational and Mathematical Biophysics 8 (2020) 74–88. date_created: 2021-02-17T15:12:44Z date_published: 2020-07-21T00:00:00Z date_updated: 2023-10-17T12:35:10Z day: '21' ddc: - '510' department: - _id: HeEd doi: 10.1515/cmb-2020-0101 ec_funded: 1 external_id: arxiv: - '1908.06777' file: - access_level: open_access checksum: ca43a7440834eab6bbea29c59b56ef3a content_type: application/pdf creator: dernst date_created: 2021-02-19T13:33:19Z date_updated: 2021-02-19T13:33:19Z file_id: '9170' file_name: 2020_CompMathBiophysics_Akopyan.pdf file_size: 707452 relation: main_file success: 1 file_date_updated: 2021-02-19T13:33:19Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 74-88 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computational and Mathematical Biophysics publication_identifier: issn: - 2544-7297 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: The weighted Gaussian curvature derivative of a space-filling diagram tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2020' ... --- _id: '15064' abstract: - lang: eng text: We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspaces of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for Čech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive Čech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems. acknowledgement: This research has been supported by the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”, by Polish MNiSzW Grant No. 2621/7.PR/12/2013/2, by the Polish National Science Center under Maestro Grant No. 2014/14/A/ST1/00453 and Grant No. DEC-2013/09/N/ST6/02995. Open Access funding provided by Projekt DEAL. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: U. full_name: Bauer, U. last_name: Bauer - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: M. full_name: Mrozek, M. last_name: Mrozek citation: ama: Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 2020;4(4):455-480. doi:10.1007/s41468-020-00058-8 apa: Bauer, U., Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2020). Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00058-8 chicago: Bauer, U., Herbert Edelsbrunner, Grzegorz Jablonski, and M. Mrozek. “Čech-Delaunay Gradient Flow and Homology Inference for Self-Maps.” Journal of Applied and Computational Topology. Springer Nature, 2020. https://doi.org/10.1007/s41468-020-00058-8. ieee: U. Bauer, H. Edelsbrunner, G. Jablonski, and M. Mrozek, “Čech-Delaunay gradient flow and homology inference for self-maps,” Journal of Applied and Computational Topology, vol. 4, no. 4. Springer Nature, pp. 455–480, 2020. ista: Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. 2020. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 4(4), 455–480. mla: Bauer, U., et al. “Čech-Delaunay Gradient Flow and Homology Inference for Self-Maps.” Journal of Applied and Computational Topology, vol. 4, no. 4, Springer Nature, 2020, pp. 455–80, doi:10.1007/s41468-020-00058-8. short: U. Bauer, H. Edelsbrunner, G. Jablonski, M. Mrozek, Journal of Applied and Computational Topology 4 (2020) 455–480. date_created: 2024-03-04T10:47:49Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-03-04T10:54:04Z day: '01' ddc: - '500' department: - _id: HeEd doi: 10.1007/s41468-020-00058-8 file: - access_level: open_access checksum: eed1168b6e66cd55272c19bb7fca8a1c content_type: application/pdf creator: dernst date_created: 2024-03-04T10:52:42Z date_updated: 2024-03-04T10:52:42Z file_id: '15065' file_name: 2020_JourApplCompTopology_Bauer.pdf file_size: 851190 relation: main_file success: 1 file_date_updated: 2024-03-04T10:52:42Z has_accepted_license: '1' intvolume: ' 4' issue: '4' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 455-480 publication: Journal of Applied and Computational Topology publication_identifier: eissn: - 2367-1734 issn: - 2367-1726 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Čech-Delaunay gradient flow and homology inference for self-maps tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '6515' abstract: - lang: eng text: We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature. author: - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Dyer R, Vegter G, Wintraecken M. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 2019;10(1):223–256. doi:10.20382/jocg.v10i1a9 apa: Dyer, R., Vegter, G., & Wintraecken, M. (2019). Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . Carleton University. https://doi.org/10.20382/jocg.v10i1a9 chicago: Dyer, Ramsay, Gert Vegter, and Mathijs Wintraecken. “Simplices Modelled on Spaces of Constant Curvature.” Journal of Computational Geometry . Carleton University, 2019. https://doi.org/10.20382/jocg.v10i1a9. ieee: R. Dyer, G. Vegter, and M. Wintraecken, “Simplices modelled on spaces of constant curvature,” Journal of Computational Geometry , vol. 10, no. 1. Carleton University, pp. 223–256, 2019. ista: Dyer R, Vegter G, Wintraecken M. 2019. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 10(1), 223–256. mla: Dyer, Ramsay, et al. “Simplices Modelled on Spaces of Constant Curvature.” Journal of Computational Geometry , vol. 10, no. 1, Carleton University, 2019, pp. 223–256, doi:10.20382/jocg.v10i1a9. short: R. Dyer, G. Vegter, M. Wintraecken, Journal of Computational Geometry 10 (2019) 223–256. date_created: 2019-06-03T09:35:33Z date_published: 2019-07-01T00:00:00Z date_updated: 2021-01-12T08:07:50Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.20382/jocg.v10i1a9 ec_funded: 1 file: - access_level: open_access checksum: 57b4df2f16a74eb499734ec8ee240178 content_type: application/pdf creator: mwintrae date_created: 2019-06-03T09:30:01Z date_updated: 2020-07-14T12:47:32Z file_id: '6516' file_name: mainJournalFinal.pdf file_size: 2170882 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 10' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 223–256 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'Journal of Computational Geometry ' publication_identifier: issn: - 1920-180X publication_status: published publisher: Carleton University quality_controlled: '1' scopus_import: 1 status: public title: Simplices modelled on spaces of constant curvature tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2019' ... --- _id: '6628' abstract: - lang: eng text: Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space. author: - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Vegter G, Wintraecken M. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In: The 31st Canadian Conference in Computational Geometry. ; 2019:275-279.' apa: Vegter, G., & Wintraecken, M. (2019). The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In The 31st Canadian Conference in Computational Geometry (pp. 275–279). Edmonton, Canada. chicago: Vegter, Gert, and Mathijs Wintraecken. “The Extrinsic Nature of the Hausdorff Distance of Optimal Triangulations of Manifolds.” In The 31st Canadian Conference in Computational Geometry, 275–79, 2019. ieee: G. Vegter and M. Wintraecken, “The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds,” in The 31st Canadian Conference in Computational Geometry, Edmonton, Canada, 2019, pp. 275–279. ista: 'Vegter G, Wintraecken M. 2019. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. The 31st Canadian Conference in Computational Geometry. CCCG: Canadian Conference in Computational Geometry, 275–279.' mla: Vegter, Gert, and Mathijs Wintraecken. “The Extrinsic Nature of the Hausdorff Distance of Optimal Triangulations of Manifolds.” The 31st Canadian Conference in Computational Geometry, 2019, pp. 275–79. short: G. Vegter, M. Wintraecken, in:, The 31st Canadian Conference in Computational Geometry, 2019, pp. 275–279. conference: end_date: 2019-08-10 location: Edmonton, Canada name: 'CCCG: Canadian Conference in Computational Geometry' start_date: 2019-08-08 date_created: 2019-07-12T08:34:57Z date_published: 2019-08-01T00:00:00Z date_updated: 2021-01-12T08:08:16Z day: '01' ddc: - '004' department: - _id: HeEd ec_funded: 1 file: - access_level: open_access checksum: ceabd152cfa55170d57763f9c6c60a53 content_type: application/pdf creator: mwintrae date_created: 2019-07-12T08:32:46Z date_updated: 2020-07-14T12:47:34Z file_id: '6629' file_name: IntrinsicExtrinsicCCCG2019.pdf file_size: 321176 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 275-279 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: The 31st Canadian Conference in Computational Geometry publication_status: published quality_controlled: '1' scopus_import: 1 status: public title: The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6648' abstract: - lang: eng text: "Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory\r\nneeded for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context." alternative_title: - LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Virk Z, Wagner H. Topological data analysis in information space. In: 35th International Symposium on Computational Geometry. Vol 129. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019:31:1-31:14. doi:10.4230/LIPICS.SOCG.2019.31' apa: 'Edelsbrunner, H., Virk, Z., & Wagner, H. (2019). Topological data analysis in information space. In 35th International Symposium on Computational Geometry (Vol. 129, p. 31:1-31:14). Portland, OR, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2019.31' chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Topological Data Analysis in Information Space.” In 35th International Symposium on Computational Geometry, 129:31:1-31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.SOCG.2019.31. ieee: H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in information space,” in 35th International Symposium on Computational Geometry, Portland, OR, United States, 2019, vol. 129, p. 31:1-31:14. ista: 'Edelsbrunner H, Virk Z, Wagner H. 2019. Topological data analysis in information space. 35th International Symposium on Computational Geometry. SoCG 2019: Symposium on Computational Geometry, LIPIcs, vol. 129, 31:1-31:14.' mla: Edelsbrunner, Herbert, et al. “Topological Data Analysis in Information Space.” 35th International Symposium on Computational Geometry, vol. 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 31:1-31:14, doi:10.4230/LIPICS.SOCG.2019.31. short: H. Edelsbrunner, Z. Virk, H. Wagner, in:, 35th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 31:1-31:14. conference: end_date: 2019-06-21 location: Portland, OR, United States name: 'SoCG 2019: Symposium on Computational Geometry' start_date: 2019-06-18 date_created: 2019-07-17T10:36:09Z date_published: 2019-06-01T00:00:00Z date_updated: 2021-01-12T08:08:23Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.4230/LIPICS.SOCG.2019.31 external_id: arxiv: - '1903.08510' file: - access_level: open_access checksum: 8ec8720730d4c789bf7b06540f1c29f4 content_type: application/pdf creator: dernst date_created: 2019-07-24T06:40:01Z date_updated: 2020-07-14T12:47:35Z file_id: '6666' file_name: 2019_LIPICS_Edelsbrunner.pdf file_size: 1355179 relation: main_file file_date_updated: 2020-07-14T12:47:35Z has_accepted_license: '1' intvolume: ' 129' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 31:1-31:14 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: 35th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771047' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Topological data analysis in information space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 129 year: '2019' ... --- _id: '6989' abstract: - lang: eng text: 'When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with hole(s) to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special simple holes guarantee foldability. ' acknowledgement: This research was performed in part at the 33rd BellairsWinter Workshop on Computational Geometry. Wethank all other participants for a fruitful atmosphere. article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Hugo A full_name: Akitaya, Hugo A last_name: Akitaya - first_name: Kenneth C full_name: Cheung, Kenneth C last_name: Cheung - first_name: Erik D full_name: Demaine, Erik D last_name: Demaine - first_name: Martin L full_name: Demaine, Martin L last_name: Demaine - first_name: Sandor P full_name: Fekete, Sandor P last_name: Fekete - first_name: Linda full_name: Kleist, Linda last_name: Kleist - first_name: Irina full_name: Kostitsyna, Irina last_name: Kostitsyna - first_name: Maarten full_name: Löffler, Maarten last_name: Löffler - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Klara full_name: Mundilova, Klara last_name: Mundilova - first_name: Christiane full_name: Schmidt, Christiane last_name: Schmidt citation: ama: 'Aichholzer O, Akitaya HA, Cheung KC, et al. Folding polyominoes with holes into a cube. In: Proceedings of the 31st Canadian Conference on Computational Geometry. Canadian Conference on Computational Geometry; 2019:164-170.' apa: 'Aichholzer, O., Akitaya, H. A., Cheung, K. C., Demaine, E. D., Demaine, M. L., Fekete, S. P., … Schmidt, C. (2019). Folding polyominoes with holes into a cube. In Proceedings of the 31st Canadian Conference on Computational Geometry (pp. 164–170). Edmonton, Canada: Canadian Conference on Computational Geometry.' chicago: Aichholzer, Oswin, Hugo A Akitaya, Kenneth C Cheung, Erik D Demaine, Martin L Demaine, Sandor P Fekete, Linda Kleist, et al. “Folding Polyominoes with Holes into a Cube.” In Proceedings of the 31st Canadian Conference on Computational Geometry, 164–70. Canadian Conference on Computational Geometry, 2019. ieee: O. Aichholzer et al., “Folding polyominoes with holes into a cube,” in Proceedings of the 31st Canadian Conference on Computational Geometry, Edmonton, Canada, 2019, pp. 164–170. ista: 'Aichholzer O, Akitaya HA, Cheung KC, Demaine ED, Demaine ML, Fekete SP, Kleist L, Kostitsyna I, Löffler M, Masárová Z, Mundilova K, Schmidt C. 2019. Folding polyominoes with holes into a cube. Proceedings of the 31st Canadian Conference on Computational Geometry. CCCG: Canadian Conference in Computational Geometry, 164–170.' mla: Aichholzer, Oswin, et al. “Folding Polyominoes with Holes into a Cube.” Proceedings of the 31st Canadian Conference on Computational Geometry, Canadian Conference on Computational Geometry, 2019, pp. 164–70. short: O. Aichholzer, H.A. Akitaya, K.C. Cheung, E.D. Demaine, M.L. Demaine, S.P. Fekete, L. Kleist, I. Kostitsyna, M. Löffler, Z. Masárová, K. Mundilova, C. Schmidt, in:, Proceedings of the 31st Canadian Conference on Computational Geometry, Canadian Conference on Computational Geometry, 2019, pp. 164–170. conference: end_date: 2019-08-10 location: Edmonton, Canada name: 'CCCG: Canadian Conference in Computational Geometry' start_date: 2019-08-08 date_created: 2019-11-04T16:46:11Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-04T10:57:42Z day: '01' department: - _id: HeEd external_id: arxiv: - '1910.09917' language: - iso: eng main_file_link: - open_access: '1' url: https://cccg.ca/proceedings/2019/proceedings.pdf month: '08' oa: 1 oa_version: Published Version page: 164-170 publication: Proceedings of the 31st Canadian Conference on Computational Geometry publication_status: published publisher: Canadian Conference on Computational Geometry quality_controlled: '1' related_material: record: - id: '8317' relation: extended_version status: public scopus_import: '1' status: public title: Folding polyominoes with holes into a cube type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 year: '2019' ... --- _id: '6671' abstract: - lang: eng text: 'In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: André full_name: Lieutier, André last_name: Lieutier - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat J-D, Lieutier A, Wintraecken M. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. 2019;3(1-2):29–58. doi:10.1007/s41468-019-00029-8 apa: Boissonnat, J.-D., Lieutier, A., & Wintraecken, M. (2019). The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-019-00029-8 chicago: Boissonnat, Jean-Daniel, André Lieutier, and Mathijs Wintraecken. “The Reach, Metric Distortion, Geodesic Convexity and the Variation of Tangent Spaces.” Journal of Applied and Computational Topology. Springer Nature, 2019. https://doi.org/10.1007/s41468-019-00029-8. ieee: J.-D. Boissonnat, A. Lieutier, and M. Wintraecken, “The reach, metric distortion, geodesic convexity and the variation of tangent spaces,” Journal of Applied and Computational Topology, vol. 3, no. 1–2. Springer Nature, pp. 29–58, 2019. ista: Boissonnat J-D, Lieutier A, Wintraecken M. 2019. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. 3(1–2), 29–58. mla: Boissonnat, Jean-Daniel, et al. “The Reach, Metric Distortion, Geodesic Convexity and the Variation of Tangent Spaces.” Journal of Applied and Computational Topology, vol. 3, no. 1–2, Springer Nature, 2019, pp. 29–58, doi:10.1007/s41468-019-00029-8. short: J.-D. Boissonnat, A. Lieutier, M. Wintraecken, Journal of Applied and Computational Topology 3 (2019) 29–58. date_created: 2019-07-24T08:37:29Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-08-22T12:37:47Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1007/s41468-019-00029-8 ec_funded: 1 file: - access_level: open_access checksum: a5b244db9f751221409cf09c97ee0935 content_type: application/pdf creator: dernst date_created: 2019-07-31T08:09:56Z date_updated: 2020-07-14T12:47:36Z file_id: '6741' file_name: 2019_JournAppliedComputTopol_Boissonnat.pdf file_size: 2215157 relation: main_file file_date_updated: 2020-07-14T12:47:36Z has_accepted_license: '1' intvolume: ' 3' issue: 1-2 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 29–58 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Journal of Applied and Computational Topology publication_identifier: eissn: - 2367-1734 issn: - 2367-1726 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: The reach, metric distortion, geodesic convexity and the variation of tangent spaces tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2019' ... --- _id: '6050' abstract: - lang: eng text: 'We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. ' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Fedorov, Roman last_name: Fedorov citation: ama: Akopyan A, Fedorov R. Two circles and only a straightedge. Proceedings of the American Mathematical Society. 2019;147:91-102. doi:10.1090/proc/14240 apa: Akopyan, A., & Fedorov, R. (2019). Two circles and only a straightedge. Proceedings of the American Mathematical Society. AMS. https://doi.org/10.1090/proc/14240 chicago: Akopyan, Arseniy, and Roman Fedorov. “Two Circles and Only a Straightedge.” Proceedings of the American Mathematical Society. AMS, 2019. https://doi.org/10.1090/proc/14240. ieee: A. Akopyan and R. Fedorov, “Two circles and only a straightedge,” Proceedings of the American Mathematical Society, vol. 147. AMS, pp. 91–102, 2019. ista: Akopyan A, Fedorov R. 2019. Two circles and only a straightedge. Proceedings of the American Mathematical Society. 147, 91–102. mla: Akopyan, Arseniy, and Roman Fedorov. “Two Circles and Only a Straightedge.” Proceedings of the American Mathematical Society, vol. 147, AMS, 2019, pp. 91–102, doi:10.1090/proc/14240. short: A. Akopyan, R. Fedorov, Proceedings of the American Mathematical Society 147 (2019) 91–102. date_created: 2019-02-24T22:59:19Z date_published: 2019-01-01T00:00:00Z date_updated: 2023-08-24T14:48:59Z day: '01' department: - _id: HeEd doi: 10.1090/proc/14240 external_id: arxiv: - '1709.02562' isi: - '000450363900008' intvolume: ' 147' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1709.02562 month: '01' oa: 1 oa_version: Preprint page: 91-102 publication: Proceedings of the American Mathematical Society publication_status: published publisher: AMS quality_controlled: '1' scopus_import: '1' status: public title: Two circles and only a straightedge type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 147 year: '2019' ... --- _id: '6634' abstract: - lang: eng text: In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alfredo full_name: Hubard, Alfredo last_name: Hubard - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Hubard A, Karasev R. Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. 2019;53(2):457-490. doi:10.12775/TMNA.2019.008 apa: Akopyan, A., Hubard, A., & Karasev, R. (2019). Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. Akademicka Platforma Czasopism. https://doi.org/10.12775/TMNA.2019.008 chicago: Akopyan, Arseniy, Alfredo Hubard, and Roman Karasev. “Lower and Upper Bounds for the Waists of Different Spaces.” Topological Methods in Nonlinear Analysis. Akademicka Platforma Czasopism, 2019. https://doi.org/10.12775/TMNA.2019.008. ieee: A. Akopyan, A. Hubard, and R. Karasev, “Lower and upper bounds for the waists of different spaces,” Topological Methods in Nonlinear Analysis, vol. 53, no. 2. Akademicka Platforma Czasopism, pp. 457–490, 2019. ista: Akopyan A, Hubard A, Karasev R. 2019. Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. 53(2), 457–490. mla: Akopyan, Arseniy, et al. “Lower and Upper Bounds for the Waists of Different Spaces.” Topological Methods in Nonlinear Analysis, vol. 53, no. 2, Akademicka Platforma Czasopism, 2019, pp. 457–90, doi:10.12775/TMNA.2019.008. short: A. Akopyan, A. Hubard, R. Karasev, Topological Methods in Nonlinear Analysis 53 (2019) 457–490. date_created: 2019-07-14T21:59:19Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-08-29T06:32:48Z day: '01' department: - _id: HeEd doi: 10.12775/TMNA.2019.008 ec_funded: 1 external_id: arxiv: - '1612.06926' isi: - '000472541600004' intvolume: ' 53' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1612.06926 month: '06' oa: 1 oa_version: Preprint page: 457-490 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Topological Methods in Nonlinear Analysis publication_status: published publisher: Akademicka Platforma Czasopism quality_controlled: '1' scopus_import: '1' status: public title: Lower and upper bounds for the waists of different spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 53 year: '2019' ... --- _id: '6756' abstract: - lang: eng text: "We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over \U0001D54A2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models." article_number: A163 article_processing_charge: No article_type: original author: - first_name: Pratyush full_name: Pranav, Pratyush last_name: Pranav - first_name: Robert J. full_name: Adler, Robert J. last_name: Adler - first_name: Thomas full_name: Buchert, Thomas last_name: Buchert - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Bernard J.T. full_name: Jones, Bernard J.T. last_name: Jones - first_name: Armin full_name: Schwartzman, Armin last_name: Schwartzman - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner - first_name: Rien full_name: Van De Weygaert, Rien last_name: Van De Weygaert citation: ama: Pranav P, Adler RJ, Buchert T, et al. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 2019;627. doi:10.1051/0004-6361/201834916 apa: Pranav, P., Adler, R. J., Buchert, T., Edelsbrunner, H., Jones, B. J. T., Schwartzman, A., … Van De Weygaert, R. (2019). Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834916 chicago: Pranav, Pratyush, Robert J. Adler, Thomas Buchert, Herbert Edelsbrunner, Bernard J.T. Jones, Armin Schwartzman, Hubert Wagner, and Rien Van De Weygaert. “Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background.” Astronomy and Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834916. ieee: P. Pranav et al., “Unexpected topology of the temperature fluctuations in the cosmic microwave background,” Astronomy and Astrophysics, vol. 627. EDP Sciences, 2019. ista: Pranav P, Adler RJ, Buchert T, Edelsbrunner H, Jones BJT, Schwartzman A, Wagner H, Van De Weygaert R. 2019. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 627, A163. mla: Pranav, Pratyush, et al. “Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background.” Astronomy and Astrophysics, vol. 627, A163, EDP Sciences, 2019, doi:10.1051/0004-6361/201834916. short: P. Pranav, R.J. Adler, T. Buchert, H. Edelsbrunner, B.J.T. Jones, A. Schwartzman, H. Wagner, R. Van De Weygaert, Astronomy and Astrophysics 627 (2019). date_created: 2019-08-04T21:59:18Z date_published: 2019-07-17T00:00:00Z date_updated: 2023-08-29T07:01:48Z day: '17' ddc: - '520' - '530' department: - _id: HeEd doi: 10.1051/0004-6361/201834916 external_id: arxiv: - '1812.07678' isi: - '000475839300003' file: - access_level: open_access checksum: 83b9209ed9eefbdcefd89019c5a97805 content_type: application/pdf creator: dernst date_created: 2019-08-05T08:08:59Z date_updated: 2020-07-14T12:47:39Z file_id: '6766' file_name: 2019_AstronomyAstrophysics_Pranav.pdf file_size: 14420451 relation: main_file file_date_updated: 2020-07-14T12:47:39Z has_accepted_license: '1' intvolume: ' 627' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 265683E4-B435-11E9-9278-68D0E5697425 grant_number: M62909-18-1-2038 name: Toward Computational Information Topology - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Astronomy and Astrophysics publication_identifier: eissn: - '14320746' issn: - '00046361' publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: Unexpected topology of the temperature fluctuations in the cosmic microwave background tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 627 year: '2019' ... --- _id: '6793' abstract: - lang: eng text: The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Ivan full_name: Izmestiev, Ivan last_name: Izmestiev citation: ama: Akopyan A, Izmestiev I. The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. 2019;51(5):765-775. doi:10.1112/blms.12276 apa: Akopyan, A., & Izmestiev, I. (2019). The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/blms.12276 chicago: Akopyan, Arseniy, and Ivan Izmestiev. “The Regge Symmetry, Confocal Conics, and the Schläfli Formula.” Bulletin of the London Mathematical Society. London Mathematical Society, 2019. https://doi.org/10.1112/blms.12276. ieee: A. Akopyan and I. Izmestiev, “The Regge symmetry, confocal conics, and the Schläfli formula,” Bulletin of the London Mathematical Society, vol. 51, no. 5. London Mathematical Society, pp. 765–775, 2019. ista: Akopyan A, Izmestiev I. 2019. The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. 51(5), 765–775. mla: Akopyan, Arseniy, and Ivan Izmestiev. “The Regge Symmetry, Confocal Conics, and the Schläfli Formula.” Bulletin of the London Mathematical Society, vol. 51, no. 5, London Mathematical Society, 2019, pp. 765–75, doi:10.1112/blms.12276. short: A. Akopyan, I. Izmestiev, Bulletin of the London Mathematical Society 51 (2019) 765–775. date_created: 2019-08-11T21:59:23Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-29T07:08:34Z day: '01' department: - _id: HeEd doi: 10.1112/blms.12276 ec_funded: 1 external_id: arxiv: - '1903.04929' isi: - '000478560200001' intvolume: ' 51' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.04929 month: '10' oa: 1 oa_version: Preprint page: 765-775 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: Bulletin of the London Mathematical Society publication_identifier: eissn: - '14692120' issn: - '00246093' publication_status: published publisher: London Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: The Regge symmetry, confocal conics, and the Schläfli formula type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 51 year: '2019' ... --- _id: '6828' abstract: - lang: eng text: In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group . article_processing_charge: No article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown citation: ama: Brown A. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 2019;538:261-289. doi:10.1016/j.jalgebra.2019.07.027 apa: Brown, A. (2019). Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2019.07.027 chicago: Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra. Elsevier, 2019. https://doi.org/10.1016/j.jalgebra.2019.07.027. ieee: A. Brown, “Arakawa-Suzuki functors for Whittaker modules,” Journal of Algebra, vol. 538. Elsevier, pp. 261–289, 2019. ista: Brown A. 2019. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 538, 261–289. mla: Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra, vol. 538, Elsevier, 2019, pp. 261–89, doi:10.1016/j.jalgebra.2019.07.027. short: A. Brown, Journal of Algebra 538 (2019) 261–289. date_created: 2019-08-22T07:54:13Z date_published: 2019-11-15T00:00:00Z date_updated: 2023-08-29T07:11:47Z day: '15' department: - _id: HeEd doi: 10.1016/j.jalgebra.2019.07.027 external_id: arxiv: - '1805.04676' isi: - '000487176300011' intvolume: ' 538' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.04676 month: '11' oa: 1 oa_version: Preprint page: 261-289 publication: Journal of Algebra publication_identifier: issn: - 0021-8693 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Arakawa-Suzuki functors for Whittaker modules type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 538 year: '2019' ... --- _id: '7216' abstract: - lang: eng text: 'We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.' article_number: '8917514' article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: James full_name: Cook, James last_name: Cook - first_name: Alex full_name: Fabrikant, Alex last_name: Fabrikant - first_name: Marco full_name: Gruteser, Marco last_name: Gruteser citation: ama: 'Osang GF, Cook J, Fabrikant A, Gruteser M. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In: 2019 IEEE Intelligent Transportation Systems Conference. IEEE; 2019. doi:10.1109/ITSC.2019.8917514' apa: 'Osang, G. F., Cook, J., Fabrikant, A., & Gruteser, M. (2019). LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE. https://doi.org/10.1109/ITSC.2019.8917514' chicago: 'Osang, Georg F, James Cook, Alex Fabrikant, and Marco Gruteser. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” In 2019 IEEE Intelligent Transportation Systems Conference. IEEE, 2019. https://doi.org/10.1109/ITSC.2019.8917514.' ieee: 'G. F. Osang, J. Cook, A. Fabrikant, and M. Gruteser, “LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale,” in 2019 IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 2019.' ista: 'Osang GF, Cook J, Fabrikant A, Gruteser M. 2019. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. 2019 IEEE Intelligent Transportation Systems Conference. ITSC: Intelligent Transportation Systems Conference, 8917514.' mla: 'Osang, Georg F., et al. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” 2019 IEEE Intelligent Transportation Systems Conference, 8917514, IEEE, 2019, doi:10.1109/ITSC.2019.8917514.' short: G.F. Osang, J. Cook, A. Fabrikant, M. Gruteser, in:, 2019 IEEE Intelligent Transportation Systems Conference, IEEE, 2019. conference: end_date: 2019-10-30 location: Auckland, New Zealand name: 'ITSC: Intelligent Transportation Systems Conference' start_date: 2019-10-27 date_created: 2019-12-29T23:00:47Z date_published: 2019-11-28T00:00:00Z date_updated: 2023-09-06T14:50:28Z day: '28' department: - _id: HeEd doi: 10.1109/ITSC.2019.8917514 external_id: isi: - '000521238102050' isi: 1 language: - iso: eng month: '11' oa_version: None publication: 2019 IEEE Intelligent Transportation Systems Conference publication_identifier: isbn: - '9781538670248' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '5678' abstract: - lang: eng text: "The order-k Voronoi tessellation of a locally finite set \U0001D44B⊆ℝ\U0001D45B decomposes ℝ\U0001D45B into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Nikitenko A. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 2019;62(4):865–878. doi:10.1007/s00454-018-0049-2 apa: Edelsbrunner, H., & Nikitenko, A. (2019). Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. Springer. https://doi.org/10.1007/s00454-018-0049-2 chicago: Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry. Springer, 2019. https://doi.org/10.1007/s00454-018-0049-2. ieee: H. Edelsbrunner and A. Nikitenko, “Poisson–Delaunay Mosaics of Order k,” Discrete and Computational Geometry, vol. 62, no. 4. Springer, pp. 865–878, 2019. ista: Edelsbrunner H, Nikitenko A. 2019. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 62(4), 865–878. mla: Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry, vol. 62, no. 4, Springer, 2019, pp. 865–878, doi:10.1007/s00454-018-0049-2. short: H. Edelsbrunner, A. Nikitenko, Discrete and Computational Geometry 62 (2019) 865–878. date_created: 2018-12-16T22:59:20Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-07T12:07:12Z day: '01' ddc: - '516' department: - _id: HeEd doi: 10.1007/s00454-018-0049-2 ec_funded: 1 external_id: arxiv: - '1709.09380' isi: - '000494042900008' file: - access_level: open_access checksum: f9d00e166efaccb5a76bbcbb4dcea3b4 content_type: application/pdf creator: dernst date_created: 2019-02-06T10:10:46Z date_updated: 2020-07-14T12:47:10Z file_id: '5932' file_name: 2018_DiscreteCompGeometry_Edelsbrunner.pdf file_size: 599339 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 62' isi: 1 issue: '4' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 865–878 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete and Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer quality_controlled: '1' related_material: record: - id: '6287' relation: dissertation_contains status: public scopus_import: '1' status: public title: Poisson–Delaunay Mosaics of Order k tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 62 year: '2019' ... --- _id: '6608' abstract: - lang: eng text: We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Edelsbrunner H, Ölsböck K. Holes and dependences in an ordered complex. Computer Aided Geometric Design. 2019;73:1-15. doi:10.1016/j.cagd.2019.06.003 apa: Edelsbrunner, H., & Ölsböck, K. (2019). Holes and dependences in an ordered complex. Computer Aided Geometric Design. Elsevier. https://doi.org/10.1016/j.cagd.2019.06.003 chicago: Edelsbrunner, Herbert, and Katharina Ölsböck. “Holes and Dependences in an Ordered Complex.” Computer Aided Geometric Design. Elsevier, 2019. https://doi.org/10.1016/j.cagd.2019.06.003. ieee: H. Edelsbrunner and K. Ölsböck, “Holes and dependences in an ordered complex,” Computer Aided Geometric Design, vol. 73. Elsevier, pp. 1–15, 2019. ista: Edelsbrunner H, Ölsböck K. 2019. Holes and dependences in an ordered complex. Computer Aided Geometric Design. 73, 1–15. mla: Edelsbrunner, Herbert, and Katharina Ölsböck. “Holes and Dependences in an Ordered Complex.” Computer Aided Geometric Design, vol. 73, Elsevier, 2019, pp. 1–15, doi:10.1016/j.cagd.2019.06.003. short: H. Edelsbrunner, K. Ölsböck, Computer Aided Geometric Design 73 (2019) 1–15. date_created: 2019-07-07T21:59:20Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-09-07T13:15:29Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.cagd.2019.06.003 ec_funded: 1 external_id: isi: - '000485207800001' file: - access_level: open_access checksum: 7c99be505dc7533257d42eb1830cef04 content_type: application/pdf creator: kschuh date_created: 2019-07-08T15:24:26Z date_updated: 2020-07-14T12:47:34Z file_id: '6624' file_name: Elsevier_2019_Edelsbrunner.pdf file_size: 2665013 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 73' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: 1-15 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computer Aided Geometric Design publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '7460' relation: dissertation_contains status: public scopus_import: '1' status: public title: Holes and dependences in an ordered complex tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 73 year: '2019' ... --- _id: '7950' abstract: - lang: eng text: "The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:\r\n1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.\r\n2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.\r\n3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices \ have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved." article_number: '1903.06981' article_processing_charge: No author: - first_name: Ahmad full_name: Biniaz, Ahmad last_name: Biniaz - first_name: Kshitij full_name: Jain, Kshitij last_name: Jain - first_name: Anna full_name: Lubiw, Anna last_name: Lubiw - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Tillmann full_name: Miltzow, Tillmann last_name: Miltzow - first_name: Debajyoti full_name: Mondal, Debajyoti last_name: Mondal - first_name: Anurag Murty full_name: Naredla, Anurag Murty last_name: Naredla - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Alexi full_name: Turcotte, Alexi last_name: Turcotte citation: ama: Biniaz A, Jain K, Lubiw A, et al. Token swapping on trees. arXiv. apa: Biniaz, A., Jain, K., Lubiw, A., Masárová, Z., Miltzow, T., Mondal, D., … Turcotte, A. (n.d.). Token swapping on trees. arXiv. chicago: Biniaz, Ahmad, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. “Token Swapping on Trees.” ArXiv, n.d. ieee: A. Biniaz et al., “Token swapping on trees,” arXiv. . ista: Biniaz A, Jain K, Lubiw A, Masárová Z, Miltzow T, Mondal D, Naredla AM, Tkadlec J, Turcotte A. Token swapping on trees. arXiv, 1903.06981. mla: Biniaz, Ahmad, et al. “Token Swapping on Trees.” ArXiv, 1903.06981. short: A. Biniaz, K. Jain, A. Lubiw, Z. Masárová, T. Miltzow, D. Mondal, A.M. Naredla, J. Tkadlec, A. Turcotte, ArXiv (n.d.). date_created: 2020-06-08T12:25:25Z date_published: 2019-03-16T00:00:00Z date_updated: 2024-01-04T12:42:08Z day: '16' department: - _id: HeEd - _id: UlWa - _id: KrCh external_id: arxiv: - '1903.06981' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.06981 month: '03' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted related_material: record: - id: '7944' relation: dissertation_contains status: public - id: '12833' relation: later_version status: public status: public title: Token swapping on trees type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '188' abstract: - lang: eng text: Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex. acknowledgement: This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund alternative_title: - Leibniz International Proceedings in Information, LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Virk Z, Wagner H. Smallest enclosing spheres and Chernoff points in Bregman geometry. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:35:1-35:13. doi:10.4230/LIPIcs.SoCG.2018.35' apa: 'Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35' chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry,” 99:35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.35. ieee: 'H. Edelsbrunner, Z. Virk, and H. Wagner, “Smallest enclosing spheres and Chernoff points in Bregman geometry,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 35:1-35:13.' ista: 'Edelsbrunner H, Virk Z, Wagner H. 2018. Smallest enclosing spheres and Chernoff points in Bregman geometry. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 35:1-35:13.' mla: Edelsbrunner, Herbert, et al. Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13, doi:10.4230/LIPIcs.SoCG.2018.35. short: H. Edelsbrunner, Z. Virk, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:05Z date_published: 2018-06-11T00:00:00Z date_updated: 2021-01-12T06:53:48Z day: '11' ddc: - '000' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2018.35 file: - access_level: open_access checksum: 7509403803b3ac1aee94bbc2ad293d21 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:31:31Z date_updated: 2020-07-14T12:45:20Z file_id: '5724' file_name: 2018_LIPIcs_Edelsbrunner.pdf file_size: 489080 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 35:1 - 35:13 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7733' quality_controlled: '1' scopus_import: 1 status: public title: Smallest enclosing spheres and Chernoff points in Bregman geometry tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '201' abstract: - lang: eng text: 'We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: Iglesias Ham M. Multiple covers with balls. 2018. doi:10.15479/AT:ISTA:th_1026 apa: Iglesias Ham, M. (2018). Multiple covers with balls. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1026 chicago: Iglesias Ham, Mabel. “Multiple Covers with Balls.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1026. ieee: M. Iglesias Ham, “Multiple covers with balls,” Institute of Science and Technology Austria, 2018. ista: Iglesias Ham M. 2018. Multiple covers with balls. Institute of Science and Technology Austria. mla: Iglesias Ham, Mabel. Multiple Covers with Balls. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1026. short: M. Iglesias Ham, Multiple Covers with Balls, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-07T12:25:32Z day: '11' ddc: - '514' - '516' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_1026 file: - access_level: closed checksum: dd699303623e96d1478a6ae07210dd05 content_type: application/zip creator: kschuh date_created: 2019-02-05T07:43:31Z date_updated: 2020-07-14T12:45:24Z file_id: '5918' file_name: IST-2018-1025-v2+5_ist-thesis-iglesias-11June2018(1).zip file_size: 11827713 relation: source_file - access_level: open_access checksum: ba163849a190d2b41d66fef0e4983294 content_type: application/pdf creator: kschuh date_created: 2019-02-05T07:43:45Z date_updated: 2020-07-14T12:45:24Z file_id: '5919' file_name: IST-2018-1025-v2+4_ThesisIglesiasFinal11June2018.pdf file_size: 4783846 relation: main_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '171' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7712' pubrep_id: '1026' status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Multiple covers with balls type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '187' abstract: - lang: eng text: 'Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. ' acknowledgement: This work is partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). alternative_title: - LIPIcs article_number: '34' author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 citation: ama: 'Edelsbrunner H, Osang GF. The multi-cover persistence of Euclidean balls. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPIcs.SoCG.2018.34' apa: 'Edelsbrunner, H., & Osang, G. F. (2018). The multi-cover persistence of Euclidean balls (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.34' chicago: Edelsbrunner, Herbert, and Georg F Osang. “The Multi-Cover Persistence of Euclidean Balls,” Vol. 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.34. ieee: 'H. Edelsbrunner and G. F. Osang, “The multi-cover persistence of Euclidean balls,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99.' ista: 'Edelsbrunner H, Osang GF. 2018. The multi-cover persistence of Euclidean balls. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 99, 34.' mla: Edelsbrunner, Herbert, and Georg F. Osang. The Multi-Cover Persistence of Euclidean Balls. Vol. 99, 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPIcs.SoCG.2018.34. short: H. Edelsbrunner, G.F. Osang, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:05Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-07T13:29:00Z day: '11' ddc: - '516' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2018.34 file: - access_level: open_access checksum: d8c0533ad0018eb4ed1077475eb8fc18 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:27:22Z date_updated: 2020-07-14T12:45:19Z file_id: '5738' file_name: 2018_LIPIcs_Edelsbrunner_Osang.pdf file_size: 528018 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7732' quality_controlled: '1' related_material: record: - id: '9317' relation: later_version status: public - id: '9056' relation: dissertation_contains status: public scopus_import: 1 status: public title: The multi-cover persistence of Euclidean balls tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '692' abstract: - lang: eng text: We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X citation: ama: Akopyan A. 3-Webs generated by confocal conics and circles. Geometriae Dedicata. 2018;194(1):55-64. doi:10.1007/s10711-017-0265-6 apa: Akopyan, A. (2018). 3-Webs generated by confocal conics and circles. Geometriae Dedicata. Springer. https://doi.org/10.1007/s10711-017-0265-6 chicago: Akopyan, Arseniy. “3-Webs Generated by Confocal Conics and Circles.” Geometriae Dedicata. Springer, 2018. https://doi.org/10.1007/s10711-017-0265-6. ieee: A. Akopyan, “3-Webs generated by confocal conics and circles,” Geometriae Dedicata, vol. 194, no. 1. Springer, pp. 55–64, 2018. ista: Akopyan A. 2018. 3-Webs generated by confocal conics and circles. Geometriae Dedicata. 194(1), 55–64. mla: Akopyan, Arseniy. “3-Webs Generated by Confocal Conics and Circles.” Geometriae Dedicata, vol. 194, no. 1, Springer, 2018, pp. 55–64, doi:10.1007/s10711-017-0265-6. short: A. Akopyan, Geometriae Dedicata 194 (2018) 55–64. date_created: 2018-12-11T11:47:57Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-08T11:40:29Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s10711-017-0265-6 ec_funded: 1 external_id: isi: - '000431418800004' file: - access_level: open_access checksum: 1febcfc1266486053a069e3425ea3713 content_type: application/pdf creator: kschuh date_created: 2020-01-03T11:35:08Z date_updated: 2020-07-14T12:47:44Z file_id: '7222' file_name: 2018_Springer_Akopyan.pdf file_size: 1140860 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 194' isi: 1 issue: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 55 - 64 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Geometriae Dedicata publication_status: published publisher: Springer publist_id: '7014' quality_controlled: '1' scopus_import: '1' status: public title: 3-Webs generated by confocal conics and circles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 194 year: '2018' ... --- _id: '58' abstract: - lang: eng text: 'Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Erel full_name: Segal Halevi, Erel last_name: Segal Halevi citation: ama: Akopyan A, Segal Halevi E. Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. 2018;32(3):2242-2257. doi:10.1137/16M110407X apa: Akopyan, A., & Segal Halevi, E. (2018). Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M110407X chicago: Akopyan, Arseniy, and Erel Segal Halevi. “Counting Blanks in Polygonal Arrangements.” SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics , 2018. https://doi.org/10.1137/16M110407X. ieee: A. Akopyan and E. Segal Halevi, “Counting blanks in polygonal arrangements,” SIAM Journal on Discrete Mathematics, vol. 32, no. 3. Society for Industrial and Applied Mathematics , pp. 2242–2257, 2018. ista: Akopyan A, Segal Halevi E. 2018. Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. 32(3), 2242–2257. mla: Akopyan, Arseniy, and Erel Segal Halevi. “Counting Blanks in Polygonal Arrangements.” SIAM Journal on Discrete Mathematics, vol. 32, no. 3, Society for Industrial and Applied Mathematics , 2018, pp. 2242–57, doi:10.1137/16M110407X. short: A. Akopyan, E. Segal Halevi, SIAM Journal on Discrete Mathematics 32 (2018) 2242–2257. date_created: 2018-12-11T11:44:24Z date_published: 2018-09-06T00:00:00Z date_updated: 2023-09-11T12:48:39Z day: '06' department: - _id: HeEd doi: 10.1137/16M110407X ec_funded: 1 external_id: arxiv: - '1604.00960' isi: - '000450810500036' intvolume: ' 32' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1604.00960 month: '09' oa: 1 oa_version: Preprint page: 2242 - 2257 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: SIAM Journal on Discrete Mathematics publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '7996' quality_controlled: '1' scopus_import: '1' status: public title: Counting blanks in polygonal arrangements type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2018' ... --- _id: '458' abstract: - lang: eng text: We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem. acknowledgement: DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”; People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) REA grant agreement n◦[291734] article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander full_name: Bobenko, Alexander last_name: Bobenko citation: ama: Akopyan A, Bobenko A. Incircular nets and confocal conics. Transactions of the American Mathematical Society. 2018;370(4):2825-2854. doi:10.1090/tran/7292 apa: Akopyan, A., & Bobenko, A. (2018). Incircular nets and confocal conics. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/7292 chicago: Akopyan, Arseniy, and Alexander Bobenko. “Incircular Nets and Confocal Conics.” Transactions of the American Mathematical Society. American Mathematical Society, 2018. https://doi.org/10.1090/tran/7292. ieee: A. Akopyan and A. Bobenko, “Incircular nets and confocal conics,” Transactions of the American Mathematical Society, vol. 370, no. 4. American Mathematical Society, pp. 2825–2854, 2018. ista: Akopyan A, Bobenko A. 2018. Incircular nets and confocal conics. Transactions of the American Mathematical Society. 370(4), 2825–2854. mla: Akopyan, Arseniy, and Alexander Bobenko. “Incircular Nets and Confocal Conics.” Transactions of the American Mathematical Society, vol. 370, no. 4, American Mathematical Society, 2018, pp. 2825–54, doi:10.1090/tran/7292. short: A. Akopyan, A. Bobenko, Transactions of the American Mathematical Society 370 (2018) 2825–2854. date_created: 2018-12-11T11:46:35Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-11T14:19:12Z day: '01' department: - _id: HeEd doi: 10.1090/tran/7292 ec_funded: 1 external_id: isi: - '000423197800019' intvolume: ' 370' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1602.04637 month: '04' oa: 1 oa_version: Preprint page: 2825 - 2854 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Transactions of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '7363' quality_controlled: '1' scopus_import: '1' status: public title: Incircular nets and confocal conics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 370 year: '2018' ... --- _id: '106' abstract: - lang: eng text: The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Anton full_name: Petrunin, Anton last_name: Petrunin citation: ama: Akopyan A, Petrunin A. Long geodesics on convex surfaces. Mathematical Intelligencer. 2018;40(3):26-31. doi:10.1007/s00283-018-9795-5 apa: Akopyan, A., & Petrunin, A. (2018). Long geodesics on convex surfaces. Mathematical Intelligencer. Springer. https://doi.org/10.1007/s00283-018-9795-5 chicago: Akopyan, Arseniy, and Anton Petrunin. “Long Geodesics on Convex Surfaces.” Mathematical Intelligencer. Springer, 2018. https://doi.org/10.1007/s00283-018-9795-5. ieee: A. Akopyan and A. Petrunin, “Long geodesics on convex surfaces,” Mathematical Intelligencer, vol. 40, no. 3. Springer, pp. 26–31, 2018. ista: Akopyan A, Petrunin A. 2018. Long geodesics on convex surfaces. Mathematical Intelligencer. 40(3), 26–31. mla: Akopyan, Arseniy, and Anton Petrunin. “Long Geodesics on Convex Surfaces.” Mathematical Intelligencer, vol. 40, no. 3, Springer, 2018, pp. 26–31, doi:10.1007/s00283-018-9795-5. short: A. Akopyan, A. Petrunin, Mathematical Intelligencer 40 (2018) 26–31. date_created: 2018-12-11T11:44:40Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-13T08:49:16Z day: '01' department: - _id: HeEd doi: 10.1007/s00283-018-9795-5 external_id: arxiv: - '1702.05172' isi: - '000444141200005' intvolume: ' 40' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.05172 month: '09' oa: 1 oa_version: Preprint page: 26 - 31 publication: Mathematical Intelligencer publication_status: published publisher: Springer publist_id: '7948' quality_controlled: '1' scopus_import: '1' status: public title: Long geodesics on convex surfaces type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 40 year: '2018' ... --- _id: '530' abstract: - lang: eng text: Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: 'Edelsbrunner H, Iglesias Ham M. Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. 2018;68:119-133. doi:10.1016/j.comgeo.2017.06.014' apa: 'Edelsbrunner, H., & Iglesias Ham, M. (2018). Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2017.06.014' chicago: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls I: Inclusion–Exclusion.” Computational Geometry: Theory and Applications. Elsevier, 2018. https://doi.org/10.1016/j.comgeo.2017.06.014.' ieee: 'H. Edelsbrunner and M. Iglesias Ham, “Multiple covers with balls I: Inclusion–exclusion,” Computational Geometry: Theory and Applications, vol. 68. Elsevier, pp. 119–133, 2018.' ista: 'Edelsbrunner H, Iglesias Ham M. 2018. Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. 68, 119–133.' mla: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls I: Inclusion–Exclusion.” Computational Geometry: Theory and Applications, vol. 68, Elsevier, 2018, pp. 119–33, doi:10.1016/j.comgeo.2017.06.014.' short: 'H. Edelsbrunner, M. Iglesias Ham, Computational Geometry: Theory and Applications 68 (2018) 119–133.' date_created: 2018-12-11T11:46:59Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-13T08:59:00Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.comgeo.2017.06.014 ec_funded: 1 external_id: isi: - '000415778300010' file: - access_level: open_access checksum: 1c8d58cd489a66cd3e2064c1141c8c5e content_type: application/pdf creator: dernst date_created: 2019-02-12T06:47:52Z date_updated: 2020-07-14T12:46:38Z file_id: '5953' file_name: 2018_Edelsbrunner.pdf file_size: 708357 relation: main_file file_date_updated: 2020-07-14T12:46:38Z has_accepted_license: '1' intvolume: ' 68' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Preprint page: 119 - 133 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '7289' quality_controlled: '1' scopus_import: '1' status: public title: 'Multiple covers with balls I: Inclusion–exclusion' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 68 year: '2018' ... --- _id: '193' abstract: - lang: eng text: 'We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki''16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block''16] for analyzing the hardware costs of an iMHF.' acknowledgement: Leonid Reyzin was supported in part by IST Austria and by US NSF grants 1012910, 1012798, and 1422965; this research was performed while he was visiting IST Austria. article_processing_charge: No author: - first_name: Joel F full_name: Alwen, Joel F id: 2A8DFA8C-F248-11E8-B48F-1D18A9856A87 last_name: Alwen - first_name: Peter full_name: Gazi, Peter last_name: Gazi - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Lenoid full_name: Reyzin, Lenoid last_name: Reyzin - first_name: Michal full_name: Rolinek, Michal id: 3CB3BC06-F248-11E8-B48F-1D18A9856A87 last_name: Rolinek - first_name: Michal full_name: Rybar, Michal id: 2B3E3DE8-F248-11E8-B48F-1D18A9856A87 last_name: Rybar citation: ama: 'Alwen JF, Gazi P, Kamath Hosdurg C, et al. On the memory hardness of data independent password hashing functions. In: Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ACM; 2018:51-65. doi:10.1145/3196494.3196534' apa: 'Alwen, J. F., Gazi, P., Kamath Hosdurg, C., Klein, K., Osang, G. F., Pietrzak, K. Z., … Rybar, M. (2018). On the memory hardness of data independent password hashing functions. In Proceedings of the 2018 on Asia Conference on Computer and Communication Security (pp. 51–65). Incheon, Republic of Korea: ACM. https://doi.org/10.1145/3196494.3196534' chicago: Alwen, Joel F, Peter Gazi, Chethan Kamath Hosdurg, Karen Klein, Georg F Osang, Krzysztof Z Pietrzak, Lenoid Reyzin, Michal Rolinek, and Michal Rybar. “On the Memory Hardness of Data Independent Password Hashing Functions.” In Proceedings of the 2018 on Asia Conference on Computer and Communication Security, 51–65. ACM, 2018. https://doi.org/10.1145/3196494.3196534. ieee: J. F. Alwen et al., “On the memory hardness of data independent password hashing functions,” in Proceedings of the 2018 on Asia Conference on Computer and Communication Security, Incheon, Republic of Korea, 2018, pp. 51–65. ista: 'Alwen JF, Gazi P, Kamath Hosdurg C, Klein K, Osang GF, Pietrzak KZ, Reyzin L, Rolinek M, Rybar M. 2018. On the memory hardness of data independent password hashing functions. Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ASIACCS: Asia Conference on Computer and Communications Security , 51–65.' mla: Alwen, Joel F., et al. “On the Memory Hardness of Data Independent Password Hashing Functions.” Proceedings of the 2018 on Asia Conference on Computer and Communication Security, ACM, 2018, pp. 51–65, doi:10.1145/3196494.3196534. short: J.F. Alwen, P. Gazi, C. Kamath Hosdurg, K. Klein, G.F. Osang, K.Z. Pietrzak, L. Reyzin, M. Rolinek, M. Rybar, in:, Proceedings of the 2018 on Asia Conference on Computer and Communication Security, ACM, 2018, pp. 51–65. conference: end_date: 2018-06-08 location: Incheon, Republic of Korea name: 'ASIACCS: Asia Conference on Computer and Communications Security ' start_date: 2018-06-04 date_created: 2018-12-11T11:45:07Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-13T09:13:12Z day: '01' department: - _id: KrPi - _id: HeEd - _id: VlKo doi: 10.1145/3196494.3196534 ec_funded: 1 external_id: isi: - '000516620100005' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2016/783 month: '06' oa: 1 oa_version: Submitted Version page: 51 - 65 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Proceedings of the 2018 on Asia Conference on Computer and Communication Security publication_status: published publisher: ACM publist_id: '7723' quality_controlled: '1' scopus_import: '1' status: public title: On the memory hardness of data independent password hashing functions type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '312' abstract: - lang: eng text: Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice. acknowledgement: This work was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics,” through grant I02979-N35 of the Austrian Science Fund (FWF). article_processing_charge: No article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: Edelsbrunner H, Iglesias Ham M. On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. 2018;32(1):750-782. doi:10.1137/16M1097201 apa: Edelsbrunner, H., & Iglesias Ham, M. (2018). On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1097201 chicago: Edelsbrunner, Herbert, and Mabel Iglesias Ham. “On the Optimality of the FCC Lattice for Soft Sphere Packing.” SIAM J Discrete Math. Society for Industrial and Applied Mathematics , 2018. https://doi.org/10.1137/16M1097201. ieee: H. Edelsbrunner and M. Iglesias Ham, “On the optimality of the FCC lattice for soft sphere packing,” SIAM J Discrete Math, vol. 32, no. 1. Society for Industrial and Applied Mathematics , pp. 750–782, 2018. ista: Edelsbrunner H, Iglesias Ham M. 2018. On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. 32(1), 750–782. mla: Edelsbrunner, Herbert, and Mabel Iglesias Ham. “On the Optimality of the FCC Lattice for Soft Sphere Packing.” SIAM J Discrete Math, vol. 32, no. 1, Society for Industrial and Applied Mathematics , 2018, pp. 750–82, doi:10.1137/16M1097201. short: H. Edelsbrunner, M. Iglesias Ham, SIAM J Discrete Math 32 (2018) 750–782. date_created: 2018-12-11T11:45:46Z date_published: 2018-03-29T00:00:00Z date_updated: 2023-09-13T09:34:38Z day: '29' department: - _id: HeEd doi: 10.1137/16M1097201 external_id: isi: - '000428958900038' intvolume: ' 32' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://pdfs.semanticscholar.org/d2d5/6da00fbc674e6a8b1bb9d857167e54200dc6.pdf month: '03' oa: 1 oa_version: Submitted Version page: 750 - 782 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: SIAM J Discrete Math publication_identifier: issn: - '08954801' publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '7553' quality_controlled: '1' scopus_import: '1' status: public title: On the optimality of the FCC lattice for soft sphere packing type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2018' ... --- _id: '409' abstract: - lang: eng text: We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X citation: ama: Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005 apa: Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005 chicago: Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique. Elsevier, 2018. https://doi.org/10.1016/j.crma.2018.03.005. ieee: A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4. Elsevier, pp. 412–414, 2018. ista: Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414. mla: Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005. short: A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414. date_created: 2018-12-11T11:46:19Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-13T09:34:12Z day: '01' department: - _id: HeEd doi: 10.1016/j.crma.2018.03.005 external_id: arxiv: - '1805.01652' isi: - '000430402700009' intvolume: ' 356' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.01652 month: '04' oa: 1 oa_version: Preprint page: 412-414 publication: Comptes Rendus Mathematique publication_identifier: issn: - 1631073X publication_status: published publisher: Elsevier publist_id: '7420' quality_controlled: '1' scopus_import: '1' status: public title: On the number of non-hexagons in a planar tiling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 356 year: '2018' ... --- _id: '87' abstract: - lang: eng text: Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics. article_processing_charge: No article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Nikitenko A. Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. 2018;28(5):3215-3238. doi:10.1214/18-AAP1389 apa: Edelsbrunner, H., & Nikitenko, A. (2018). Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/18-AAP1389 chicago: Edelsbrunner, Herbert, and Anton Nikitenko. “Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics.” Annals of Applied Probability. Institute of Mathematical Statistics, 2018. https://doi.org/10.1214/18-AAP1389. ieee: H. Edelsbrunner and A. Nikitenko, “Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics,” Annals of Applied Probability, vol. 28, no. 5. Institute of Mathematical Statistics, pp. 3215–3238, 2018. ista: Edelsbrunner H, Nikitenko A. 2018. Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. 28(5), 3215–3238. mla: Edelsbrunner, Herbert, and Anton Nikitenko. “Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics.” Annals of Applied Probability, vol. 28, no. 5, Institute of Mathematical Statistics, 2018, pp. 3215–38, doi:10.1214/18-AAP1389. short: H. Edelsbrunner, A. Nikitenko, Annals of Applied Probability 28 (2018) 3215–3238. date_created: 2018-12-11T11:44:33Z date_published: 2018-10-01T00:00:00Z date_updated: 2023-09-15T12:10:35Z day: '01' department: - _id: HeEd doi: 10.1214/18-AAP1389 external_id: arxiv: - '1705.02870' isi: - '000442893500018' intvolume: ' 28' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.02870 month: '10' oa: 1 oa_version: Preprint page: 3215 - 3238 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Annals of Applied Probability publication_status: published publisher: Institute of Mathematical Statistics publist_id: '7967' quality_controlled: '1' related_material: record: - id: '6287' relation: dissertation_contains status: public scopus_import: '1' status: public title: Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 28 year: '2018' ... --- _id: '6355' abstract: - lang: eng text: We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle. article_number: e7 article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov citation: ama: Akopyan A, Avvakumov S. Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. 2018;6. doi:10.1017/fms.2018.7 apa: Akopyan, A., & Avvakumov, S. (2018). Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2018.7 chicago: Akopyan, Arseniy, and Sergey Avvakumov. “Any Cyclic Quadrilateral Can Be Inscribed in Any Closed Convex Smooth Curve.” Forum of Mathematics, Sigma. Cambridge University Press, 2018. https://doi.org/10.1017/fms.2018.7. ieee: A. Akopyan and S. Avvakumov, “Any cyclic quadrilateral can be inscribed in any closed convex smooth curve,” Forum of Mathematics, Sigma, vol. 6. Cambridge University Press, 2018. ista: Akopyan A, Avvakumov S. 2018. Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. 6, e7. mla: Akopyan, Arseniy, and Sergey Avvakumov. “Any Cyclic Quadrilateral Can Be Inscribed in Any Closed Convex Smooth Curve.” Forum of Mathematics, Sigma, vol. 6, e7, Cambridge University Press, 2018, doi:10.1017/fms.2018.7. short: A. Akopyan, S. Avvakumov, Forum of Mathematics, Sigma 6 (2018). date_created: 2019-04-30T06:09:57Z date_published: 2018-05-31T00:00:00Z date_updated: 2023-09-19T14:50:12Z day: '31' ddc: - '510' department: - _id: UlWa - _id: HeEd - _id: JaMa doi: 10.1017/fms.2018.7 ec_funded: 1 external_id: arxiv: - '1712.10205' isi: - '000433915500001' file: - access_level: open_access checksum: 5a71b24ba712a3eb2e46165a38fbc30a content_type: application/pdf creator: dernst date_created: 2019-04-30T06:14:58Z date_updated: 2020-07-14T12:47:28Z file_id: '6356' file_name: 2018_ForumMahtematics_Akopyan.pdf file_size: 249246 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication: Forum of Mathematics, Sigma publication_identifier: issn: - 2050-5094 publication_status: published publisher: Cambridge University Press quality_controlled: '1' related_material: record: - id: '8156' relation: dissertation_contains status: public status: public title: Any cyclic quadrilateral can be inscribed in any closed convex smooth curve tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2018' ... --- _id: '1064' abstract: - lang: eng text: 'In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy - first_name: Mikhail full_name: Grigorev, Mikhail last_name: Grigorev citation: ama: Akopyan A, Balitskiy A, Grigorev M. On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. 2018;59(4):1001-1009. doi:10.1007/s00454-017-9883-x apa: Akopyan, A., Balitskiy, A., & Grigorev, M. (2018). On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-017-9883-x chicago: Akopyan, Arseniy, Alexey Balitskiy, and Mikhail Grigorev. “On the Circle Covering Theorem by A.W. Goodman and R.E. Goodman.” Discrete & Computational Geometry. Springer, 2018. https://doi.org/10.1007/s00454-017-9883-x. ieee: A. Akopyan, A. Balitskiy, and M. Grigorev, “On the circle covering theorem by A.W. Goodman and R.E. Goodman,” Discrete & Computational Geometry, vol. 59, no. 4. Springer, pp. 1001–1009, 2018. ista: Akopyan A, Balitskiy A, Grigorev M. 2018. On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. 59(4), 1001–1009. mla: Akopyan, Arseniy, et al. “On the Circle Covering Theorem by A.W. Goodman and R.E. Goodman.” Discrete & Computational Geometry, vol. 59, no. 4, Springer, 2018, pp. 1001–09, doi:10.1007/s00454-017-9883-x. short: A. Akopyan, A. Balitskiy, M. Grigorev, Discrete & Computational Geometry 59 (2018) 1001–1009. date_created: 2018-12-11T11:49:57Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-20T12:08:51Z day: '01' ddc: - '516' - '000' department: - _id: HeEd doi: 10.1007/s00454-017-9883-x ec_funded: 1 external_id: isi: - '000432205500011' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-01-18T09:27:36Z date_updated: 2019-01-18T09:27:36Z file_id: '5844' file_name: 2018_DiscreteComp_Akopyan.pdf file_size: 482518 relation: main_file success: 1 file_date_updated: 2019-01-18T09:27:36Z has_accepted_license: '1' intvolume: ' 59' isi: 1 issue: '4' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1001-1009 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Discrete & Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer publist_id: '6324' quality_controlled: '1' scopus_import: '1' status: public title: On the circle covering theorem by A.W. Goodman and R.E. Goodman tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 59 year: '2018' ... --- _id: '75' abstract: - lang: eng text: We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization. article_number: '1804.03057' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Avvakumov S, Karasev R. Convex fair partitions into arbitrary number of pieces. 2018. doi:10.48550/arXiv.1804.03057 apa: Akopyan, A., Avvakumov, S., & Karasev, R. (2018). Convex fair partitions into arbitrary number of pieces. arXiv. https://doi.org/10.48550/arXiv.1804.03057 chicago: Akopyan, Arseniy, Sergey Avvakumov, and Roman Karasev. “Convex Fair Partitions into Arbitrary Number of Pieces.” arXiv, 2018. https://doi.org/10.48550/arXiv.1804.03057. ieee: A. Akopyan, S. Avvakumov, and R. Karasev, “Convex fair partitions into arbitrary number of pieces.” arXiv, 2018. ista: Akopyan A, Avvakumov S, Karasev R. 2018. Convex fair partitions into arbitrary number of pieces. 1804.03057. mla: Akopyan, Arseniy, et al. Convex Fair Partitions into Arbitrary Number of Pieces. 1804.03057, arXiv, 2018, doi:10.48550/arXiv.1804.03057. short: A. Akopyan, S. Avvakumov, R. Karasev, (2018). date_created: 2018-12-11T11:44:30Z date_published: 2018-09-13T00:00:00Z date_updated: 2023-12-18T10:51:02Z day: '13' department: - _id: HeEd - _id: JaMa doi: 10.48550/arXiv.1804.03057 ec_funded: 1 external_id: arxiv: - '1804.03057' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.03057 month: '09' oa: 1 oa_version: Preprint project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication_status: published publisher: arXiv related_material: record: - id: '8156' relation: dissertation_contains status: public status: public title: Convex fair partitions into arbitrary number of pieces type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '481' abstract: - lang: eng text: We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings. acknowledgement: 'Supported by NSERC and the Ross and Muriel Cheriton Fellowship. Research supported by Austrian Science Fund (FWF): P25816-N15.' author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: Biedl T, Huber S, Palfrader P. Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications. 2017;26(3-4):211-229. doi:10.1142/S0218195916600050 apa: Biedl, T., Huber, S., & Palfrader, P. (2017). Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications. World Scientific Publishing. https://doi.org/10.1142/S0218195916600050 chicago: Biedl, Therese, Stefan Huber, and Peter Palfrader. “Planar Matchings for Weighted Straight Skeletons.” International Journal of Computational Geometry and Applications. World Scientific Publishing, 2017. https://doi.org/10.1142/S0218195916600050. ieee: T. Biedl, S. Huber, and P. Palfrader, “Planar matchings for weighted straight skeletons,” International Journal of Computational Geometry and Applications, vol. 26, no. 3–4. World Scientific Publishing, pp. 211–229, 2017. ista: Biedl T, Huber S, Palfrader P. 2017. Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications. 26(3–4), 211–229. mla: Biedl, Therese, et al. “Planar Matchings for Weighted Straight Skeletons.” International Journal of Computational Geometry and Applications, vol. 26, no. 3–4, World Scientific Publishing, 2017, pp. 211–29, doi:10.1142/S0218195916600050. short: T. Biedl, S. Huber, P. Palfrader, International Journal of Computational Geometry and Applications 26 (2017) 211–229. date_created: 2018-12-11T11:46:43Z date_published: 2017-04-13T00:00:00Z date_updated: 2023-02-21T16:06:22Z day: '13' ddc: - '004' - '514' - '516' department: - _id: HeEd doi: 10.1142/S0218195916600050 file: - access_level: open_access checksum: f79e8558bfe4b368dfefeb8eec2e3a5e content_type: application/pdf creator: system date_created: 2018-12-12T10:09:34Z date_updated: 2020-07-14T12:46:35Z file_id: '4758' file_name: IST-2018-949-v1+1_2016_huber_PLanar_matchings.pdf file_size: 769296 relation: main_file file_date_updated: 2020-07-14T12:46:35Z has_accepted_license: '1' intvolume: ' 26' issue: 3-4 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 211 - 229 publication: International Journal of Computational Geometry and Applications publication_status: published publisher: World Scientific Publishing publist_id: '7338' pubrep_id: '949' quality_controlled: '1' related_material: record: - id: '10892' relation: earlier_version status: public scopus_import: 1 status: public title: Planar matchings for weighted straight skeletons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2017' ... --- _id: '521' abstract: - lang: eng text: Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension. author: - first_name: Kyle full_name: Austin, Kyle last_name: Austin - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk citation: ama: Austin K, Virk Z. Higson compactification and dimension raising. Topology and its Applications. 2017;215:45-57. doi:10.1016/j.topol.2016.10.005 apa: Austin, K., & Virk, Z. (2017). Higson compactification and dimension raising. Topology and Its Applications. Elsevier. https://doi.org/10.1016/j.topol.2016.10.005 chicago: Austin, Kyle, and Ziga Virk. “Higson Compactification and Dimension Raising.” Topology and Its Applications. Elsevier, 2017. https://doi.org/10.1016/j.topol.2016.10.005. ieee: K. Austin and Z. Virk, “Higson compactification and dimension raising,” Topology and its Applications, vol. 215. Elsevier, pp. 45–57, 2017. ista: Austin K, Virk Z. 2017. Higson compactification and dimension raising. Topology and its Applications. 215, 45–57. mla: Austin, Kyle, and Ziga Virk. “Higson Compactification and Dimension Raising.” Topology and Its Applications, vol. 215, Elsevier, 2017, pp. 45–57, doi:10.1016/j.topol.2016.10.005. short: K. Austin, Z. Virk, Topology and Its Applications 215 (2017) 45–57. date_created: 2018-12-11T11:46:56Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:01:21Z day: '01' department: - _id: HeEd doi: 10.1016/j.topol.2016.10.005 intvolume: ' 215' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1608.03954v1 month: '01' oa: 1 oa_version: Submitted Version page: 45 - 57 publication: Topology and its Applications publication_identifier: issn: - '01668641' publication_status: published publisher: Elsevier publist_id: '7299' quality_controlled: '1' status: public title: Higson compactification and dimension raising type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 215 year: '2017' ... --- _id: '568' abstract: - lang: eng text: 'We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).' author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. Persistence of zero sets. Homology, Homotopy and Applications. 2017;19(2):313-342. doi:10.4310/HHA.2017.v19.n2.a16 apa: Franek, P., & Krcál, M. (2017). Persistence of zero sets. Homology, Homotopy and Applications. International Press. https://doi.org/10.4310/HHA.2017.v19.n2.a16 chicago: Franek, Peter, and Marek Krcál. “Persistence of Zero Sets.” Homology, Homotopy and Applications. International Press, 2017. https://doi.org/10.4310/HHA.2017.v19.n2.a16. ieee: P. Franek and M. Krcál, “Persistence of zero sets,” Homology, Homotopy and Applications, vol. 19, no. 2. International Press, pp. 313–342, 2017. ista: Franek P, Krcál M. 2017. Persistence of zero sets. Homology, Homotopy and Applications. 19(2), 313–342. mla: Franek, Peter, and Marek Krcál. “Persistence of Zero Sets.” Homology, Homotopy and Applications, vol. 19, no. 2, International Press, 2017, pp. 313–42, doi:10.4310/HHA.2017.v19.n2.a16. short: P. Franek, M. Krcál, Homology, Homotopy and Applications 19 (2017) 313–342. date_created: 2018-12-11T11:47:14Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:03:12Z day: '01' department: - _id: UlWa - _id: HeEd doi: 10.4310/HHA.2017.v19.n2.a16 ec_funded: 1 intvolume: ' 19' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1507.04310 month: '01' oa: 1 oa_version: Submitted Version page: 313 - 342 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2590DB08-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '701309' name: Atomic-Resolution Structures of Mitochondrial Respiratory Chain Supercomplexes (H2020) publication: Homology, Homotopy and Applications publication_identifier: issn: - '15320073' publication_status: published publisher: International Press publist_id: '7246' quality_controlled: '1' scopus_import: 1 status: public title: Persistence of zero sets type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '5803' abstract: - lang: eng text: Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Biswas R, Bhowmick P. Construction of persistent Voronoi diagram on 3D digital plane. In: Combinatorial Image Analysis. Vol 10256. Cham: Springer Nature; 2017:93-104. doi:10.1007/978-3-319-59108-7_8' apa: 'Biswas, R., & Bhowmick, P. (2017). Construction of persistent Voronoi diagram on 3D digital plane. In Combinatorial image analysis (Vol. 10256, pp. 93–104). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-59108-7_8' chicago: 'Biswas, Ranita, and Partha Bhowmick. “Construction of Persistent Voronoi Diagram on 3D Digital Plane.” In Combinatorial Image Analysis, 10256:93–104. Cham: Springer Nature, 2017. https://doi.org/10.1007/978-3-319-59108-7_8.' ieee: 'R. Biswas and P. Bhowmick, “Construction of persistent Voronoi diagram on 3D digital plane,” in Combinatorial image analysis, vol. 10256, Cham: Springer Nature, 2017, pp. 93–104.' ista: 'Biswas R, Bhowmick P. 2017.Construction of persistent Voronoi diagram on 3D digital plane. In: Combinatorial image analysis. LNCS, vol. 10256, 93–104.' mla: Biswas, Ranita, and Partha Bhowmick. “Construction of Persistent Voronoi Diagram on 3D Digital Plane.” Combinatorial Image Analysis, vol. 10256, Springer Nature, 2017, pp. 93–104, doi:10.1007/978-3-319-59108-7_8. short: R. Biswas, P. Bhowmick, in:, Combinatorial Image Analysis, Springer Nature, Cham, 2017, pp. 93–104. conference: end_date: 2017-06-21 location: Plovdiv, Bulgaria name: 'IWCIA: International Workshop on Combinatorial Image Analysis' start_date: 2017-06-19 date_created: 2019-01-08T20:42:56Z date_published: 2017-05-17T00:00:00Z date_updated: 2022-01-28T07:48:24Z day: '17' department: - _id: HeEd doi: 10.1007/978-3-319-59108-7_8 extern: '1' intvolume: ' 10256' language: - iso: eng month: '05' oa_version: None page: 93-104 place: Cham publication: Combinatorial image analysis publication_identifier: isbn: - 978-3-319-59107-0 - 978-3-319-59108-7 issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Construction of persistent Voronoi diagram on 3D digital plane type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 10256 year: '2017' ... --- _id: '688' abstract: - lang: eng text: 'We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory. ' alternative_title: - LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Wagner H. Topological data analysis with Bregman divergences. In: Vol 77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2017:391-3916. doi:10.4230/LIPIcs.SoCG.2017.39' apa: 'Edelsbrunner, H., & Wagner, H. (2017). Topological data analysis with Bregman divergences (Vol. 77, pp. 391–3916). Presented at the Symposium on Computational Geometry, SoCG, Brisbane, Australia: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2017.39' chicago: Edelsbrunner, Herbert, and Hubert Wagner. “Topological Data Analysis with Bregman Divergences,” 77:391–3916. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.39. ieee: H. Edelsbrunner and H. Wagner, “Topological data analysis with Bregman divergences,” presented at the Symposium on Computational Geometry, SoCG, Brisbane, Australia, 2017, vol. 77, pp. 391–3916. ista: Edelsbrunner H, Wagner H. 2017. Topological data analysis with Bregman divergences. Symposium on Computational Geometry, SoCG, LIPIcs, vol. 77, 391–3916. mla: Edelsbrunner, Herbert, and Hubert Wagner. Topological Data Analysis with Bregman Divergences. Vol. 77, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 391–3916, doi:10.4230/LIPIcs.SoCG.2017.39. short: H. Edelsbrunner, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 391–3916. conference: end_date: 2017-07-07 location: Brisbane, Australia name: Symposium on Computational Geometry, SoCG start_date: 2017-07-04 date_created: 2018-12-11T11:47:56Z date_published: 2017-06-01T00:00:00Z date_updated: 2021-01-12T08:09:26Z day: '01' ddc: - '514' - '516' department: - _id: HeEd - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2017.39 file: - access_level: open_access checksum: 067ab0cb3f962bae6c3af6bf0094e0f3 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:03Z date_updated: 2020-07-14T12:47:42Z file_id: '4856' file_name: IST-2017-895-v1+1_LIPIcs-SoCG-2017-39.pdf file_size: 990546 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 77' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 391-3916 publication_identifier: issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7021' pubrep_id: '895' quality_controlled: '1' scopus_import: 1 status: public title: Topological data analysis with Bregman divergences tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 77 year: '2017' ... --- _id: '707' abstract: - lang: eng text: We answer a question of M. Gromov on the waist of the unit ball. author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Karasev R. A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. 2017;49(4):690-693. doi:10.1112/blms.12062 apa: Akopyan, A., & Karasev, R. (2017). A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. Wiley-Blackwell. https://doi.org/10.1112/blms.12062 chicago: Akopyan, Arseniy, and Roman Karasev. “A Tight Estimate for the Waist of the Ball .” Bulletin of the London Mathematical Society. Wiley-Blackwell, 2017. https://doi.org/10.1112/blms.12062. ieee: A. Akopyan and R. Karasev, “A tight estimate for the waist of the ball ,” Bulletin of the London Mathematical Society, vol. 49, no. 4. Wiley-Blackwell, pp. 690–693, 2017. ista: Akopyan A, Karasev R. 2017. A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. 49(4), 690–693. mla: Akopyan, Arseniy, and Roman Karasev. “A Tight Estimate for the Waist of the Ball .” Bulletin of the London Mathematical Society, vol. 49, no. 4, Wiley-Blackwell, 2017, pp. 690–93, doi:10.1112/blms.12062. short: A. Akopyan, R. Karasev, Bulletin of the London Mathematical Society 49 (2017) 690–693. date_created: 2018-12-11T11:48:02Z date_published: 2017-08-01T00:00:00Z date_updated: 2021-01-12T08:11:41Z day: '01' department: - _id: HeEd doi: 10.1112/blms.12062 ec_funded: 1 intvolume: ' 49' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1608.06279 month: '08' oa: 1 oa_version: Preprint page: 690 - 693 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Bulletin of the London Mathematical Society publication_identifier: issn: - '00246093' publication_status: published publisher: Wiley-Blackwell publist_id: '6982' quality_controlled: '1' scopus_import: 1 status: public title: 'A tight estimate for the waist of the ball ' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 49 year: '2017' ... --- _id: '718' abstract: - lang: eng text: Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 - first_name: Matthias full_name: Reitzner, Matthias last_name: Reitzner citation: ama: Edelsbrunner H, Nikitenko A, Reitzner M. Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. 2017;49(3):745-767. doi:10.1017/apr.2017.20 apa: Edelsbrunner, H., Nikitenko, A., & Reitzner, M. (2017). Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. Cambridge University Press. https://doi.org/10.1017/apr.2017.20 chicago: Edelsbrunner, Herbert, Anton Nikitenko, and Matthias Reitzner. “Expected Sizes of Poisson Delaunay Mosaics and Their Discrete Morse Functions.” Advances in Applied Probability. Cambridge University Press, 2017. https://doi.org/10.1017/apr.2017.20. ieee: H. Edelsbrunner, A. Nikitenko, and M. Reitzner, “Expected sizes of poisson Delaunay mosaics and their discrete Morse functions,” Advances in Applied Probability, vol. 49, no. 3. Cambridge University Press, pp. 745–767, 2017. ista: Edelsbrunner H, Nikitenko A, Reitzner M. 2017. Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. 49(3), 745–767. mla: Edelsbrunner, Herbert, et al. “Expected Sizes of Poisson Delaunay Mosaics and Their Discrete Morse Functions.” Advances in Applied Probability, vol. 49, no. 3, Cambridge University Press, 2017, pp. 745–67, doi:10.1017/apr.2017.20. short: H. Edelsbrunner, A. Nikitenko, M. Reitzner, Advances in Applied Probability 49 (2017) 745–767. date_created: 2018-12-11T11:48:07Z date_published: 2017-09-01T00:00:00Z date_updated: 2023-09-07T12:07:12Z day: '01' department: - _id: HeEd doi: 10.1017/apr.2017.20 ec_funded: 1 external_id: arxiv: - '1607.05915' intvolume: ' 49' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.05915 month: '09' oa: 1 oa_version: Preprint page: 745 - 767 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Advances in Applied Probability publication_identifier: issn: - '00018678' publication_status: published publisher: Cambridge University Press publist_id: '6962' quality_controlled: '1' related_material: record: - id: '6287' relation: dissertation_contains status: public scopus_import: 1 status: public title: Expected sizes of poisson Delaunay mosaics and their discrete Morse functions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 49 year: '2017' ... --- _id: '6287' abstract: - lang: eng text: The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Nikitenko A. Discrete Morse theory for random complexes . 2017. doi:10.15479/AT:ISTA:th_873 apa: Nikitenko, A. (2017). Discrete Morse theory for random complexes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_873 chicago: Nikitenko, Anton. “Discrete Morse Theory for Random Complexes .” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_873. ieee: A. Nikitenko, “Discrete Morse theory for random complexes ,” Institute of Science and Technology Austria, 2017. ista: Nikitenko A. 2017. Discrete Morse theory for random complexes . Institute of Science and Technology Austria. mla: Nikitenko, Anton. Discrete Morse Theory for Random Complexes . Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_873. short: A. Nikitenko, Discrete Morse Theory for Random Complexes , Institute of Science and Technology Austria, 2017. date_created: 2019-04-09T15:04:32Z date_published: 2017-10-27T00:00:00Z date_updated: 2023-09-15T12:10:34Z day: '27' ddc: - '514' - '516' - '519' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_873 file: - access_level: open_access checksum: ece7e598a2f060b263c2febf7f3fe7f9 content_type: application/pdf creator: dernst date_created: 2019-04-09T14:54:51Z date_updated: 2020-07-14T12:47:26Z file_id: '6289' file_name: 2017_Thesis_Nikitenko.pdf file_size: 2324870 relation: main_file - access_level: closed checksum: 99b7ad76e317efd447af60f91e29b49b content_type: application/zip creator: dernst date_created: 2019-04-09T14:54:51Z date_updated: 2020-07-14T12:47:26Z file_id: '6290' file_name: 2017_Thesis_Nikitenko_source.zip file_size: 2863219 relation: source_file file_date_updated: 2020-07-14T12:47:26Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '86' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria pubrep_id: '873' related_material: record: - id: '718' relation: part_of_dissertation status: public - id: '5678' relation: part_of_dissertation status: public - id: '87' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: 'Discrete Morse theory for random complexes ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1433' abstract: - lang: eng text: Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology. article_processing_charge: No article_type: original author: - first_name: Ulrich full_name: Bauer, Ulrich last_name: Bauer - first_name: Michael full_name: Kerber, Michael last_name: Kerber - first_name: Jan full_name: Reininghaus, Jan last_name: Reininghaus - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: Bauer U, Kerber M, Reininghaus J, Wagner H. Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. 2017;78:76-90. doi:10.1016/j.jsc.2016.03.008 apa: Bauer, U., Kerber, M., Reininghaus, J., & Wagner, H. (2017). Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. Academic Press. https://doi.org/10.1016/j.jsc.2016.03.008 chicago: Bauer, Ulrich, Michael Kerber, Jan Reininghaus, and Hubert Wagner. “Phat - Persistent Homology Algorithms Toolbox.” Journal of Symbolic Computation. Academic Press, 2017. https://doi.org/10.1016/j.jsc.2016.03.008. ieee: U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat - Persistent homology algorithms toolbox,” Journal of Symbolic Computation, vol. 78. Academic Press, pp. 76–90, 2017. ista: Bauer U, Kerber M, Reininghaus J, Wagner H. 2017. Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. 78, 76–90. mla: Bauer, Ulrich, et al. “Phat - Persistent Homology Algorithms Toolbox.” Journal of Symbolic Computation, vol. 78, Academic Press, 2017, pp. 76–90, doi:10.1016/j.jsc.2016.03.008. short: U. Bauer, M. Kerber, J. Reininghaus, H. Wagner, Journal of Symbolic Computation 78 (2017) 76–90. date_created: 2018-12-11T11:51:59Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T09:42:40Z day: '01' department: - _id: HeEd doi: 10.1016/j.jsc.2016.03.008 ec_funded: 1 external_id: isi: - '000384396000005' intvolume: ' 78' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.jsc.2016.03.008 month: '01' oa: 1 oa_version: Published Version page: 76 - 90 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Journal of Symbolic Computation publication_identifier: issn: - ' 07477171' publication_status: published publisher: Academic Press publist_id: '5765' quality_controlled: '1' related_material: record: - id: '10894' relation: earlier_version status: public scopus_import: '1' status: public title: Phat - Persistent homology algorithms toolbox type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 78 year: '2017' ... --- _id: '1180' abstract: - lang: eng text: In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Imre full_name: Bárány, Imre last_name: Bárány - first_name: Sinai full_name: Robins, Sinai last_name: Robins citation: ama: Akopyan A, Bárány I, Robins S. Algebraic vertices of non-convex polyhedra. Advances in Mathematics. 2017;308:627-644. doi:10.1016/j.aim.2016.12.026 apa: Akopyan, A., Bárány, I., & Robins, S. (2017). Algebraic vertices of non-convex polyhedra. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2016.12.026 chicago: Akopyan, Arseniy, Imre Bárány, and Sinai Robins. “Algebraic Vertices of Non-Convex Polyhedra.” Advances in Mathematics. Academic Press, 2017. https://doi.org/10.1016/j.aim.2016.12.026. ieee: A. Akopyan, I. Bárány, and S. Robins, “Algebraic vertices of non-convex polyhedra,” Advances in Mathematics, vol. 308. Academic Press, pp. 627–644, 2017. ista: Akopyan A, Bárány I, Robins S. 2017. Algebraic vertices of non-convex polyhedra. Advances in Mathematics. 308, 627–644. mla: Akopyan, Arseniy, et al. “Algebraic Vertices of Non-Convex Polyhedra.” Advances in Mathematics, vol. 308, Academic Press, 2017, pp. 627–44, doi:10.1016/j.aim.2016.12.026. short: A. Akopyan, I. Bárány, S. Robins, Advances in Mathematics 308 (2017) 627–644. date_created: 2018-12-11T11:50:34Z date_published: 2017-02-21T00:00:00Z date_updated: 2023-09-20T11:21:27Z day: '21' department: - _id: HeEd doi: 10.1016/j.aim.2016.12.026 ec_funded: 1 external_id: isi: - '000409292900015' intvolume: ' 308' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1508.07594 month: '02' oa: 1 oa_version: Submitted Version page: 627 - 644 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Advances in Mathematics publication_identifier: issn: - '00018708' publication_status: published publisher: Academic Press publist_id: '6173' quality_controlled: '1' scopus_import: '1' status: public title: Algebraic vertices of non-convex polyhedra type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 308 year: '2017' ... --- _id: '1173' abstract: - lang: eng text: We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions. acknowledgement: This research is partially supported by the Russian Government under the Mega Project 11.G34.31.0053, by the Toposys project FP7-ICT-318493-STREP, by ESF under the ACAT Research Network Programme, by RFBR grant 11-01-00735, and by NSF grants DMS-1101688, DMS-1400876. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Alexey full_name: Glazyrin, Alexey last_name: Glazyrin - first_name: Oleg full_name: Musin, Oleg last_name: Musin - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Glazyrin A, Musin O, Nikitenko A. The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. 2017;37(5):887-910. doi:10.1007/s00493-016-3308-y apa: Edelsbrunner, H., Glazyrin, A., Musin, O., & Nikitenko, A. (2017). The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. Springer. https://doi.org/10.1007/s00493-016-3308-y chicago: Edelsbrunner, Herbert, Alexey Glazyrin, Oleg Musin, and Anton Nikitenko. “The Voronoi Functional Is Maximized by the Delaunay Triangulation in the Plane.” Combinatorica. Springer, 2017. https://doi.org/10.1007/s00493-016-3308-y. ieee: H. Edelsbrunner, A. Glazyrin, O. Musin, and A. Nikitenko, “The Voronoi functional is maximized by the Delaunay triangulation in the plane,” Combinatorica, vol. 37, no. 5. Springer, pp. 887–910, 2017. ista: Edelsbrunner H, Glazyrin A, Musin O, Nikitenko A. 2017. The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. 37(5), 887–910. mla: Edelsbrunner, Herbert, et al. “The Voronoi Functional Is Maximized by the Delaunay Triangulation in the Plane.” Combinatorica, vol. 37, no. 5, Springer, 2017, pp. 887–910, doi:10.1007/s00493-016-3308-y. short: H. Edelsbrunner, A. Glazyrin, O. Musin, A. Nikitenko, Combinatorica 37 (2017) 887–910. date_created: 2018-12-11T11:50:32Z date_published: 2017-10-01T00:00:00Z date_updated: 2023-09-20T11:23:53Z day: '01' department: - _id: HeEd doi: 10.1007/s00493-016-3308-y ec_funded: 1 external_id: isi: - '000418056000005' intvolume: ' 37' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1411.6337 month: '10' oa: 1 oa_version: Submitted Version page: 887 - 910 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Combinatorica publication_identifier: issn: - '02099683' publication_status: published publisher: Springer publist_id: '6182' quality_controlled: '1' scopus_import: '1' status: public title: The Voronoi functional is maximized by the Delaunay triangulation in the plane type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2017' ... --- _id: '1072' abstract: - lang: eng text: Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field. acknowledgement: This research has been supported by the EU project Toposys(FP7-ICT-318493-STREP), by ESF under the ACAT Research Network Programme, by the Russian Government under mega project 11.G34.31.0053, and by the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”. article_processing_charge: No article_type: original author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Bauer U, Edelsbrunner H. The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. 2017;369(5):3741-3762. doi:10.1090/tran/6991 apa: Bauer, U., & Edelsbrunner, H. (2017). The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/6991 chicago: Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Complexes.” Transactions of the American Mathematical Society. American Mathematical Society, 2017. https://doi.org/10.1090/tran/6991. ieee: U. Bauer and H. Edelsbrunner, “The Morse theory of Čech and delaunay complexes,” Transactions of the American Mathematical Society, vol. 369, no. 5. American Mathematical Society, pp. 3741–3762, 2017. ista: Bauer U, Edelsbrunner H. 2017. The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. 369(5), 3741–3762. mla: Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Complexes.” Transactions of the American Mathematical Society, vol. 369, no. 5, American Mathematical Society, 2017, pp. 3741–62, doi:10.1090/tran/6991. short: U. Bauer, H. Edelsbrunner, Transactions of the American Mathematical Society 369 (2017) 3741–3762. date_created: 2018-12-11T11:49:59Z date_published: 2017-05-01T00:00:00Z date_updated: 2023-09-20T12:05:56Z day: '01' department: - _id: HeEd doi: 10.1090/tran/6991 ec_funded: 1 external_id: arxiv: - '1312.1231' isi: - '000398030400024' intvolume: ' 369' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1312.1231 month: '05' oa: 1 oa_version: Preprint page: 3741 - 3762 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Transactions of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '6311' quality_controlled: '1' scopus_import: '1' status: public title: The Morse theory of Čech and delaunay complexes type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 369 year: '2017' ... --- _id: '1065' abstract: - lang: eng text: 'We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 citation: ama: Chatterjee K, Osang GF. Pushdown reachability with constant treewidth. Information Processing Letters. 2017;122:25-29. doi:10.1016/j.ipl.2017.02.003 apa: Chatterjee, K., & Osang, G. F. (2017). Pushdown reachability with constant treewidth. Information Processing Letters. Elsevier. https://doi.org/10.1016/j.ipl.2017.02.003 chicago: Chatterjee, Krishnendu, and Georg F Osang. “Pushdown Reachability with Constant Treewidth.” Information Processing Letters. Elsevier, 2017. https://doi.org/10.1016/j.ipl.2017.02.003. ieee: K. Chatterjee and G. F. Osang, “Pushdown reachability with constant treewidth,” Information Processing Letters, vol. 122. Elsevier, pp. 25–29, 2017. ista: Chatterjee K, Osang GF. 2017. Pushdown reachability with constant treewidth. Information Processing Letters. 122, 25–29. mla: Chatterjee, Krishnendu, and Georg F. Osang. “Pushdown Reachability with Constant Treewidth.” Information Processing Letters, vol. 122, Elsevier, 2017, pp. 25–29, doi:10.1016/j.ipl.2017.02.003. short: K. Chatterjee, G.F. Osang, Information Processing Letters 122 (2017) 25–29. date_created: 2018-12-11T11:49:57Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-09-20T12:08:18Z day: '01' ddc: - '000' department: - _id: KrCh - _id: HeEd doi: 10.1016/j.ipl.2017.02.003 ec_funded: 1 external_id: isi: - '000399506600005' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:13:17Z date_updated: 2019-10-15T07:44:51Z file_id: '4998' file_name: IST-2018-991-v1+2_2018_Chatterjee_Pushdown_PREPRINT.pdf file_size: 247657 relation: main_file file_date_updated: 2019-10-15T07:44:51Z has_accepted_license: '1' intvolume: ' 122' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 25 - 29 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Information Processing Letters publication_identifier: issn: - '00200190' publication_status: published publisher: Elsevier publist_id: '6323' pubrep_id: '991' quality_controlled: '1' scopus_import: '1' status: public title: Pushdown reachability with constant treewidth type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 122 year: '2017' ... --- _id: '1022' abstract: - lang: eng text: We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys. acknowledgement: Part of this work has been supported by the 7th Framework Programme for Research of the European Commission, under FETOpen grant number 255827 (CGL Computational Geometry Learning) and ERC advanced grant, URSAT (Understanding Random Systems via Algebraic Topology) number 320422. article_processing_charge: No author: - first_name: Pratyush full_name: Pranav, Pratyush last_name: Pranav - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Rien full_name: Van De Weygaert, Rien last_name: Van De Weygaert - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Michael full_name: Kerber, Michael last_name: Kerber - first_name: Bernard full_name: Jones, Bernard last_name: Jones - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Pranav P, Edelsbrunner H, Van De Weygaert R, et al. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. 2017;465(4):4281-4310. doi:10.1093/mnras/stw2862 apa: Pranav, P., Edelsbrunner, H., Van De Weygaert, R., Vegter, G., Kerber, M., Jones, B., & Wintraecken, M. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stw2862 chicago: Pranav, Pratyush, Herbert Edelsbrunner, Rien Van De Weygaert, Gert Vegter, Michael Kerber, Bernard Jones, and Mathijs Wintraecken. “The Topology of the Cosmic Web in Terms of Persistent Betti Numbers.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2017. https://doi.org/10.1093/mnras/stw2862. ieee: P. Pranav et al., “The topology of the cosmic web in terms of persistent Betti numbers,” Monthly Notices of the Royal Astronomical Society, vol. 465, no. 4. Oxford University Press, pp. 4281–4310, 2017. ista: Pranav P, Edelsbrunner H, Van De Weygaert R, Vegter G, Kerber M, Jones B, Wintraecken M. 2017. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. 465(4), 4281–4310. mla: Pranav, Pratyush, et al. “The Topology of the Cosmic Web in Terms of Persistent Betti Numbers.” Monthly Notices of the Royal Astronomical Society, vol. 465, no. 4, Oxford University Press, 2017, pp. 4281–310, doi:10.1093/mnras/stw2862. short: P. Pranav, H. Edelsbrunner, R. Van De Weygaert, G. Vegter, M. Kerber, B. Jones, M. Wintraecken, Monthly Notices of the Royal Astronomical Society 465 (2017) 4281–4310. date_created: 2018-12-11T11:49:44Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-22T09:40:55Z day: '01' department: - _id: HeEd doi: 10.1093/mnras/stw2862 external_id: isi: - '000395170200039' intvolume: ' 465' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1608.04519 month: '01' oa: 1 oa_version: Submitted Version page: 4281 - 4310 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: issn: - '00358711' publication_status: published publisher: Oxford University Press publist_id: '6373' quality_controlled: '1' scopus_import: '1' status: public title: The topology of the cosmic web in terms of persistent Betti numbers type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 465 year: '2017' ... --- _id: '737' abstract: - lang: eng text: We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action. article_processing_charge: No author: - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk - first_name: Andreas full_name: Zastrow, Andreas last_name: Zastrow citation: ama: Virk Z, Zastrow A. A new topology on the universal path space. Topology and its Applications. 2017;231:186-196. doi:10.1016/j.topol.2017.09.015 apa: Virk, Z., & Zastrow, A. (2017). A new topology on the universal path space. Topology and Its Applications. Elsevier. https://doi.org/10.1016/j.topol.2017.09.015 chicago: Virk, Ziga, and Andreas Zastrow. “A New Topology on the Universal Path Space.” Topology and Its Applications. Elsevier, 2017. https://doi.org/10.1016/j.topol.2017.09.015. ieee: Z. Virk and A. Zastrow, “A new topology on the universal path space,” Topology and its Applications, vol. 231. Elsevier, pp. 186–196, 2017. ista: Virk Z, Zastrow A. 2017. A new topology on the universal path space. Topology and its Applications. 231, 186–196. mla: Virk, Ziga, and Andreas Zastrow. “A New Topology on the Universal Path Space.” Topology and Its Applications, vol. 231, Elsevier, 2017, pp. 186–96, doi:10.1016/j.topol.2017.09.015. short: Z. Virk, A. Zastrow, Topology and Its Applications 231 (2017) 186–196. date_created: 2018-12-11T11:48:14Z date_published: 2017-11-01T00:00:00Z date_updated: 2023-09-27T12:53:01Z day: '01' department: - _id: HeEd doi: 10.1016/j.topol.2017.09.015 external_id: isi: - '000413889100012' intvolume: ' 231' isi: 1 language: - iso: eng month: '11' oa_version: None page: 186 - 196 publication: Topology and its Applications publication_identifier: issn: - '01668641' publication_status: published publisher: Elsevier publist_id: '6930' quality_controlled: '1' scopus_import: '1' status: public title: A new topology on the universal path space type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 231 year: '2017' ... --- _id: '836' abstract: - lang: eng text: Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces. alternative_title: - PROMS article_processing_charge: No author: - first_name: Marc full_name: Ethier, Marc last_name: Ethier - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: Marian full_name: Mrozek, Marian last_name: Mrozek citation: ama: 'Ethier M, Jablonski G, Mrozek M. Finding eigenvalues of self-maps with the Kronecker canonical form. In: Special Sessions in Applications of Computer Algebra. Vol 198. Springer; 2017:119-136. doi:10.1007/978-3-319-56932-1_8' apa: 'Ethier, M., Jablonski, G., & Mrozek, M. (2017). Finding eigenvalues of self-maps with the Kronecker canonical form. In Special Sessions in Applications of Computer Algebra (Vol. 198, pp. 119–136). Kalamata, Greece: Springer. https://doi.org/10.1007/978-3-319-56932-1_8' chicago: Ethier, Marc, Grzegorz Jablonski, and Marian Mrozek. “Finding Eigenvalues of Self-Maps with the Kronecker Canonical Form.” In Special Sessions in Applications of Computer Algebra, 198:119–36. Springer, 2017. https://doi.org/10.1007/978-3-319-56932-1_8. ieee: M. Ethier, G. Jablonski, and M. Mrozek, “Finding eigenvalues of self-maps with the Kronecker canonical form,” in Special Sessions in Applications of Computer Algebra, Kalamata, Greece, 2017, vol. 198, pp. 119–136. ista: 'Ethier M, Jablonski G, Mrozek M. 2017. Finding eigenvalues of self-maps with the Kronecker canonical form. Special Sessions in Applications of Computer Algebra. ACA: Applications of Computer Algebra, PROMS, vol. 198, 119–136.' mla: Ethier, Marc, et al. “Finding Eigenvalues of Self-Maps with the Kronecker Canonical Form.” Special Sessions in Applications of Computer Algebra, vol. 198, Springer, 2017, pp. 119–36, doi:10.1007/978-3-319-56932-1_8. short: M. Ethier, G. Jablonski, M. Mrozek, in:, Special Sessions in Applications of Computer Algebra, Springer, 2017, pp. 119–136. conference: end_date: 2015-07-23 location: Kalamata, Greece name: 'ACA: Applications of Computer Algebra' start_date: 2015-07-20 date_created: 2018-12-11T11:48:46Z date_published: 2017-07-27T00:00:00Z date_updated: 2023-09-26T15:50:52Z day: '27' department: - _id: HeEd doi: 10.1007/978-3-319-56932-1_8 ec_funded: 1 external_id: isi: - '000434088200008' intvolume: ' 198' isi: 1 language: - iso: eng month: '07' oa_version: None page: 119 - 136 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Special Sessions in Applications of Computer Algebra publication_identifier: isbn: - 978-331956930-7 publication_status: published publisher: Springer publist_id: '6812' quality_controlled: '1' scopus_import: '1' status: public title: Finding eigenvalues of self-maps with the Kronecker canonical form type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 198 year: '2017' ... --- _id: '833' abstract: - lang: eng text: We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams. alternative_title: - LNCS article_processing_charge: No author: - first_name: Teresa full_name: Heiss, Teresa id: 4879BB4E-F248-11E8-B48F-1D18A9856A87 last_name: Heiss orcid: 0000-0002-1780-2689 - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Heiss T, Wagner H. Streaming algorithm for Euler characteristic curves of multidimensional images. In: Felsberg M, Heyden A, Krüger N, eds. Vol 10424. Springer; 2017:397-409. doi:10.1007/978-3-319-64689-3_32' apa: 'Heiss, T., & Wagner, H. (2017). Streaming algorithm for Euler characteristic curves of multidimensional images. In M. Felsberg, A. Heyden, & N. Krüger (Eds.) (Vol. 10424, pp. 397–409). Presented at the CAIP: Computer Analysis of Images and Patterns, Ystad, Sweden: Springer. https://doi.org/10.1007/978-3-319-64689-3_32' chicago: Heiss, Teresa, and Hubert Wagner. “Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images.” edited by Michael Felsberg, Anders Heyden, and Norbert Krüger, 10424:397–409. Springer, 2017. https://doi.org/10.1007/978-3-319-64689-3_32. ieee: 'T. Heiss and H. Wagner, “Streaming algorithm for Euler characteristic curves of multidimensional images,” presented at the CAIP: Computer Analysis of Images and Patterns, Ystad, Sweden, 2017, vol. 10424, pp. 397–409.' ista: 'Heiss T, Wagner H. 2017. Streaming algorithm for Euler characteristic curves of multidimensional images. CAIP: Computer Analysis of Images and Patterns, LNCS, vol. 10424, 397–409.' mla: Heiss, Teresa, and Hubert Wagner. Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images. Edited by Michael Felsberg et al., vol. 10424, Springer, 2017, pp. 397–409, doi:10.1007/978-3-319-64689-3_32. short: T. Heiss, H. Wagner, in:, M. Felsberg, A. Heyden, N. Krüger (Eds.), Springer, 2017, pp. 397–409. conference: end_date: 2017-08-24 location: Ystad, Sweden name: 'CAIP: Computer Analysis of Images and Patterns' start_date: 2017-08-22 date_created: 2018-12-11T11:48:45Z date_published: 2017-07-28T00:00:00Z date_updated: 2023-09-26T16:10:03Z day: '28' department: - _id: HeEd doi: 10.1007/978-3-319-64689-3_32 editor: - first_name: Michael full_name: Felsberg, Michael last_name: Felsberg - first_name: Anders full_name: Heyden, Anders last_name: Heyden - first_name: Norbert full_name: Krüger, Norbert last_name: Krüger external_id: isi: - '000432085900032' intvolume: ' 10424' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.02045 month: '07' oa: 1 oa_version: Submitted Version page: 397 - 409 publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '6815' quality_controlled: '1' scopus_import: '1' status: public title: Streaming algorithm for Euler characteristic curves of multidimensional images type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10424 year: '2017' ... --- _id: '84' abstract: - lang: eng text: The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Patrice full_name: Koehl, Patrice last_name: Koehl citation: ama: 'Edelsbrunner H, Koehl P. Computational topology for structural molecular biology. In: Toth C, O’Rourke J, Goodman J, eds. Handbook of Discrete and Computational Geometry, Third Edition. Handbook of Discrete and Computational Geometry. Taylor & Francis; 2017:1709-1735. doi:10.1201/9781315119601' apa: Edelsbrunner, H., & Koehl, P. (2017). Computational topology for structural molecular biology. In C. Toth, J. O’Rourke, & J. Goodman (Eds.), Handbook of Discrete and Computational Geometry, Third Edition (pp. 1709–1735). Taylor & Francis. https://doi.org/10.1201/9781315119601 chicago: Edelsbrunner, Herbert, and Patrice Koehl. “Computational Topology for Structural Molecular Biology.” In Handbook of Discrete and Computational Geometry, Third Edition, edited by Csaba Toth, Joseph O’Rourke, and Jacob Goodman, 1709–35. Handbook of Discrete and Computational Geometry. Taylor & Francis, 2017. https://doi.org/10.1201/9781315119601. ieee: H. Edelsbrunner and P. Koehl, “Computational topology for structural molecular biology,” in Handbook of Discrete and Computational Geometry, Third Edition, C. Toth, J. O’Rourke, and J. Goodman, Eds. Taylor & Francis, 2017, pp. 1709–1735. ista: 'Edelsbrunner H, Koehl P. 2017.Computational topology for structural molecular biology. In: Handbook of Discrete and Computational Geometry, Third Edition. , 1709–1735.' mla: Edelsbrunner, Herbert, and Patrice Koehl. “Computational Topology for Structural Molecular Biology.” Handbook of Discrete and Computational Geometry, Third Edition, edited by Csaba Toth et al., Taylor & Francis, 2017, pp. 1709–35, doi:10.1201/9781315119601. short: H. Edelsbrunner, P. Koehl, in:, C. Toth, J. O’Rourke, J. Goodman (Eds.), Handbook of Discrete and Computational Geometry, Third Edition, Taylor & Francis, 2017, pp. 1709–1735. date_created: 2018-12-11T11:44:32Z date_published: 2017-11-09T00:00:00Z date_updated: 2023-10-16T11:15:22Z day: '09' department: - _id: HeEd doi: 10.1201/9781315119601 editor: - first_name: Csaba full_name: Toth, Csaba last_name: Toth - first_name: Joseph full_name: O'Rourke, Joseph last_name: O'Rourke - first_name: Jacob full_name: Goodman, Jacob last_name: Goodman language: - iso: eng month: '11' oa_version: None page: 1709 - 1735 publication: Handbook of Discrete and Computational Geometry, Third Edition publication_identifier: eisbn: - '9781498711425' publication_status: published publisher: Taylor & Francis publist_id: '7970' quality_controlled: '1' scopus_import: '1' series_title: Handbook of Discrete and Computational Geometry status: public title: Computational topology for structural molecular biology type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '909' abstract: - lang: eng text: We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor &#xbd; cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Vladislav full_name: Vysotsky, Vladislav last_name: Vysotsky citation: ama: Akopyan A, Vysotsky V. On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly. 2017;124(7):588-596. doi:10.4169/amer.math.monthly.124.7.588 apa: Akopyan, A., & Vysotsky, V. (2017). On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly. Mathematical Association of America. https://doi.org/10.4169/amer.math.monthly.124.7.588 chicago: Akopyan, Arseniy, and Vladislav Vysotsky. “On the Lengths of Curves Passing through Boundary Points of a Planar Convex Shape.” The American Mathematical Monthly. Mathematical Association of America, 2017. https://doi.org/10.4169/amer.math.monthly.124.7.588. ieee: A. Akopyan and V. Vysotsky, “On the lengths of curves passing through boundary points of a planar convex shape,” The American Mathematical Monthly, vol. 124, no. 7. Mathematical Association of America, pp. 588–596, 2017. ista: Akopyan A, Vysotsky V. 2017. On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly. 124(7), 588–596. mla: Akopyan, Arseniy, and Vladislav Vysotsky. “On the Lengths of Curves Passing through Boundary Points of a Planar Convex Shape.” The American Mathematical Monthly, vol. 124, no. 7, Mathematical Association of America, 2017, pp. 588–96, doi:10.4169/amer.math.monthly.124.7.588. short: A. Akopyan, V. Vysotsky, The American Mathematical Monthly 124 (2017) 588–596. date_created: 2018-12-11T11:49:09Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-10-17T11:24:57Z day: '01' department: - _id: HeEd doi: 10.4169/amer.math.monthly.124.7.588 ec_funded: 1 external_id: arxiv: - '1605.07997' isi: - '000413947300002' intvolume: ' 124' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.07997 month: '01' oa: 1 oa_version: Submitted Version page: 588 - 596 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: The American Mathematical Monthly publication_identifier: issn: - '00029890' publication_status: published publisher: Mathematical Association of America publist_id: '6534' quality_controlled: '1' scopus_import: '1' status: public title: On the lengths of curves passing through boundary points of a planar convex shape type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 124 year: '2017' ... --- _id: '1149' abstract: - lang: eng text: 'We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved.' acknowledgement: "MG was partially supported by FAPESP grants 2013/07460-7 and 2010/00875-9, and by CNPq grants 305860/2013-5 and 306453/2009-6, Brazil. The work of HK was partially supported by Grant-in-Aid for Scientific Research (Nos.24654022, 25287029), Ministry of Education, Science, Technology, Culture and Sports, Japan. KM was supported by NSF grants NSF-DMS-0835621, 0915019, 1125174, 1248071, and contracts from AFOSR and DARPA. TM was supported by Grant-in-Aid for JSPS Fellows No. 245312. A part of the research of TM and HK was also supported by JST, CREST.\r\n\r\nResearch conducted by PP has received funding from Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE – Programa Operacional Factores de Competitividade (POFC) and from the Portuguese national funds through Fundação para a Ciência e a Tecnologia (FCT) in the framework of the research project FCOMP-01-0124-FEDER-010645 (Ref. FCT PTDC/MAT/098871/2008); from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No. 622033; and from the same sources as HK.\r\n\r\nThe authors express their gratitude to the Department of Mathematics of Kyoto University for making their server available for conducting the computations described in the paper, and to the reviewers for helpful comments that contributed towards increasing the quality of the paper." author: - first_name: Tomoyuki full_name: Miyaji, Tomoyuki last_name: Miyaji - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk - first_name: Marcio full_name: Gameiro, Marcio last_name: Gameiro - first_name: Hiroshi full_name: Kokubu, Hiroshi last_name: Kokubu - first_name: Konstantin full_name: Mischaikow, Konstantin last_name: Mischaikow citation: ama: Miyaji T, Pilarczyk P, Gameiro M, Kokubu H, Mischaikow K. A study of rigorous ODE integrators for multi scale set oriented computations. Applied Numerical Mathematics. 2016;107:34-47. doi:10.1016/j.apnum.2016.04.005 apa: Miyaji, T., Pilarczyk, P., Gameiro, M., Kokubu, H., & Mischaikow, K. (2016). A study of rigorous ODE integrators for multi scale set oriented computations. Applied Numerical Mathematics. Elsevier. https://doi.org/10.1016/j.apnum.2016.04.005 chicago: Miyaji, Tomoyuki, Pawel Pilarczyk, Marcio Gameiro, Hiroshi Kokubu, and Konstantin Mischaikow. “A Study of Rigorous ODE Integrators for Multi Scale Set Oriented Computations.” Applied Numerical Mathematics. Elsevier, 2016. https://doi.org/10.1016/j.apnum.2016.04.005. ieee: T. Miyaji, P. Pilarczyk, M. Gameiro, H. Kokubu, and K. Mischaikow, “A study of rigorous ODE integrators for multi scale set oriented computations,” Applied Numerical Mathematics, vol. 107. Elsevier, pp. 34–47, 2016. ista: Miyaji T, Pilarczyk P, Gameiro M, Kokubu H, Mischaikow K. 2016. A study of rigorous ODE integrators for multi scale set oriented computations. Applied Numerical Mathematics. 107, 34–47. mla: Miyaji, Tomoyuki, et al. “A Study of Rigorous ODE Integrators for Multi Scale Set Oriented Computations.” Applied Numerical Mathematics, vol. 107, Elsevier, 2016, pp. 34–47, doi:10.1016/j.apnum.2016.04.005. short: T. Miyaji, P. Pilarczyk, M. Gameiro, H. Kokubu, K. Mischaikow, Applied Numerical Mathematics 107 (2016) 34–47. date_created: 2018-12-11T11:50:25Z date_published: 2016-09-01T00:00:00Z date_updated: 2021-01-12T06:48:38Z day: '01' department: - _id: HeEd doi: 10.1016/j.apnum.2016.04.005 ec_funded: 1 intvolume: ' 107' language: - iso: eng month: '09' oa_version: None page: 34 - 47 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: Applied Numerical Mathematics publication_status: published publisher: Elsevier publist_id: '6209' quality_controlled: '1' scopus_import: 1 status: public title: A study of rigorous ODE integrators for multi scale set oriented computations type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 107 year: '2016' ... --- _id: '1216' abstract: - lang: eng text: 'A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.' acknowledgement: "The authors acknowledge funding of the German Re-\r\nsearch Foundation \ (DFG) via the Collaborative Re-\r\nsearch Center (SFB 557) \\Control of \ Complex Turbu-\r\nlent Shear Flows\" and the Emmy Noether Program.\r\nFurther \ funding was provided by the Zuse Institute\r\nBerlin (ZIB), the DFG-CNRS \ research group \\Noise\r\nGeneration in Turbulent Flows\" (2003{2010), the Chaire\r\nd'Excellence 'Closed-loop control of turbulent shear ows\r\nusing reduced-order models' (TUCOROM) of the French\r\nAgence Nationale de la Recherche (ANR), and the Eu-\r\nropean Social \ Fund (ESF App. No. 100098251). We\r\nthank the Ambrosys Ltd. Society \ for Complex Sys-\r\ntems Management and the Bernd R. Noack Cybernet-\r\nics \ Foundation for additional support. A part of this\r\nwork was performed using HPC resources from GENCI-[CCRT/CINES/IDRIS] supported by the Grant 2011-\r\n[x2011020912" author: - first_name: Jens full_name: Kasten, Jens last_name: Kasten - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Hans full_name: Hege, Hans last_name: Hege - first_name: Bernd full_name: Noack, Bernd last_name: Noack - first_name: Guillaume full_name: Daviller, Guillaume last_name: Daviller - first_name: Marek full_name: Morzyński, Marek last_name: Morzyński citation: ama: Kasten J, Reininghaus J, Hotz I, et al. Acceleration feature points of unsteady shear flows. Archives of Mechanics. 2016;68(1):55-80. apa: Kasten, J., Reininghaus, J., Hotz, I., Hege, H., Noack, B., Daviller, G., & Morzyński, M. (2016). Acceleration feature points of unsteady shear flows. Archives of Mechanics. Polish Academy of Sciences Publishing House. chicago: Kasten, Jens, Jan Reininghaus, Ingrid Hotz, Hans Hege, Bernd Noack, Guillaume Daviller, and Marek Morzyński. “Acceleration Feature Points of Unsteady Shear Flows.” Archives of Mechanics. Polish Academy of Sciences Publishing House, 2016. ieee: J. Kasten et al., “Acceleration feature points of unsteady shear flows,” Archives of Mechanics, vol. 68, no. 1. Polish Academy of Sciences Publishing House, pp. 55–80, 2016. ista: Kasten J, Reininghaus J, Hotz I, Hege H, Noack B, Daviller G, Morzyński M. 2016. Acceleration feature points of unsteady shear flows. Archives of Mechanics. 68(1), 55–80. mla: Kasten, Jens, et al. “Acceleration Feature Points of Unsteady Shear Flows.” Archives of Mechanics, vol. 68, no. 1, Polish Academy of Sciences Publishing House, 2016, pp. 55–80. short: J. Kasten, J. Reininghaus, I. Hotz, H. Hege, B. Noack, G. Daviller, M. Morzyński, Archives of Mechanics 68 (2016) 55–80. date_created: 2018-12-11T11:50:46Z date_published: 2016-01-01T00:00:00Z date_updated: 2021-01-12T06:49:09Z day: '01' department: - _id: HeEd intvolume: ' 68' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://am.ippt.pan.pl/am/article/viewFile/v68p55/pdf month: '01' oa: 1 oa_version: Published Version page: 55 - 80 publication: Archives of Mechanics publication_status: published publisher: Polish Academy of Sciences Publishing House publist_id: '6118' quality_controlled: '1' scopus_import: 1 status: public title: Acceleration feature points of unsteady shear flows type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 68 year: '2016' ... --- _id: '1222' abstract: - lang: eng text: We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs. acknowledgement: We wish to thank Alexey Tarasov, Vladislav Volkov and Brittany Fasy for some useful comments and remarks, and especially Thom Sulanke for modifying surftri to suit our purposes. Oleg R. Musin was partially supported by the NSF Grant DMS-1400876 and by the RFBR Grant 15-01-99563. Anton V. Nikitenko was supported by the Chebyshev Laboratory (Department of Mathematics and Mechanics, St. Petersburg State University) under RF Government Grant 11.G34.31.0026. author: - first_name: Oleg full_name: Musin, Oleg last_name: Musin - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko citation: ama: Musin O, Nikitenko A. Optimal packings of congruent circles on a square flat torus. Discrete & Computational Geometry. 2016;55(1):1-20. doi:10.1007/s00454-015-9742-6 apa: Musin, O., & Nikitenko, A. (2016). Optimal packings of congruent circles on a square flat torus. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-015-9742-6 chicago: Musin, Oleg, and Anton Nikitenko. “Optimal Packings of Congruent Circles on a Square Flat Torus.” Discrete & Computational Geometry. Springer, 2016. https://doi.org/10.1007/s00454-015-9742-6. ieee: O. Musin and A. Nikitenko, “Optimal packings of congruent circles on a square flat torus,” Discrete & Computational Geometry, vol. 55, no. 1. Springer, pp. 1–20, 2016. ista: Musin O, Nikitenko A. 2016. Optimal packings of congruent circles on a square flat torus. Discrete & Computational Geometry. 55(1), 1–20. mla: Musin, Oleg, and Anton Nikitenko. “Optimal Packings of Congruent Circles on a Square Flat Torus.” Discrete & Computational Geometry, vol. 55, no. 1, Springer, 2016, pp. 1–20, doi:10.1007/s00454-015-9742-6. short: O. Musin, A. Nikitenko, Discrete & Computational Geometry 55 (2016) 1–20. date_created: 2018-12-11T11:50:48Z date_published: 2016-01-01T00:00:00Z date_updated: 2021-01-12T06:49:11Z day: '01' department: - _id: HeEd doi: 10.1007/s00454-015-9742-6 intvolume: ' 55' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1212.0649 month: '01' oa: 1 oa_version: Preprint page: 1 - 20 publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '6111' quality_controlled: '1' scopus_import: 1 status: public title: Optimal packings of congruent circles on a square flat torus type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 55 year: '2016' ... --- _id: '1237' abstract: - lang: eng text: 'Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.' acknowledgement: The research conducted by both authors has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreements no. 291734 (for M. K.) and no. 622033 (for P. P.). alternative_title: - LNCS author: - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: 'Krcál M, Pilarczyk P. Computation of cubical Steenrod squares. In: Vol 9667. Springer; 2016:140-151. doi:10.1007/978-3-319-39441-1_13' apa: 'Krcál, M., & Pilarczyk, P. (2016). Computation of cubical Steenrod squares (Vol. 9667, pp. 140–151). Presented at the CTIC: Computational Topology in Image Context, Marseille, France: Springer. https://doi.org/10.1007/978-3-319-39441-1_13' chicago: Krcál, Marek, and Pawel Pilarczyk. “Computation of Cubical Steenrod Squares,” 9667:140–51. Springer, 2016. https://doi.org/10.1007/978-3-319-39441-1_13. ieee: 'M. Krcál and P. Pilarczyk, “Computation of cubical Steenrod squares,” presented at the CTIC: Computational Topology in Image Context, Marseille, France, 2016, vol. 9667, pp. 140–151.' ista: 'Krcál M, Pilarczyk P. 2016. Computation of cubical Steenrod squares. CTIC: Computational Topology in Image Context, LNCS, vol. 9667, 140–151.' mla: Krcál, Marek, and Pawel Pilarczyk. Computation of Cubical Steenrod Squares. Vol. 9667, Springer, 2016, pp. 140–51, doi:10.1007/978-3-319-39441-1_13. short: M. Krcál, P. Pilarczyk, in:, Springer, 2016, pp. 140–151. conference: end_date: 2016-06-17 location: Marseille, France name: 'CTIC: Computational Topology in Image Context' start_date: 2016-06-15 date_created: 2018-12-11T11:50:52Z date_published: 2016-06-02T00:00:00Z date_updated: 2021-01-12T06:49:18Z day: '02' department: - _id: UlWa - _id: HeEd doi: 10.1007/978-3-319-39441-1_13 ec_funded: 1 intvolume: ' 9667' language: - iso: eng month: '06' oa_version: None page: 140 - 151 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication_status: published publisher: Springer publist_id: '6096' quality_controlled: '1' scopus_import: 1 status: public title: Computation of cubical Steenrod squares type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 9667 year: '2016' ... --- _id: '1252' abstract: - lang: eng text: We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points. acknowledgement: "The authors gratefully acknowledge the support of the Lorenz Center which\r\nprovided an opportunity for us to discuss in depth the work of this paper. Research leading to these results has received funding from Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE—Programa Operacional Factores de Competitividade (POFC) and from the Portuguese national funds through Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) in the framework of the research\r\nproject FCOMP-01-0124-FEDER-010645 (ref. FCT PTDC/MAT/098871/2008),\r\nas well as from the People Programme (Marie Curie Actions) of the European\r\nUnion’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 622033 (supporting PP). The work of the first and third author has\r\nbeen partially supported by NSF grants NSF-DMS-0835621, 0915019, 1125174,\r\n1248071, and contracts from AFOSR and DARPA. The work of the second author\r\nwas supported by Grant-in-Aid for Scientific Research (No. 25287029), Ministry of\r\nEducation, Science, Technology, Culture and Sports, Japan." article_processing_charge: No article_type: original author: - first_name: Shaun full_name: Harker, Shaun last_name: Harker - first_name: Hiroshi full_name: Kokubu, Hiroshi last_name: Kokubu - first_name: Konstantin full_name: Mischaikow, Konstantin last_name: Mischaikow - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Harker S, Kokubu H, Mischaikow K, Pilarczyk P. Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society. 2016;144(4):1787-1801. doi:10.1090/proc/12812 apa: Harker, S., Kokubu, H., Mischaikow, K., & Pilarczyk, P. (2016). Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/12812 chicago: Harker, Shaun, Hiroshi Kokubu, Konstantin Mischaikow, and Pawel Pilarczyk. “Inducing a Map on Homology from a Correspondence.” Proceedings of the American Mathematical Society. American Mathematical Society, 2016. https://doi.org/10.1090/proc/12812. ieee: S. Harker, H. Kokubu, K. Mischaikow, and P. Pilarczyk, “Inducing a map on homology from a correspondence,” Proceedings of the American Mathematical Society, vol. 144, no. 4. American Mathematical Society, pp. 1787–1801, 2016. ista: Harker S, Kokubu H, Mischaikow K, Pilarczyk P. 2016. Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society. 144(4), 1787–1801. mla: Harker, Shaun, et al. “Inducing a Map on Homology from a Correspondence.” Proceedings of the American Mathematical Society, vol. 144, no. 4, American Mathematical Society, 2016, pp. 1787–801, doi:10.1090/proc/12812. short: S. Harker, H. Kokubu, K. Mischaikow, P. Pilarczyk, Proceedings of the American Mathematical Society 144 (2016) 1787–1801. date_created: 2018-12-11T11:50:57Z date_published: 2016-04-01T00:00:00Z date_updated: 2022-05-24T09:35:58Z day: '01' department: - _id: HeEd doi: 10.1090/proc/12812 ec_funded: 1 external_id: arxiv: - '1411.7563' intvolume: ' 144' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1411.7563 month: '04' oa: 1 oa_version: Preprint page: 1787 - 1801 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: Proceedings of the American Mathematical Society publication_identifier: issn: - 1088-6826 publication_status: published publisher: American Mathematical Society publist_id: '6075' quality_controlled: '1' scopus_import: '1' status: public title: Inducing a map on homology from a correspondence type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2016' ... --- _id: '1254' abstract: - lang: eng text: We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/. acknowledgement: "AG and PP were partially supported by Abdus Salam International Centre for Theoretical Physics (ICTP). Additionally, AG was supported by BREUDS, and research conducted by PP has received funding from Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE—Programa Operacional Factores de Competitividade (POFC) and from the Portuguese national funds through Fundação para a Ciência e a Tecnologia (FCT) in the framework of the research project FCOMP-01-0124-FEDER-010645 (ref. FCT PTDC/MAT/098871/2008); and from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 622033. The authors gratefully acknowledge the Department of\r\nMathematics \ of Kyoto University for providing access\r\nto their server for conducting \ computations for this\r\nproject." author: - first_name: Ali full_name: Golmakani, Ali last_name: Golmakani - first_name: Stefano full_name: Luzzatto, Stefano last_name: Luzzatto - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Golmakani A, Luzzatto S, Pilarczyk P. Uniform expansivity outside a critical neighborhood in the quadratic family. Experimental Mathematics. 2016;25(2):116-124. doi:10.1080/10586458.2015.1048011 apa: Golmakani, A., Luzzatto, S., & Pilarczyk, P. (2016). Uniform expansivity outside a critical neighborhood in the quadratic family. Experimental Mathematics. Taylor and Francis. https://doi.org/10.1080/10586458.2015.1048011 chicago: Golmakani, Ali, Stefano Luzzatto, and Pawel Pilarczyk. “Uniform Expansivity Outside a Critical Neighborhood in the Quadratic Family.” Experimental Mathematics. Taylor and Francis, 2016. https://doi.org/10.1080/10586458.2015.1048011. ieee: A. Golmakani, S. Luzzatto, and P. Pilarczyk, “Uniform expansivity outside a critical neighborhood in the quadratic family,” Experimental Mathematics, vol. 25, no. 2. Taylor and Francis, pp. 116–124, 2016. ista: Golmakani A, Luzzatto S, Pilarczyk P. 2016. Uniform expansivity outside a critical neighborhood in the quadratic family. Experimental Mathematics. 25(2), 116–124. mla: Golmakani, Ali, et al. “Uniform Expansivity Outside a Critical Neighborhood in the Quadratic Family.” Experimental Mathematics, vol. 25, no. 2, Taylor and Francis, 2016, pp. 116–24, doi:10.1080/10586458.2015.1048011. short: A. Golmakani, S. Luzzatto, P. Pilarczyk, Experimental Mathematics 25 (2016) 116–124. date_created: 2018-12-11T11:50:58Z date_published: 2016-04-02T00:00:00Z date_updated: 2021-01-12T06:49:25Z day: '02' department: - _id: HeEd doi: 10.1080/10586458.2015.1048011 ec_funded: 1 intvolume: ' 25' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1504.00116 month: '04' oa: 1 oa_version: Preprint page: 116 - 124 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: Experimental Mathematics publication_status: published publisher: Taylor and Francis publist_id: '6071' quality_controlled: '1' scopus_import: 1 status: public title: Uniform expansivity outside a critical neighborhood in the quadratic family type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2016' ... --- _id: '1272' abstract: - lang: eng text: We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams. acknowledgement: 'This work was supported by Austrian Science Fund (FWF): P25816-N15.' author: - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: Held M, Huber S, Palfrader P. Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. 2016;13(5):712-721. doi:10.1080/16864360.2016.1150718 apa: Held, M., Huber, S., & Palfrader, P. (2016). Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. Taylor and Francis. https://doi.org/10.1080/16864360.2016.1150718 chicago: Held, Martin, Stefan Huber, and Peter Palfrader. “Generalized Offsetting of Planar Structures Using Skeletons.” Computer-Aided Design and Applications. Taylor and Francis, 2016. https://doi.org/10.1080/16864360.2016.1150718. ieee: M. Held, S. Huber, and P. Palfrader, “Generalized offsetting of planar structures using skeletons,” Computer-Aided Design and Applications, vol. 13, no. 5. Taylor and Francis, pp. 712–721, 2016. ista: Held M, Huber S, Palfrader P. 2016. Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. 13(5), 712–721. mla: Held, Martin, et al. “Generalized Offsetting of Planar Structures Using Skeletons.” Computer-Aided Design and Applications, vol. 13, no. 5, Taylor and Francis, 2016, pp. 712–21, doi:10.1080/16864360.2016.1150718. short: M. Held, S. Huber, P. Palfrader, Computer-Aided Design and Applications 13 (2016) 712–721. date_created: 2018-12-11T11:51:04Z date_published: 2016-09-02T00:00:00Z date_updated: 2021-01-12T06:49:32Z day: '02' ddc: - '004' - '516' department: - _id: HeEd doi: 10.1080/16864360.2016.1150718 file: - access_level: open_access checksum: c746f3a48edb62b588d92ea5d0fd2c0e content_type: application/pdf creator: system date_created: 2018-12-12T10:16:20Z date_updated: 2020-07-14T12:44:42Z file_id: '5206' file_name: IST-2016-694-v1+1_Generalized_offsetting_of_planar_structures_using_skeletons.pdf file_size: 1678369 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 13' issue: '5' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 712 - 721 publication: Computer-Aided Design and Applications publication_status: published publisher: Taylor and Francis publist_id: '6048' pubrep_id: '694' quality_controlled: '1' scopus_import: 1 status: public title: Generalized offsetting of planar structures using skeletons tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2016' ... --- _id: '1295' abstract: - lang: eng text: Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls. acknowledgement: This work is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: 'Edelsbrunner H, Iglesias Ham M. Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. 2016;54:169-174. doi:10.1016/j.endm.2016.09.030' apa: 'Edelsbrunner, H., & Iglesias Ham, M. (2016). Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. Elsevier. https://doi.org/10.1016/j.endm.2016.09.030' chicago: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls II: Weighted Averages.” Electronic Notes in Discrete Mathematics. Elsevier, 2016. https://doi.org/10.1016/j.endm.2016.09.030.' ieee: 'H. Edelsbrunner and M. Iglesias Ham, “Multiple covers with balls II: Weighted averages,” Electronic Notes in Discrete Mathematics, vol. 54. Elsevier, pp. 169–174, 2016.' ista: 'Edelsbrunner H, Iglesias Ham M. 2016. Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. 54, 169–174.' mla: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls II: Weighted Averages.” Electronic Notes in Discrete Mathematics, vol. 54, Elsevier, 2016, pp. 169–74, doi:10.1016/j.endm.2016.09.030.' short: H. Edelsbrunner, M. Iglesias Ham, Electronic Notes in Discrete Mathematics 54 (2016) 169–174. date_created: 2018-12-11T11:51:12Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:49:41Z day: '01' department: - _id: HeEd doi: 10.1016/j.endm.2016.09.030 ec_funded: 1 intvolume: ' 54' language: - iso: eng month: '10' oa_version: None page: 169 - 174 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Electronic Notes in Discrete Mathematics publication_status: published publisher: Elsevier publist_id: '5976' quality_controlled: '1' scopus_import: 1 status: public title: 'Multiple covers with balls II: Weighted averages' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 54 year: '2016' ... --- _id: '1292' abstract: - lang: eng text: We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds. acknowledgement: "The authors are veryg rateful to Hansj ̈org Geiges \r\nfor fruitful discussions and advice and Christian Evers for helpful remarks on a draft version." author: - first_name: Sebastian full_name: Durst, Sebastian last_name: Durst - first_name: Marc full_name: Kegel, Marc last_name: Kegel - first_name: Mirko D full_name: Klukas, Mirko D id: 34927512-F248-11E8-B48F-1D18A9856A87 last_name: Klukas citation: ama: Durst S, Kegel M, Klukas MD. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 2016;150(2):441-455. doi:10.1007/s10474-016-0648-4 apa: Durst, S., Kegel, M., & Klukas, M. D. (2016). Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. Springer. https://doi.org/10.1007/s10474-016-0648-4 chicago: Durst, Sebastian, Marc Kegel, and Mirko D Klukas. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica. Springer, 2016. https://doi.org/10.1007/s10474-016-0648-4. ieee: S. Durst, M. Kegel, and M. D. Klukas, “Computing the Thurston–Bennequin invariant in open books,” Acta Mathematica Hungarica, vol. 150, no. 2. Springer, pp. 441–455, 2016. ista: Durst S, Kegel M, Klukas MD. 2016. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 150(2), 441–455. mla: Durst, Sebastian, et al. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica, vol. 150, no. 2, Springer, 2016, pp. 441–55, doi:10.1007/s10474-016-0648-4. short: S. Durst, M. Kegel, M.D. Klukas, Acta Mathematica Hungarica 150 (2016) 441–455. date_created: 2018-12-11T11:51:11Z date_published: 2016-12-01T00:00:00Z date_updated: 2021-01-12T06:49:40Z day: '01' department: - _id: HeEd doi: 10.1007/s10474-016-0648-4 intvolume: ' 150' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.00794 month: '12' oa: 1 oa_version: Preprint page: 441 - 455 publication: Acta Mathematica Hungarica publication_status: published publisher: Springer publist_id: '6023' quality_controlled: '1' scopus_import: 1 status: public title: Computing the Thurston–Bennequin invariant in open books type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 150 year: '2016' ... --- _id: '1330' abstract: - lang: eng text: In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K. acknowledgement: Supported by People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n°[291734]. Supported by the Russian Foundation for Basic Research grant 15-31-20403 (mol a ved), by the Russian Foundation for Basic Research grant 15-01-99563 A, in part by the Moebius Contest Foundation for Young Scientists, and in part by the Simons Foundation. author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy citation: ama: Akopyan A, Balitskiy A. Billiards in convex bodies with acute angles. Israel Journal of Mathematics. 2016;216(2):833-845. doi:10.1007/s11856-016-1429-z apa: Akopyan, A., & Balitskiy, A. (2016). Billiards in convex bodies with acute angles. Israel Journal of Mathematics. Springer. https://doi.org/10.1007/s11856-016-1429-z chicago: Akopyan, Arseniy, and Alexey Balitskiy. “Billiards in Convex Bodies with Acute Angles.” Israel Journal of Mathematics. Springer, 2016. https://doi.org/10.1007/s11856-016-1429-z. ieee: A. Akopyan and A. Balitskiy, “Billiards in convex bodies with acute angles,” Israel Journal of Mathematics, vol. 216, no. 2. Springer, pp. 833–845, 2016. ista: Akopyan A, Balitskiy A. 2016. Billiards in convex bodies with acute angles. Israel Journal of Mathematics. 216(2), 833–845. mla: Akopyan, Arseniy, and Alexey Balitskiy. “Billiards in Convex Bodies with Acute Angles.” Israel Journal of Mathematics, vol. 216, no. 2, Springer, 2016, pp. 833–45, doi:10.1007/s11856-016-1429-z. short: A. Akopyan, A. Balitskiy, Israel Journal of Mathematics 216 (2016) 833–845. date_created: 2018-12-11T11:51:24Z date_published: 2016-10-15T00:00:00Z date_updated: 2021-01-12T06:49:56Z day: '15' department: - _id: HeEd doi: 10.1007/s11856-016-1429-z ec_funded: 1 intvolume: ' 216' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1506.06014 month: '10' oa: 1 oa_version: Preprint page: 833 - 845 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Israel Journal of Mathematics publication_status: published publisher: Springer publist_id: '5938' quality_controlled: '1' scopus_import: 1 status: public title: Billiards in convex bodies with acute angles type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 216 year: '2016' ... --- _id: '1360' abstract: - lang: eng text: 'We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. ' acknowledgement: The first and third authors were supported by the Dynasty Foundation. The first, second and third authors were supported by the Russian Foundation for Basic Re- search grant 15-31-20403 (mol a ved). article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy - first_name: Roman full_name: Karasev, Roman last_name: Karasev - first_name: Anastasia full_name: Sharipova, Anastasia last_name: Sharipova citation: ama: Akopyan A, Balitskiy A, Karasev R, Sharipova A. Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. 2016;144(10):4501-4513. doi:10.1090/proc/13062 apa: Akopyan, A., Balitskiy, A., Karasev, R., & Sharipova, A. (2016). Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/13062 chicago: Akopyan, Arseniy, Alexey Balitskiy, Roman Karasev, and Anastasia Sharipova. “Elementary Approach to Closed Billiard Trajectories in Asymmetric Normed Spaces.” Proceedings of the American Mathematical Society. American Mathematical Society, 2016. https://doi.org/10.1090/proc/13062. ieee: A. Akopyan, A. Balitskiy, R. Karasev, and A. Sharipova, “Elementary approach to closed billiard trajectories in asymmetric normed spaces,” Proceedings of the American Mathematical Society, vol. 144, no. 10. American Mathematical Society, pp. 4501–4513, 2016. ista: Akopyan A, Balitskiy A, Karasev R, Sharipova A. 2016. Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. 144(10), 4501–4513. mla: Akopyan, Arseniy, et al. “Elementary Approach to Closed Billiard Trajectories in Asymmetric Normed Spaces.” Proceedings of the American Mathematical Society, vol. 144, no. 10, American Mathematical Society, 2016, pp. 4501–13, doi:10.1090/proc/13062. short: A. Akopyan, A. Balitskiy, R. Karasev, A. Sharipova, Proceedings of the American Mathematical Society 144 (2016) 4501–4513. date_created: 2018-12-11T11:51:34Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:50:09Z day: '01' department: - _id: HeEd doi: 10.1090/proc/13062 ec_funded: 1 intvolume: ' 144' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1401.0442 month: '10' oa: 1 oa_version: Preprint page: 4501 - 4513 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Proceedings of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '5885' quality_controlled: '1' scopus_import: 1 status: public title: Elementary approach to closed billiard trajectories in asymmetric normed spaces type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2016' ... --- _id: '1408' abstract: - lang: eng text: 'The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.' acknowledgement: 'Open access funding provided by Institute of Science and Technology (IST Austria). ' article_processing_charge: Yes (via OA deal) author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. On computability and triviality of well groups. Discrete & Computational Geometry. 2016;56(1):126-164. doi:10.1007/s00454-016-9794-2 apa: Franek, P., & Krcál, M. (2016). On computability and triviality of well groups. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-016-9794-2 chicago: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups.” Discrete & Computational Geometry. Springer, 2016. https://doi.org/10.1007/s00454-016-9794-2. ieee: P. Franek and M. Krcál, “On computability and triviality of well groups,” Discrete & Computational Geometry, vol. 56, no. 1. Springer, pp. 126–164, 2016. ista: Franek P, Krcál M. 2016. On computability and triviality of well groups. Discrete & Computational Geometry. 56(1), 126–164. mla: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups.” Discrete & Computational Geometry, vol. 56, no. 1, Springer, 2016, pp. 126–64, doi:10.1007/s00454-016-9794-2. short: P. Franek, M. Krcál, Discrete & Computational Geometry 56 (2016) 126–164. date_created: 2018-12-11T11:51:51Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-02-23T10:02:11Z day: '01' ddc: - '510' department: - _id: UlWa - _id: HeEd doi: 10.1007/s00454-016-9794-2 ec_funded: 1 file: - access_level: open_access checksum: e0da023abf6b72abd8c6a8c76740d53c content_type: application/pdf creator: system date_created: 2018-12-12T10:10:55Z date_updated: 2020-07-14T12:44:53Z file_id: '4846' file_name: IST-2016-614-v1+1_s00454-016-9794-2.pdf file_size: 905303 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 56' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 126 - 164 project: - _id: 25F8B9BC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M01980 name: Robust invariants of Nonlinear Systems - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '5799' pubrep_id: '614' quality_controlled: '1' related_material: record: - id: '1510' relation: earlier_version status: public scopus_import: 1 status: public title: On computability and triviality of well groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 56 year: '2016' ... --- _id: '1289' abstract: - lang: eng text: 'Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.' article_processing_charge: No author: - first_name: Olga full_name: Dunaeva, Olga last_name: Dunaeva - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Lukyanov, Anton last_name: Lukyanov - first_name: Michael full_name: Machin, Michael last_name: Machin - first_name: Daria full_name: Malkova, Daria last_name: Malkova - first_name: Roman full_name: Kuvaev, Roman last_name: Kuvaev - first_name: Sergey full_name: Kashin, Sergey last_name: Kashin citation: ama: Dunaeva O, Edelsbrunner H, Lukyanov A, et al. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 2016;83(1):13-22. doi:10.1016/j.patrec.2015.12.012 apa: Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., Malkova, D., Kuvaev, R., & Kashin, S. (2016). The classification of endoscopy images with persistent homology. Pattern Recognition Letters. Elsevier. https://doi.org/10.1016/j.patrec.2015.12.012 chicago: Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria Malkova, Roman Kuvaev, and Sergey Kashin. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters. Elsevier, 2016. https://doi.org/10.1016/j.patrec.2015.12.012. ieee: O. Dunaeva et al., “The classification of endoscopy images with persistent homology,” Pattern Recognition Letters, vol. 83, no. 1. Elsevier, pp. 13–22, 2016. ista: Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R, Kashin S. 2016. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 83(1), 13–22. mla: Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters, vol. 83, no. 1, Elsevier, 2016, pp. 13–22, doi:10.1016/j.patrec.2015.12.012. short: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, D. Malkova, R. Kuvaev, S. Kashin, Pattern Recognition Letters 83 (2016) 13–22. date_created: 2018-12-11T11:51:10Z date_published: 2016-11-01T00:00:00Z date_updated: 2023-02-23T10:04:40Z day: '01' ddc: - '004' - '514' department: - _id: HeEd doi: 10.1016/j.patrec.2015.12.012 file: - access_level: open_access checksum: 33458bbb8c32a339e1adeca6d5a1112d content_type: application/pdf creator: dernst date_created: 2019-04-17T07:55:51Z date_updated: 2020-07-14T12:44:42Z file_id: '6334' file_name: 2016-Edelsbrunner_The_classification.pdf file_size: 1921113 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 83' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 13 - 22 publication: Pattern Recognition Letters publication_status: published publisher: Elsevier publist_id: '6027' pubrep_id: '975' quality_controlled: '1' related_material: record: - id: '1568' relation: earlier_version status: public scopus_import: 1 status: public title: The classification of endoscopy images with persistent homology tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 83 year: '2016' ... --- _id: '1617' abstract: - lang: eng text: 'We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points.' acknowledgement: We are grateful to the referee whose suggestions greatly improved the quality and clarity of the exposition. author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Stefan full_name: Steinerberger, Stefan last_name: Steinerberger citation: ama: Pausinger F, Steinerberger S. On the discrepancy of jittered sampling. Journal of Complexity. 2016;33:199-216. doi:10.1016/j.jco.2015.11.003 apa: Pausinger, F., & Steinerberger, S. (2016). On the discrepancy of jittered sampling. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.11.003 chicago: Pausinger, Florian, and Stefan Steinerberger. “On the Discrepancy of Jittered Sampling.” Journal of Complexity. Academic Press, 2016. https://doi.org/10.1016/j.jco.2015.11.003. ieee: F. Pausinger and S. Steinerberger, “On the discrepancy of jittered sampling,” Journal of Complexity, vol. 33. Academic Press, pp. 199–216, 2016. ista: Pausinger F, Steinerberger S. 2016. On the discrepancy of jittered sampling. Journal of Complexity. 33, 199–216. mla: Pausinger, Florian, and Stefan Steinerberger. “On the Discrepancy of Jittered Sampling.” Journal of Complexity, vol. 33, Academic Press, 2016, pp. 199–216, doi:10.1016/j.jco.2015.11.003. short: F. Pausinger, S. Steinerberger, Journal of Complexity 33 (2016) 199–216. date_created: 2018-12-11T11:53:03Z date_published: 2016-04-01T00:00:00Z date_updated: 2021-01-12T06:52:02Z day: '01' department: - _id: HeEd doi: 10.1016/j.jco.2015.11.003 intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1510.00251 month: '04' oa: 1 oa_version: Submitted Version page: 199 - 216 publication: Journal of Complexity publication_status: published publisher: Academic Press publist_id: '5549' quality_controlled: '1' scopus_import: 1 status: public title: On the discrepancy of jittered sampling type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2016' ... --- _id: '5806' abstract: - lang: eng text: Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Biswas R, Bhowmick P. On functionality of quadraginta octants of naive sphere with application to circle drawing. In: Discrete Geometry for Computer Imagery. Vol 9647. Cham: Springer Nature; 2016:256-267. doi:10.1007/978-3-319-32360-2_20' apa: 'Biswas, R., & Bhowmick, P. (2016). On functionality of quadraginta octants of naive sphere with application to circle drawing. In Discrete Geometry for Computer Imagery (Vol. 9647, pp. 256–267). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-32360-2_20' chicago: 'Biswas, Ranita, and Partha Bhowmick. “On Functionality of Quadraginta Octants of Naive Sphere with Application to Circle Drawing.” In Discrete Geometry for Computer Imagery, 9647:256–67. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-32360-2_20.' ieee: R. Biswas and P. Bhowmick, “On functionality of quadraginta octants of naive sphere with application to circle drawing,” in Discrete Geometry for Computer Imagery, Nantes, France, 2016, vol. 9647, pp. 256–267. ista: 'Biswas R, Bhowmick P. 2016. On functionality of quadraginta octants of naive sphere with application to circle drawing. Discrete Geometry for Computer Imagery. DGCI: International Conference on Discrete Geometry for Computer Imagery, LNCS, vol. 9647, 256–267.' mla: Biswas, Ranita, and Partha Bhowmick. “On Functionality of Quadraginta Octants of Naive Sphere with Application to Circle Drawing.” Discrete Geometry for Computer Imagery, vol. 9647, Springer Nature, 2016, pp. 256–67, doi:10.1007/978-3-319-32360-2_20. short: R. Biswas, P. Bhowmick, in:, Discrete Geometry for Computer Imagery, Springer Nature, Cham, 2016, pp. 256–267. conference: end_date: 2016-04-20 location: Nantes, France name: 'DGCI: International Conference on Discrete Geometry for Computer Imagery' start_date: 2016-04-18 date_created: 2019-01-08T20:44:37Z date_published: 2016-04-09T00:00:00Z date_updated: 2022-01-28T08:10:11Z day: '09' department: - _id: HeEd doi: 10.1007/978-3-319-32360-2_20 extern: '1' intvolume: ' 9647' language: - iso: eng month: '04' oa_version: None page: 256-267 place: Cham publication: Discrete Geometry for Computer Imagery publication_identifier: eisbn: - 978-3-319-32360-2 isbn: - 978-3-319-32359-6 issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On functionality of quadraginta octants of naive sphere with application to circle drawing type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9647 year: '2016' ... --- _id: '5805' abstract: - lang: eng text: Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy. alternative_title: - LNCS article_processing_charge: No author: - first_name: Nabhasmita full_name: Sen, Nabhasmita last_name: Sen - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Sen N, Biswas R, Bhowmick P. On some local topological properties of naive discrete sphere. In: Computational Topology in Image Context. Vol 9667. Cham: Springer Nature; 2016:253-264. doi:10.1007/978-3-319-39441-1_23' apa: 'Sen, N., Biswas, R., & Bhowmick, P. (2016). On some local topological properties of naive discrete sphere. In Computational Topology in Image Context (Vol. 9667, pp. 253–264). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-39441-1_23' chicago: 'Sen, Nabhasmita, Ranita Biswas, and Partha Bhowmick. “On Some Local Topological Properties of Naive Discrete Sphere.” In Computational Topology in Image Context, 9667:253–64. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-39441-1_23.' ieee: 'N. Sen, R. Biswas, and P. Bhowmick, “On some local topological properties of naive discrete sphere,” in Computational Topology in Image Context, vol. 9667, Cham: Springer Nature, 2016, pp. 253–264.' ista: 'Sen N, Biswas R, Bhowmick P. 2016.On some local topological properties of naive discrete sphere. In: Computational Topology in Image Context. LNCS, vol. 9667, 253–264.' mla: Sen, Nabhasmita, et al. “On Some Local Topological Properties of Naive Discrete Sphere.” Computational Topology in Image Context, vol. 9667, Springer Nature, 2016, pp. 253–64, doi:10.1007/978-3-319-39441-1_23. short: N. Sen, R. Biswas, P. Bhowmick, in:, Computational Topology in Image Context, Springer Nature, Cham, 2016, pp. 253–264. conference: end_date: 2016-06-17 location: Marseille, France name: 'CTIC: Computational Topology in Image Context' start_date: 2016-06-15 date_created: 2019-01-08T20:44:24Z date_published: 2016-06-02T00:00:00Z date_updated: 2022-01-28T08:01:22Z day: '02' department: - _id: HeEd doi: 10.1007/978-3-319-39441-1_23 extern: '1' intvolume: ' 9667' language: - iso: eng month: '06' oa_version: None page: 253-264 place: Cham publication: Computational Topology in Image Context publication_identifier: eisbn: - 978-3-319-39441-1 eissn: - 1611-3349 isbn: - 978-3-319-39440-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On some local topological properties of naive discrete sphere type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9667 year: '2016' ... --- _id: '5809' abstract: - lang: eng text: A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness. article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick - first_name: Valentin E. full_name: Brimkov, Valentin E. last_name: Brimkov citation: ama: 'Biswas R, Bhowmick P, Brimkov VE. On the connectivity and smoothness of discrete spherical circles. In: Combinatorial Image Analysis. Vol 9448. Cham: Springer Nature; 2016:86-100. doi:10.1007/978-3-319-26145-4_7' apa: 'Biswas, R., Bhowmick, P., & Brimkov, V. E. (2016). On the connectivity and smoothness of discrete spherical circles. In Combinatorial image analysis (Vol. 9448, pp. 86–100). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-26145-4_7' chicago: 'Biswas, Ranita, Partha Bhowmick, and Valentin E. Brimkov. “On the Connectivity and Smoothness of Discrete Spherical Circles.” In Combinatorial Image Analysis, 9448:86–100. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-26145-4_7.' ieee: 'R. Biswas, P. Bhowmick, and V. E. Brimkov, “On the connectivity and smoothness of discrete spherical circles,” in Combinatorial image analysis, vol. 9448, Cham: Springer Nature, 2016, pp. 86–100.' ista: 'Biswas R, Bhowmick P, Brimkov VE. 2016.On the connectivity and smoothness of discrete spherical circles. In: Combinatorial image analysis. vol. 9448, 86–100.' mla: Biswas, Ranita, et al. “On the Connectivity and Smoothness of Discrete Spherical Circles.” Combinatorial Image Analysis, vol. 9448, Springer Nature, 2016, pp. 86–100, doi:10.1007/978-3-319-26145-4_7. short: R. Biswas, P. Bhowmick, V.E. Brimkov, in:, Combinatorial Image Analysis, Springer Nature, Cham, 2016, pp. 86–100. conference: end_date: 2015-11-27 location: Kolkata, India name: 'IWCIA: International Workshop on Combinatorial Image Analysis' start_date: 2015-11-24 date_created: 2019-01-08T20:45:19Z date_published: 2016-01-06T00:00:00Z date_updated: 2022-01-28T08:13:03Z day: '06' department: - _id: HeEd doi: 10.1007/978-3-319-26145-4_7 extern: '1' intvolume: ' 9448' language: - iso: eng month: '01' oa_version: None page: 86-100 place: Cham publication: Combinatorial image analysis publication_identifier: eisbn: - 978-3-319-26145-4 eissn: - 1611-3349 isbn: - 978-3-319-26144-7 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On the connectivity and smoothness of discrete spherical circles type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9448 year: '2016' ... --- _id: '1662' abstract: - lang: eng text: We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball. acknowledgement: "This research is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme.\r\nBoth authors thank Anne Marie Svane for her comments on an early version of this paper. The second author wishes to thank Eva B. Vedel Jensen and Markus Kiderlen from Aarhus University for enlightening discussions and their kind hospitality during a visit of their department in 2014." author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 citation: ama: Edelsbrunner H, Pausinger F. Approximation and convergence of the intrinsic volume. Advances in Mathematics. 2016;287:674-703. doi:10.1016/j.aim.2015.10.004 apa: Edelsbrunner, H., & Pausinger, F. (2016). Approximation and convergence of the intrinsic volume. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2015.10.004 chicago: Edelsbrunner, Herbert, and Florian Pausinger. “Approximation and Convergence of the Intrinsic Volume.” Advances in Mathematics. Academic Press, 2016. https://doi.org/10.1016/j.aim.2015.10.004. ieee: H. Edelsbrunner and F. Pausinger, “Approximation and convergence of the intrinsic volume,” Advances in Mathematics, vol. 287. Academic Press, pp. 674–703, 2016. ista: Edelsbrunner H, Pausinger F. 2016. Approximation and convergence of the intrinsic volume. Advances in Mathematics. 287, 674–703. mla: Edelsbrunner, Herbert, and Florian Pausinger. “Approximation and Convergence of the Intrinsic Volume.” Advances in Mathematics, vol. 287, Academic Press, 2016, pp. 674–703, doi:10.1016/j.aim.2015.10.004. short: H. Edelsbrunner, F. Pausinger, Advances in Mathematics 287 (2016) 674–703. date_created: 2018-12-11T11:53:20Z date_published: 2016-01-10T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '10' ddc: - '004' department: - _id: HeEd doi: 10.1016/j.aim.2015.10.004 ec_funded: 1 file: - access_level: open_access checksum: f8869ec110c35c852ef6a37425374af7 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:10Z date_updated: 2020-07-14T12:45:10Z file_id: '4928' file_name: IST-2017-774-v1+1_2016-J-03-FirstIntVolume.pdf file_size: 248985 relation: main_file file_date_updated: 2020-07-14T12:45:10Z has_accepted_license: '1' intvolume: ' 287' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 674 - 703 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Advances in Mathematics publication_status: published publisher: Academic Press publist_id: '5488' pubrep_id: '774' quality_controlled: '1' related_material: record: - id: '1399' relation: dissertation_contains status: public scopus_import: 1 status: public title: Approximation and convergence of the intrinsic volume tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 287 year: '2016' ... --- _id: '1424' abstract: - lang: eng text: We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data. acknowledgement: This work was partially supported by the Austrian Science FUnd, project no. KLI 00012. alternative_title: - Advances in Neural Information Processing Systems author: - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Marc full_name: Niethammer, Marc last_name: Niethammer - first_name: Weili full_name: Lin, Weili last_name: Lin - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 citation: ama: 'Kwitt R, Huber S, Niethammer M, Lin W, Bauer U. Statistical topological data analysis-A kernel perspective. In: Vol 28. Neural Information Processing Systems; 2015:3070-3078.' apa: 'Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis-A kernel perspective (Vol. 28, pp. 3070–3078). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.' chicago: Kwitt, Roland, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. “Statistical Topological Data Analysis-A Kernel Perspective,” 28:3070–78. Neural Information Processing Systems, 2015. ieee: 'R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-A kernel perspective,” presented at the NIPS: Neural Information Processing Systems, Montreal, Canada, 2015, vol. 28, pp. 3070–3078.' ista: 'Kwitt R, Huber S, Niethammer M, Lin W, Bauer U. 2015. Statistical topological data analysis-A kernel perspective. NIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, vol. 28, 3070–3078.' mla: Kwitt, Roland, et al. Statistical Topological Data Analysis-A Kernel Perspective. Vol. 28, Neural Information Processing Systems, 2015, pp. 3070–78. short: R. Kwitt, S. Huber, M. Niethammer, W. Lin, U. Bauer, in:, Neural Information Processing Systems, 2015, pp. 3070–3078. conference: end_date: 2015-12-12 location: Montreal, Canada name: 'NIPS: Neural Information Processing Systems' start_date: 2015-12-07 date_created: 2018-12-11T11:51:56Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:50:38Z day: '01' department: - _id: HeEd intvolume: ' 28' language: - iso: eng main_file_link: - open_access: '1' url: https://papers.nips.cc/paper/5887-statistical-topological-data-analysis-a-kernel-perspective month: '12' oa: 1 oa_version: Submitted Version page: 3070 - 3078 publication_status: published publisher: Neural Information Processing Systems publist_id: '5782' quality_controlled: '1' status: public title: Statistical topological data analysis-A kernel perspective type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2015' ... --- _id: '1483' abstract: - lang: eng text: Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes. author: - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt citation: ama: 'Reininghaus J, Huber S, Bauer U, Kwitt R. A stable multi-scale kernel for topological machine learning. In: IEEE; 2015:4741-4748. doi:10.1109/CVPR.2015.7299106' apa: 'Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning (pp. 4741–4748). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7299106' chicago: Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106. ieee: 'J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale kernel for topological machine learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 4741–4748.' ista: 'Reininghaus J, Huber S, Bauer U, Kwitt R. 2015. A stable multi-scale kernel for topological machine learning. CVPR: Computer Vision and Pattern Recognition, 4741–4748.' mla: Reininghaus, Jan, et al. A Stable Multi-Scale Kernel for Topological Machine Learning. IEEE, 2015, pp. 4741–48, doi:10.1109/CVPR.2015.7299106. short: J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, in:, IEEE, 2015, pp. 4741–4748. conference: end_date: 2015-06-12 location: Boston, MA, USA name: 'CVPR: Computer Vision and Pattern Recognition' start_date: 2015-06-07 date_created: 2018-12-11T11:52:17Z date_published: 2015-10-14T00:00:00Z date_updated: 2021-01-12T06:51:03Z day: '14' department: - _id: HeEd doi: 10.1109/CVPR.2015.7299106 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1412.6821 month: '10' oa: 1 oa_version: Preprint page: 4741 - 4748 publication_identifier: eisbn: - '978-1-4673-6964-0 ' publication_status: published publisher: IEEE publist_id: '5709' scopus_import: 1 status: public title: A stable multi-scale kernel for topological machine learning type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1495' abstract: - lang: eng text: 'Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. ' author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham - first_name: Vitaliy full_name: Kurlin, Vitaliy last_name: Kurlin citation: ama: 'Edelsbrunner H, Iglesias Ham M, Kurlin V. Relaxed disk packing. In: Proceedings of the 27th Canadian Conference on Computational Geometry. Vol 2015-August. Queen’s University; 2015:128-135.' apa: 'Edelsbrunner, H., Iglesias Ham, M., & Kurlin, V. (2015). Relaxed disk packing. In Proceedings of the 27th Canadian Conference on Computational Geometry (Vol. 2015–August, pp. 128–135). Ontario, Canada: Queen’s University.' chicago: Edelsbrunner, Herbert, Mabel Iglesias Ham, and Vitaliy Kurlin. “Relaxed Disk Packing.” In Proceedings of the 27th Canadian Conference on Computational Geometry, 2015–August:128–35. Queen’s University, 2015. ieee: H. Edelsbrunner, M. Iglesias Ham, and V. Kurlin, “Relaxed disk packing,” in Proceedings of the 27th Canadian Conference on Computational Geometry, Ontario, Canada, 2015, vol. 2015–August, pp. 128–135. ista: 'Edelsbrunner H, Iglesias Ham M, Kurlin V. 2015. Relaxed disk packing. Proceedings of the 27th Canadian Conference on Computational Geometry. CCCG: Canadian Conference on Computational Geometry vol. 2015–August, 128–135.' mla: Edelsbrunner, Herbert, et al. “Relaxed Disk Packing.” Proceedings of the 27th Canadian Conference on Computational Geometry, vol. 2015–August, Queen’s University, 2015, pp. 128–35. short: H. Edelsbrunner, M. Iglesias Ham, V. Kurlin, in:, Proceedings of the 27th Canadian Conference on Computational Geometry, Queen’s University, 2015, pp. 128–135. conference: end_date: 2015-08-12 location: Ontario, Canada name: 'CCCG: Canadian Conference on Computational Geometry' start_date: 2015-08-10 date_created: 2018-12-11T11:52:21Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:09Z day: '01' department: - _id: HeEd ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1505.03402 month: '08' oa: 1 oa_version: Submitted Version page: 128-135 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the 27th Canadian Conference on Computational Geometry publication_status: published publisher: Queen's University publist_id: '5684' quality_controlled: '1' scopus_import: 1 status: public title: Relaxed disk packing type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2015-August year: '2015' ... --- _id: '1510' abstract: - lang: eng text: 'The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f'' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. ' alternative_title: - LIPIcs author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: 'Franek P, Krcál M. On computability and triviality of well groups. In: Vol 34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2015:842-856. doi:10.4230/LIPIcs.SOCG.2015.842' apa: 'Franek, P., & Krcál, M. (2015). On computability and triviality of well groups (Vol. 34, pp. 842–856). Presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SOCG.2015.842' chicago: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups,” 34:842–56. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. https://doi.org/10.4230/LIPIcs.SOCG.2015.842. ieee: 'P. Franek and M. Krcál, “On computability and triviality of well groups,” presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands, 2015, vol. 34, pp. 842–856.' ista: 'Franek P, Krcál M. 2015. On computability and triviality of well groups. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 34, 842–856.' mla: Franek, Peter, and Marek Krcál. On Computability and Triviality of Well Groups. Vol. 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 842–56, doi:10.4230/LIPIcs.SOCG.2015.842. short: P. Franek, M. Krcál, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 842–856. conference: end_date: 2015-06-25 location: Eindhoven, Netherlands name: 'SoCG: Symposium on Computational Geometry' start_date: 2015-06-22 date_created: 2018-12-11T11:52:26Z date_published: 2015-06-11T00:00:00Z date_updated: 2023-02-21T17:02:57Z day: '11' ddc: - '510' department: - _id: UlWa - _id: HeEd doi: 10.4230/LIPIcs.SOCG.2015.842 ec_funded: 1 file: - access_level: open_access checksum: 49eb5021caafaabe5356c65b9c5f8c9c content_type: application/pdf creator: system date_created: 2018-12-12T10:13:19Z date_updated: 2020-07-14T12:44:59Z file_id: '5001' file_name: IST-2016-503-v1+1_32.pdf file_size: 623563 relation: main_file file_date_updated: 2020-07-14T12:44:59Z has_accepted_license: '1' intvolume: ' 34' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 842 - 856 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '5667' pubrep_id: '503' quality_controlled: '1' related_material: record: - id: '1408' relation: later_version status: public scopus_import: 1 status: public title: On computability and triviality of well groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1531' abstract: - lang: eng text: The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece. alternative_title: - Mathematics and Visualization article_processing_charge: No author: - first_name: Valentin full_name: Zobel, Valentin last_name: Zobel - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz citation: ama: 'Zobel V, Reininghaus J, Hotz I. Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In: Hotz I, Schultz T, eds. Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Vol 40. 1st ed. Springer; 2015:257-267. doi:10.1007/978-3-319-15090-1_13' apa: Zobel, V., Reininghaus, J., & Hotz, I. (2015). Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In I. Hotz & T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data (1st ed., Vol. 40, pp. 257–267). Springer. https://doi.org/10.1007/978-3-319-15090-1_13 chicago: Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., 40:257–67. Springer, 2015. https://doi.org/10.1007/978-3-319-15090-1_13. ieee: V. Zobel, J. Reininghaus, and I. Hotz, “Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature,” in Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, 1st ed., vol. 40, I. Hotz and T. Schultz, Eds. Springer, 2015, pp. 257–267. ista: 'Zobel V, Reininghaus J, Hotz I. 2015.Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, vol. 40, 257–267.' mla: Zobel, Valentin, et al. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., vol. 40, Springer, 2015, pp. 257–67, doi:10.1007/978-3-319-15090-1_13. short: V. Zobel, J. Reininghaus, I. Hotz, in:, I. Hotz, T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, 1st ed., Springer, 2015, pp. 257–267. date_created: 2018-12-11T11:52:33Z date_published: 2015-01-01T00:00:00Z date_updated: 2022-06-10T09:50:14Z day: '01' department: - _id: HeEd doi: 10.1007/978-3-319-15090-1_13 edition: '1' editor: - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Thomas full_name: Schultz, Thomas last_name: Schultz intvolume: ' 40' language: - iso: eng month: '01' oa_version: None page: 257 - 267 publication: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data publication_identifier: isbn: - 978-3-319-15089-5 publication_status: published publisher: Springer publist_id: '5640' quality_controlled: '1' scopus_import: '1' status: public title: Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 40 year: '2015' ... --- _id: '1555' abstract: - lang: eng text: We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations. acknowledgement: Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria (pawel.pilarczyk@ist.ac.at). This author’s work was partially supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 622033, by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE—Programa Operacional Factores de Competitividade (POFC), by the Portuguese national funds through Funda ̧caoparaaCiˆencia e a Tecnologia (FCT) in the framework of the research project FCOMP-01-0124-FEDER-010645 (ref. FCT PTDC/MAT/098871/2008), and by European Research Council through StG 259559 in the framework of the EPIDELAY project. article_processing_charge: No article_type: original author: - first_name: Diána full_name: Knipl, Diána last_name: Knipl - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk - first_name: Gergely full_name: Röst, Gergely last_name: Röst citation: ama: Knipl D, Pilarczyk P, Röst G. Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. 2015;14(2):980-1017. doi:10.1137/140993934 apa: Knipl, D., Pilarczyk, P., & Röst, G. (2015). Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140993934 chicago: Knipl, Diána, Pawel Pilarczyk, and Gergely Röst. “Rich Bifurcation Structure in a Two Patch Vaccination Model.” SIAM Journal on Applied Dynamical Systems. Society for Industrial and Applied Mathematics , 2015. https://doi.org/10.1137/140993934. ieee: D. Knipl, P. Pilarczyk, and G. Röst, “Rich bifurcation structure in a two patch vaccination model,” SIAM Journal on Applied Dynamical Systems, vol. 14, no. 2. Society for Industrial and Applied Mathematics , pp. 980–1017, 2015. ista: Knipl D, Pilarczyk P, Röst G. 2015. Rich bifurcation structure in a two patch vaccination model. SIAM Journal on Applied Dynamical Systems. 14(2), 980–1017. mla: Knipl, Diána, et al. “Rich Bifurcation Structure in a Two Patch Vaccination Model.” SIAM Journal on Applied Dynamical Systems, vol. 14, no. 2, Society for Industrial and Applied Mathematics , 2015, pp. 980–1017, doi:10.1137/140993934. short: D. Knipl, P. Pilarczyk, G. Röst, SIAM Journal on Applied Dynamical Systems 14 (2015) 980–1017. date_created: 2018-12-11T11:52:42Z date_published: 2015-01-01T00:00:00Z date_updated: 2021-01-12T06:51:34Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1137/140993934 ec_funded: 1 intvolume: ' 14' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: http://discovery.ucl.ac.uk/1473750/1/99393.pdf month: '01' oa: 1 oa_version: Published Version page: 980 - 1017 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: SIAM Journal on Applied Dynamical Systems publication_identifier: eissn: - 1536-0040 publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '5616' quality_controlled: '1' scopus_import: 1 status: public title: Rich bifurcation structure in a two patch vaccination model type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2015' ... --- _id: '1568' abstract: - lang: eng text: Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. acknowledgement: This research is supported by the project No. 477 of P.G. Demidov Yaroslavl State University within State Assignment for Research. author: - first_name: Olga full_name: Dunaeva, Olga last_name: Dunaeva - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Lukyanov, Anton last_name: Lukyanov - first_name: Michael full_name: Machin, Michael last_name: Machin - first_name: Daria full_name: Malkova, Daria last_name: Malkova citation: ama: 'Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D. The classification of endoscopy images with persistent homology. In: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE; 2015:7034731. doi:10.1109/SYNASC.2014.81' apa: 'Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., & Malkova, D. (2015). The classification of endoscopy images with persistent homology. In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (p. 7034731). Timisoara, Romania: IEEE. https://doi.org/10.1109/SYNASC.2014.81' chicago: Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, and Daria Malkova. “The Classification of Endoscopy Images with Persistent Homology.” In Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 7034731. IEEE, 2015. https://doi.org/10.1109/SYNASC.2014.81. ieee: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, and D. Malkova, “The classification of endoscopy images with persistent homology,” in Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 2015, p. 7034731. ista: 'Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D. 2015. The classification of endoscopy images with persistent homology. Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. SYNASC: Symbolic and Numeric Algorithms for Scientific Computing, 7034731.' mla: Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE, 2015, p. 7034731, doi:10.1109/SYNASC.2014.81. short: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, D. Malkova, in:, Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE, 2015, p. 7034731. conference: end_date: 2014-09-25 location: Timisoara, Romania name: 'SYNASC: Symbolic and Numeric Algorithms for Scientific Computing' start_date: 2014-09-22 date_created: 2018-12-11T11:52:46Z date_published: 2015-02-05T00:00:00Z date_updated: 2023-02-21T16:57:29Z day: '05' department: - _id: HeEd doi: 10.1109/SYNASC.2014.81 language: - iso: eng month: '02' oa_version: None page: '7034731' publication: Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing publication_status: published publisher: IEEE publist_id: '5603' quality_controlled: '1' related_material: record: - id: '1289' relation: later_version status: public scopus_import: 1 status: public title: The classification of endoscopy images with persistent homology type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1567' abstract: - lang: eng text: My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations. alternative_title: - LNCS article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: 'Edelsbrunner H. Shape, homology, persistence, and stability. In: 23rd International Symposium. Vol 9411. Springer Nature; 2015.' apa: 'Edelsbrunner, H. (2015). Shape, homology, persistence, and stability. In 23rd International Symposium (Vol. 9411). Los Angeles, CA, United States: Springer Nature.' chicago: Edelsbrunner, Herbert. “Shape, Homology, Persistence, and Stability.” In 23rd International Symposium, Vol. 9411. Springer Nature, 2015. ieee: H. Edelsbrunner, “Shape, homology, persistence, and stability,” in 23rd International Symposium, Los Angeles, CA, United States, 2015, vol. 9411. ista: 'Edelsbrunner H. 2015. Shape, homology, persistence, and stability. 23rd International Symposium. GD: Graph Drawing and Network Visualization, LNCS, vol. 9411.' mla: Edelsbrunner, Herbert. “Shape, Homology, Persistence, and Stability.” 23rd International Symposium, vol. 9411, Springer Nature, 2015. short: H. Edelsbrunner, in:, 23rd International Symposium, Springer Nature, 2015. conference: end_date: 2015-09-26 location: Los Angeles, CA, United States name: 'GD: Graph Drawing and Network Visualization' start_date: 2015-09-24 date_created: 2018-12-11T11:52:46Z date_published: 2015-01-01T00:00:00Z date_updated: 2022-01-28T08:25:00Z day: '01' department: - _id: HeEd intvolume: ' 9411' language: - iso: eng month: '01' oa_version: None publication: 23rd International Symposium publication_status: published publisher: Springer Nature publist_id: '5604' quality_controlled: '1' scopus_import: '1' status: public title: Shape, homology, persistence, and stability type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9411 year: '2015' ... --- _id: '1563' abstract: - lang: eng text: For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}. author: - first_name: Grzegorz full_name: Graff, Grzegorz last_name: Graff - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Graff G, Pilarczyk P. An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. 2015;45(1):273-286. doi:10.12775/TMNA.2015.014 apa: Graff, G., & Pilarczyk, P. (2015). An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies. https://doi.org/10.12775/TMNA.2015.014 chicago: Graff, Grzegorz, and Pawel Pilarczyk. “An Algorithmic Approach to Estimating the Minimal Number of Periodic Points for Smooth Self-Maps of Simply-Connected Manifolds.” Topological Methods in Nonlinear Analysis. Juliusz Schauder Center for Nonlinear Studies, 2015. https://doi.org/10.12775/TMNA.2015.014. ieee: G. Graff and P. Pilarczyk, “An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds,” Topological Methods in Nonlinear Analysis, vol. 45, no. 1. Juliusz Schauder Center for Nonlinear Studies, pp. 273–286, 2015. ista: Graff G, Pilarczyk P. 2015. An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds. Topological Methods in Nonlinear Analysis. 45(1), 273–286. mla: Graff, Grzegorz, and Pawel Pilarczyk. “An Algorithmic Approach to Estimating the Minimal Number of Periodic Points for Smooth Self-Maps of Simply-Connected Manifolds.” Topological Methods in Nonlinear Analysis, vol. 45, no. 1, Juliusz Schauder Center for Nonlinear Studies, 2015, pp. 273–86, doi:10.12775/TMNA.2015.014. short: G. Graff, P. Pilarczyk, Topological Methods in Nonlinear Analysis 45 (2015) 273–286. date_created: 2018-12-11T11:52:44Z date_published: 2015-03-01T00:00:00Z date_updated: 2021-01-12T06:51:37Z day: '01' department: - _id: HeEd doi: 10.12775/TMNA.2015.014 intvolume: ' 45' issue: '1' language: - iso: eng month: '03' oa_version: None page: 273 - 286 publication: Topological Methods in Nonlinear Analysis publication_status: published publisher: Juliusz Schauder Center for Nonlinear Studies publist_id: '5608' quality_controlled: '1' scopus_import: 1 status: public title: An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 45 year: '2015' ... --- _id: '1578' abstract: - lang: eng text: We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations. acknowledgement: "The research of the second author is partially supported by NSF under grant DBI-0820624 and by DARPA under grants HR011-05-1-0057 and HR0011-09-006\r\n" author: - first_name: Thanhtung full_name: Cao, Thanhtung last_name: Cao - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Tiowseng full_name: Tan, Tiowseng last_name: Tan citation: ama: Cao T, Edelsbrunner H, Tan T. Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. 2015;48(7):507-519. doi:10.1016/j.comgeo.2015.04.001 apa: Cao, T., Edelsbrunner, H., & Tan, T. (2015). Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. Elsevier. https://doi.org/10.1016/j.comgeo.2015.04.001 chicago: Cao, Thanhtung, Herbert Edelsbrunner, and Tiowseng Tan. “Triangulations from Topologically Correct Digital Voronoi Diagrams.” Computational Geometry. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2015.04.001. ieee: T. Cao, H. Edelsbrunner, and T. Tan, “Triangulations from topologically correct digital Voronoi diagrams,” Computational Geometry, vol. 48, no. 7. Elsevier, pp. 507–519, 2015. ista: Cao T, Edelsbrunner H, Tan T. 2015. Triangulations from topologically correct digital Voronoi diagrams. Computational Geometry. 48(7), 507–519. mla: Cao, Thanhtung, et al. “Triangulations from Topologically Correct Digital Voronoi Diagrams.” Computational Geometry, vol. 48, no. 7, Elsevier, 2015, pp. 507–19, doi:10.1016/j.comgeo.2015.04.001. short: T. Cao, H. Edelsbrunner, T. Tan, Computational Geometry 48 (2015) 507–519. date_created: 2018-12-11T11:52:49Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:43Z day: '01' department: - _id: HeEd doi: 10.1016/j.comgeo.2015.04.001 intvolume: ' 48' issue: '7' language: - iso: eng month: '08' oa_version: None page: 507 - 519 publication: Computational Geometry publication_status: published publisher: Elsevier publist_id: '5593' quality_controlled: '1' scopus_import: 1 status: public title: Triangulations from topologically correct digital Voronoi diagrams type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1584' abstract: - lang: eng text: We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Dominik full_name: Kaaser, Dominik last_name: Kaaser - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 2015;48(5):429-442. doi:10.1016/j.comgeo.2015.01.004' apa: 'Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2015.01.004' chicago: 'Biedl, Therese, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. “Reprint of: Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2015.01.004.' ieee: 'T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Reprint of: Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 5. Elsevier, pp. 429–442, 2015.' ista: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. 2015. Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 48(5), 429–442.' mla: 'Biedl, Therese, et al. “Reprint of: Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications, vol. 48, no. 5, Elsevier, 2015, pp. 429–42, doi:10.1016/j.comgeo.2015.01.004.' short: 'T. Biedl, M. Held, S. Huber, D. Kaaser, P. Palfrader, Computational Geometry: Theory and Applications 48 (2015) 429–442.' date_created: 2018-12-11T11:52:51Z date_published: 2015-07-01T00:00:00Z date_updated: 2023-02-23T10:05:22Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.comgeo.2015.01.004 file: - access_level: open_access checksum: 5b33719a86f7f4c8e5dc62c1b6893f49 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:36Z date_updated: 2020-07-14T12:45:03Z file_id: '5292' file_name: IST-2016-475-v1+1_1-s2.0-S092577211500005X-main.pdf file_size: 508379 relation: main_file file_date_updated: 2020-07-14T12:45:03Z has_accepted_license: '1' intvolume: ' 48' issue: '5' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 429 - 442 publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '5587' pubrep_id: '475' quality_controlled: '1' related_material: record: - id: '1582' relation: other status: public scopus_import: 1 status: public title: 'Reprint of: Weighted straight skeletons in the plane' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1582' abstract: - lang: eng text: We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Dominik full_name: Kaaser, Dominik last_name: Kaaser - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 2015;48(2):120-133. doi:10.1016/j.comgeo.2014.08.006' apa: 'Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.006' chicago: 'Biedl, Therese, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. “Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2014.08.006.' ieee: 'T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 2. Elsevier, pp. 120–133, 2015.' ista: 'Biedl T, Held M, Huber S, Kaaser D, Palfrader P. 2015. Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications. 48(2), 120–133.' mla: 'Biedl, Therese, et al. “Weighted Straight Skeletons in the Plane.” Computational Geometry: Theory and Applications, vol. 48, no. 2, Elsevier, 2015, pp. 120–33, doi:10.1016/j.comgeo.2014.08.006.' short: 'T. Biedl, M. Held, S. Huber, D. Kaaser, P. Palfrader, Computational Geometry: Theory and Applications 48 (2015) 120–133.' date_created: 2018-12-11T11:52:51Z date_published: 2015-02-01T00:00:00Z date_updated: 2023-02-23T10:05:27Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.comgeo.2014.08.006 file: - access_level: open_access checksum: c1ef67f6ec925e12f73a96b8fe285ab4 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:28Z date_updated: 2020-07-14T12:45:02Z file_id: '5215' file_name: IST-2016-474-v1+1_1-s2.0-S0925772114000807-main.pdf file_size: 505987 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 48' issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 120 - 133 publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '5589' pubrep_id: '474' quality_controlled: '1' related_material: record: - id: '1584' relation: other status: public scopus_import: 1 status: public title: Weighted straight skeletons in the plane tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1583' abstract: - lang: eng text: We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon. author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Dominik full_name: Kaaser, Dominik last_name: Kaaser - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: Biedl T, Held M, Huber S, Kaaser D, Palfrader P. A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. 2015;115(2):243-247. doi:10.1016/j.ipl.2014.09.021 apa: Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. Elsevier. https://doi.org/10.1016/j.ipl.2014.09.021 chicago: Biedl, Therese, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. “A Simple Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.” Information Processing Letters. Elsevier, 2015. https://doi.org/10.1016/j.ipl.2014.09.021. ieee: T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “A simple algorithm for computing positively weighted straight skeletons of monotone polygons,” Information Processing Letters, vol. 115, no. 2. Elsevier, pp. 243–247, 2015. ista: Biedl T, Held M, Huber S, Kaaser D, Palfrader P. 2015. A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters. 115(2), 243–247. mla: Biedl, Therese, et al. “A Simple Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.” Information Processing Letters, vol. 115, no. 2, Elsevier, 2015, pp. 243–47, doi:10.1016/j.ipl.2014.09.021. short: T. Biedl, M. Held, S. Huber, D. Kaaser, P. Palfrader, Information Processing Letters 115 (2015) 243–247. date_created: 2018-12-11T11:52:51Z date_published: 2015-02-01T00:00:00Z date_updated: 2021-01-12T06:51:45Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.ipl.2014.09.021 file: - access_level: open_access checksum: 2779a648610c9b5c86d0b51a62816d23 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:45Z date_updated: 2020-07-14T12:45:03Z file_id: '5367' file_name: IST-2016-473-v1+1_1-s2.0-S0020019014001987-main.pdf file_size: 270137 relation: main_file file_date_updated: 2020-07-14T12:45:03Z has_accepted_license: '1' intvolume: ' 115' issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 243 - 247 publication: Information Processing Letters publication_status: published publisher: Elsevier publist_id: '5588' pubrep_id: '473' quality_controlled: '1' scopus_import: 1 status: public title: A simple algorithm for computing positively weighted straight skeletons of monotone polygons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 115 year: '2015' ... --- _id: '1590' abstract: - lang: eng text: 'The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Thomas full_name: Hackl, Thomas last_name: Hackl - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader - first_name: Birgit full_name: Vogtenhuber, Birgit last_name: Vogtenhuber citation: ama: 'Aichholzer O, Biedl T, Hackl T, et al. Representing directed trees as straight skeletons. In: Graph Drawing and Network Visualization. Vol 9411. Springer Nature; 2015:335-347. doi:10.1007/978-3-319-27261-0_28' apa: 'Aichholzer, O., Biedl, T., Hackl, T., Held, M., Huber, S., Palfrader, P., & Vogtenhuber, B. (2015). Representing directed trees as straight skeletons. In Graph Drawing and Network Visualization (Vol. 9411, pp. 335–347). Los Angeles, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-319-27261-0_28' chicago: Aichholzer, Oswin, Therese Biedl, Thomas Hackl, Martin Held, Stefan Huber, Peter Palfrader, and Birgit Vogtenhuber. “Representing Directed Trees as Straight Skeletons.” In Graph Drawing and Network Visualization, 9411:335–47. Springer Nature, 2015. https://doi.org/10.1007/978-3-319-27261-0_28. ieee: O. Aichholzer et al., “Representing directed trees as straight skeletons,” in Graph Drawing and Network Visualization, vol. 9411, Springer Nature, 2015, pp. 335–347. ista: 'Aichholzer O, Biedl T, Hackl T, Held M, Huber S, Palfrader P, Vogtenhuber B. 2015.Representing directed trees as straight skeletons. In: Graph Drawing and Network Visualization. LNCS, vol. 9411, 335–347.' mla: Aichholzer, Oswin, et al. “Representing Directed Trees as Straight Skeletons.” Graph Drawing and Network Visualization, vol. 9411, Springer Nature, 2015, pp. 335–47, doi:10.1007/978-3-319-27261-0_28. short: O. Aichholzer, T. Biedl, T. Hackl, M. Held, S. Huber, P. Palfrader, B. Vogtenhuber, in:, Graph Drawing and Network Visualization, Springer Nature, 2015, pp. 335–347. conference: end_date: 2015-09-26 location: Los Angeles, CA, United States name: 'GD: International Symposium on Graph Drawing' start_date: 2015-09-24 date_created: 2018-12-11T11:52:54Z date_published: 2015-11-27T00:00:00Z date_updated: 2022-01-28T09:10:37Z day: '27' department: - _id: HeEd doi: 10.1007/978-3-319-27261-0_28 intvolume: ' 9411' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1508.01076 month: '11' oa: 1 oa_version: Preprint page: 335 - 347 publication: Graph Drawing and Network Visualization publication_identifier: eisbn: - 978-3-319-27261-0 isbn: - 978-3-319-27260-3 publication_status: published publisher: Springer Nature publist_id: '5581' quality_controlled: '1' scopus_import: '1' status: public title: Representing directed trees as straight skeletons type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9411 year: '2015' ... --- _id: '1682' abstract: - lang: eng text: 'We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.' article_number: '26' author: - first_name: Peter full_name: Franek, Peter last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. Robust satisfiability of systems of equations. Journal of the ACM. 2015;62(4). doi:10.1145/2751524 apa: Franek, P., & Krcál, M. (2015). Robust satisfiability of systems of equations. Journal of the ACM. ACM. https://doi.org/10.1145/2751524 chicago: Franek, Peter, and Marek Krcál. “Robust Satisfiability of Systems of Equations.” Journal of the ACM. ACM, 2015. https://doi.org/10.1145/2751524. ieee: P. Franek and M. Krcál, “Robust satisfiability of systems of equations,” Journal of the ACM, vol. 62, no. 4. ACM, 2015. ista: Franek P, Krcál M. 2015. Robust satisfiability of systems of equations. Journal of the ACM. 62(4), 26. mla: Franek, Peter, and Marek Krcál. “Robust Satisfiability of Systems of Equations.” Journal of the ACM, vol. 62, no. 4, 26, ACM, 2015, doi:10.1145/2751524. short: P. Franek, M. Krcál, Journal of the ACM 62 (2015). date_created: 2018-12-11T11:53:27Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:52:30Z day: '01' department: - _id: UlWa - _id: HeEd doi: 10.1145/2751524 intvolume: ' 62' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1402.0858 month: '08' oa: 1 oa_version: Preprint publication: Journal of the ACM publication_status: published publisher: ACM publist_id: '5466' quality_controlled: '1' scopus_import: 1 status: public title: Robust satisfiability of systems of equations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 62 year: '2015' ... --- _id: '1710' abstract: - lang: eng text: 'We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.' author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander full_name: Plakhov, Alexander last_name: Plakhov citation: ama: Akopyan A, Plakhov A. Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. 2015;47(4):2754-2769. doi:10.1137/140993843 apa: Akopyan, A., & Plakhov, A. (2015). Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. SIAM. https://doi.org/10.1137/140993843 chicago: Akopyan, Arseniy, and Alexander Plakhov. “Minimal Resistance of Curves under the Single Impact Assumption.” Society for Industrial and Applied Mathematics. SIAM, 2015. https://doi.org/10.1137/140993843. ieee: A. Akopyan and A. Plakhov, “Minimal resistance of curves under the single impact assumption,” Society for Industrial and Applied Mathematics, vol. 47, no. 4. SIAM, pp. 2754–2769, 2015. ista: Akopyan A, Plakhov A. 2015. Minimal resistance of curves under the single impact assumption. Society for Industrial and Applied Mathematics. 47(4), 2754–2769. mla: Akopyan, Arseniy, and Alexander Plakhov. “Minimal Resistance of Curves under the Single Impact Assumption.” Society for Industrial and Applied Mathematics, vol. 47, no. 4, SIAM, 2015, pp. 2754–69, doi:10.1137/140993843. short: A. Akopyan, A. Plakhov, Society for Industrial and Applied Mathematics 47 (2015) 2754–2769. date_created: 2018-12-11T11:53:36Z date_published: 2015-07-14T00:00:00Z date_updated: 2021-01-12T06:52:41Z day: '14' department: - _id: HeEd doi: 10.1137/140993843 ec_funded: 1 intvolume: ' 47' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1410.3736 month: '07' oa: 1 oa_version: Preprint page: 2754 - 2769 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Society for Industrial and Applied Mathematics publication_status: published publisher: SIAM publist_id: '5423' quality_controlled: '1' scopus_import: 1 status: public title: Minimal resistance of curves under the single impact assumption type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 47 year: '2015' ... --- _id: '1828' abstract: - lang: eng text: We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Sergey full_name: Pirogov, Sergey last_name: Pirogov - first_name: Aleksandr full_name: Rybko, Aleksandr last_name: Rybko citation: ama: Akopyan A, Pirogov S, Rybko A. Invariant measures of genetic recombination process. Journal of Statistical Physics. 2015;160(1):163-167. doi:10.1007/s10955-015-1238-5 apa: Akopyan, A., Pirogov, S., & Rybko, A. (2015). Invariant measures of genetic recombination process. Journal of Statistical Physics. Springer. https://doi.org/10.1007/s10955-015-1238-5 chicago: Akopyan, Arseniy, Sergey Pirogov, and Aleksandr Rybko. “Invariant Measures of Genetic Recombination Process.” Journal of Statistical Physics. Springer, 2015. https://doi.org/10.1007/s10955-015-1238-5. ieee: A. Akopyan, S. Pirogov, and A. Rybko, “Invariant measures of genetic recombination process,” Journal of Statistical Physics, vol. 160, no. 1. Springer, pp. 163–167, 2015. ista: Akopyan A, Pirogov S, Rybko A. 2015. Invariant measures of genetic recombination process. Journal of Statistical Physics. 160(1), 163–167. mla: Akopyan, Arseniy, et al. “Invariant Measures of Genetic Recombination Process.” Journal of Statistical Physics, vol. 160, no. 1, Springer, 2015, pp. 163–67, doi:10.1007/s10955-015-1238-5. short: A. Akopyan, S. Pirogov, A. Rybko, Journal of Statistical Physics 160 (2015) 163–167. date_created: 2018-12-11T11:54:14Z date_published: 2015-07-01T00:00:00Z date_updated: 2021-01-12T06:53:28Z day: '01' department: - _id: HeEd doi: 10.1007/s10955-015-1238-5 ec_funded: 1 intvolume: ' 160' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: arxiv.org/abs/1406.5313 month: '07' oa: 1 oa_version: Preprint page: 163 - 167 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Statistical Physics publication_status: published publisher: Springer publist_id: '5276' quality_controlled: '1' scopus_import: 1 status: public title: Invariant measures of genetic recombination process type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 160 year: '2015' ... --- _id: '1938' abstract: - lang: eng text: 'We numerically investigate the distribution of extrema of ''chaotic'' Laplacian eigenfunctions on two-dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small number of randomly added edges and show the behavior to coincide with the 1957 prediction of Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in space than the grid Z2.' acknowledgement: "F.P. was supported by the Graduate School of IST Austria. S.S. was partially supported by CRC1060 of the DFG\r\nThe authors thank Olga Symonova and Michael Kerber for sharing their implementation of the persistence algorithm. " author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Stefan full_name: Steinerberger, Stefan last_name: Steinerberger citation: ama: Pausinger F, Steinerberger S. On the distribution of local extrema in quantum chaos. Physics Letters, Section A. 2015;379(6):535-541. doi:10.1016/j.physleta.2014.12.010 apa: Pausinger, F., & Steinerberger, S. (2015). On the distribution of local extrema in quantum chaos. Physics Letters, Section A. Elsevier. https://doi.org/10.1016/j.physleta.2014.12.010 chicago: Pausinger, Florian, and Stefan Steinerberger. “On the Distribution of Local Extrema in Quantum Chaos.” Physics Letters, Section A. Elsevier, 2015. https://doi.org/10.1016/j.physleta.2014.12.010. ieee: F. Pausinger and S. Steinerberger, “On the distribution of local extrema in quantum chaos,” Physics Letters, Section A, vol. 379, no. 6. Elsevier, pp. 535–541, 2015. ista: Pausinger F, Steinerberger S. 2015. On the distribution of local extrema in quantum chaos. Physics Letters, Section A. 379(6), 535–541. mla: Pausinger, Florian, and Stefan Steinerberger. “On the Distribution of Local Extrema in Quantum Chaos.” Physics Letters, Section A, vol. 379, no. 6, Elsevier, 2015, pp. 535–41, doi:10.1016/j.physleta.2014.12.010. short: F. Pausinger, S. Steinerberger, Physics Letters, Section A 379 (2015) 535–541. date_created: 2018-12-11T11:54:49Z date_published: 2015-03-06T00:00:00Z date_updated: 2021-01-12T06:54:12Z day: '06' department: - _id: HeEd doi: 10.1016/j.physleta.2014.12.010 intvolume: ' 379' issue: '6' language: - iso: eng month: '03' oa_version: None page: 535 - 541 publication: Physics Letters, Section A publication_status: published publisher: Elsevier publist_id: '5152' quality_controlled: '1' scopus_import: 1 status: public title: On the distribution of local extrema in quantum chaos type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 379 year: '2015' ... --- _id: '2035' abstract: - lang: eng text: "Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility.\r\n" acknowledgement: This research is partially supported by the Toposys project FP7-ICT-318493-STREP, by ESF under the ACAT Research Network Programme, by the Russian Government under mega project 11.G34.31.0053, and by the Polish National Science Center under Grant No. N201 419639. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: Marian full_name: Mrozek, Marian last_name: Mrozek citation: ama: Edelsbrunner H, Jablonski G, Mrozek M. The persistent homology of a self-map. Foundations of Computational Mathematics. 2015;15(5):1213-1244. doi:10.1007/s10208-014-9223-y apa: Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2015). The persistent homology of a self-map. Foundations of Computational Mathematics. Springer. https://doi.org/10.1007/s10208-014-9223-y chicago: Edelsbrunner, Herbert, Grzegorz Jablonski, and Marian Mrozek. “The Persistent Homology of a Self-Map.” Foundations of Computational Mathematics. Springer, 2015. https://doi.org/10.1007/s10208-014-9223-y. ieee: H. Edelsbrunner, G. Jablonski, and M. Mrozek, “The persistent homology of a self-map,” Foundations of Computational Mathematics, vol. 15, no. 5. Springer, pp. 1213–1244, 2015. ista: Edelsbrunner H, Jablonski G, Mrozek M. 2015. The persistent homology of a self-map. Foundations of Computational Mathematics. 15(5), 1213–1244. mla: Edelsbrunner, Herbert, et al. “The Persistent Homology of a Self-Map.” Foundations of Computational Mathematics, vol. 15, no. 5, Springer, 2015, pp. 1213–44, doi:10.1007/s10208-014-9223-y. short: H. Edelsbrunner, G. Jablonski, M. Mrozek, Foundations of Computational Mathematics 15 (2015) 1213–1244. date_created: 2018-12-11T11:55:20Z date_published: 2015-10-01T00:00:00Z date_updated: 2021-01-12T06:54:53Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1007/s10208-014-9223-y ec_funded: 1 file: - access_level: open_access checksum: 3566f3a8b0c1bc550e62914a88c584ff content_type: application/pdf creator: system date_created: 2018-12-12T10:08:10Z date_updated: 2020-07-14T12:45:26Z file_id: '4670' file_name: IST-2016-486-v1+1_s10208-014-9223-y.pdf file_size: 1317546 relation: main_file file_date_updated: 2020-07-14T12:45:26Z has_accepted_license: '1' intvolume: ' 15' issue: '5' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 1213 - 1244 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Foundations of Computational Mathematics publication_status: published publisher: Springer publist_id: '5022' pubrep_id: '486' quality_controlled: '1' scopus_import: 1 status: public title: The persistent homology of a self-map tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2015' ... --- _id: '1805' abstract: - lang: eng text: 'We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology H∗(X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in double-struck R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on double-struck S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.' author: - first_name: Dominique full_name: Attali, Dominique last_name: Attali - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Olivier full_name: Devillers, Olivier last_name: Devillers - first_name: Marc full_name: Glisse, Marc last_name: Glisse - first_name: André full_name: Lieutier, André last_name: Lieutier citation: ama: 'Attali D, Bauer U, Devillers O, Glisse M, Lieutier A. Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. 2015;48(8):606-621. doi:10.1016/j.comgeo.2014.08.010' apa: 'Attali, D., Bauer, U., Devillers, O., Glisse, M., & Lieutier, A. (2015). Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2014.08.010' chicago: 'Attali, Dominique, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. “Homological Reconstruction and Simplification in R3.” Computational Geometry: Theory and Applications. Elsevier, 2015. https://doi.org/10.1016/j.comgeo.2014.08.010.' ieee: 'D. Attali, U. Bauer, O. Devillers, M. Glisse, and A. Lieutier, “Homological reconstruction and simplification in R3,” Computational Geometry: Theory and Applications, vol. 48, no. 8. Elsevier, pp. 606–621, 2015.' ista: 'Attali D, Bauer U, Devillers O, Glisse M, Lieutier A. 2015. Homological reconstruction and simplification in R3. Computational Geometry: Theory and Applications. 48(8), 606–621.' mla: 'Attali, Dominique, et al. “Homological Reconstruction and Simplification in R3.” Computational Geometry: Theory and Applications, vol. 48, no. 8, Elsevier, 2015, pp. 606–21, doi:10.1016/j.comgeo.2014.08.010.' short: 'D. Attali, U. Bauer, O. Devillers, M. Glisse, A. Lieutier, Computational Geometry: Theory and Applications 48 (2015) 606–621.' date_created: 2018-12-11T11:54:06Z date_published: 2015-06-03T00:00:00Z date_updated: 2023-02-23T10:59:19Z day: '03' department: - _id: HeEd doi: 10.1016/j.comgeo.2014.08.010 ec_funded: 1 intvolume: ' 48' issue: '8' language: - iso: eng month: '06' oa_version: None page: 606 - 621 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '5305' quality_controlled: '1' related_material: record: - id: '2812' relation: earlier_version status: public scopus_import: 1 status: public title: Homological reconstruction and simplification in R3 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 48 year: '2015' ... --- _id: '1793' abstract: - lang: eng text: We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth. article_number: e0127657 author: - first_name: Olga full_name: Symonova, Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova - first_name: Christopher full_name: Topp, Christopher last_name: Topp - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: 'Symonova O, Topp C, Edelsbrunner H. DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. 2015;10(6). doi:10.1371/journal.pone.0127657' apa: 'Symonova, O., Topp, C., & Edelsbrunner, H. (2015). DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657' chicago: 'Symonova, Olga, Christopher Topp, and Herbert Edelsbrunner. “DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.” PLoS One. Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0127657.' ieee: 'O. Symonova, C. Topp, and H. Edelsbrunner, “DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots,” PLoS One, vol. 10, no. 6. Public Library of Science, 2015.' ista: 'Symonova O, Topp C, Edelsbrunner H. 2015. DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One. 10(6), e0127657.' mla: 'Symonova, Olga, et al. “DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.” PLoS One, vol. 10, no. 6, e0127657, Public Library of Science, 2015, doi:10.1371/journal.pone.0127657.' short: O. Symonova, C. Topp, H. Edelsbrunner, PLoS One 10 (2015). date_created: 2018-12-11T11:54:02Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T14:06:33Z day: '01' ddc: - '000' department: - _id: MaJö - _id: HeEd doi: 10.1371/journal.pone.0127657 file: - access_level: open_access checksum: d20f26461ca575276ad3ed9ce4bfc787 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:30Z date_updated: 2020-07-14T12:45:16Z file_id: '5150' file_name: IST-2016-454-v1+1_journal.pone.0127657.pdf file_size: 1850825 relation: main_file file_date_updated: 2020-07-14T12:45:16Z has_accepted_license: '1' intvolume: ' 10' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5318' pubrep_id: '454' quality_controlled: '1' related_material: record: - id: '9737' relation: research_data status: public scopus_import: 1 status: public title: 'DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2015' ... --- _id: '9737' article_processing_charge: No author: - first_name: Olga full_name: Symonova, Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova - first_name: Christopher full_name: Topp, Christopher last_name: Topp - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Symonova O, Topp C, Edelsbrunner H. Root traits computed by DynamicRoots for the maize root shown in fig 2. 2015. doi:10.1371/journal.pone.0127657.s001 apa: Symonova, O., Topp, C., & Edelsbrunner, H. (2015). Root traits computed by DynamicRoots for the maize root shown in fig 2. Public Library of Science. https://doi.org/10.1371/journal.pone.0127657.s001 chicago: Symonova, Olga, Christopher Topp, and Herbert Edelsbrunner. “Root Traits Computed by DynamicRoots for the Maize Root Shown in Fig 2.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0127657.s001. ieee: O. Symonova, C. Topp, and H. Edelsbrunner, “Root traits computed by DynamicRoots for the maize root shown in fig 2.” Public Library of Science, 2015. ista: Symonova O, Topp C, Edelsbrunner H. 2015. Root traits computed by DynamicRoots for the maize root shown in fig 2, Public Library of Science, 10.1371/journal.pone.0127657.s001. mla: Symonova, Olga, et al. Root Traits Computed by DynamicRoots for the Maize Root Shown in Fig 2. Public Library of Science, 2015, doi:10.1371/journal.pone.0127657.s001. short: O. Symonova, C. Topp, H. Edelsbrunner, (2015). date_created: 2021-07-28T06:20:13Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T10:14:42Z day: '01' department: - _id: MaJö - _id: HeEd doi: 10.1371/journal.pone.0127657.s001 month: '06' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1793' relation: used_in_publication status: public status: public title: Root traits computed by DynamicRoots for the maize root shown in fig 2 type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '1792' abstract: - lang: eng text: Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology. acknowledgement: F.P. is supported by the Graduate School of IST Austria, A.M.S is supported by the Centre for Stochastic Geometry and Advanced Bioimaging funded by a grant from the Villum Foundation. author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Anne full_name: Svane, Anne last_name: Svane citation: ama: Pausinger F, Svane A. A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. 2015;31(6):773-797. doi:10.1016/j.jco.2015.06.002 apa: Pausinger, F., & Svane, A. (2015). A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.06.002 chicago: Pausinger, Florian, and Anne Svane. “A Koksma-Hlawka Inequality for General Discrepancy Systems.” Journal of Complexity. Academic Press, 2015. https://doi.org/10.1016/j.jco.2015.06.002. ieee: F. Pausinger and A. Svane, “A Koksma-Hlawka inequality for general discrepancy systems,” Journal of Complexity, vol. 31, no. 6. Academic Press, pp. 773–797, 2015. ista: Pausinger F, Svane A. 2015. A Koksma-Hlawka inequality for general discrepancy systems. Journal of Complexity. 31(6), 773–797. mla: Pausinger, Florian, and Anne Svane. “A Koksma-Hlawka Inequality for General Discrepancy Systems.” Journal of Complexity, vol. 31, no. 6, Academic Press, 2015, pp. 773–97, doi:10.1016/j.jco.2015.06.002. short: F. Pausinger, A. Svane, Journal of Complexity 31 (2015) 773–797. date_created: 2018-12-11T11:54:02Z date_published: 2015-12-01T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '01' department: - _id: HeEd doi: 10.1016/j.jco.2015.06.002 intvolume: ' 31' issue: '6' language: - iso: eng month: '12' oa_version: None page: 773 - 797 publication: Journal of Complexity publication_status: published publisher: Academic Press publist_id: '5320' quality_controlled: '1' related_material: record: - id: '1399' relation: dissertation_contains status: public scopus_import: 1 status: public title: A Koksma-Hlawka inequality for general discrepancy systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2015' ... --- _id: '1399' abstract: - lang: eng text: This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 citation: ama: Pausinger F. On the approximation of intrinsic volumes. 2015. apa: Pausinger, F. (2015). On the approximation of intrinsic volumes. Institute of Science and Technology Austria. chicago: Pausinger, Florian. “On the Approximation of Intrinsic Volumes.” Institute of Science and Technology Austria, 2015. ieee: F. Pausinger, “On the approximation of intrinsic volumes,” Institute of Science and Technology Austria, 2015. ista: Pausinger F. 2015. On the approximation of intrinsic volumes. Institute of Science and Technology Austria. mla: Pausinger, Florian. On the Approximation of Intrinsic Volumes. Institute of Science and Technology Austria, 2015. short: F. Pausinger, On the Approximation of Intrinsic Volumes, Institute of Science and Technology Austria, 2015. date_created: 2018-12-11T11:51:48Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '01' degree_awarded: PhD department: - _id: HeEd language: - iso: eng month: '06' oa_version: None page: '144' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5808' related_material: record: - id: '1662' relation: part_of_dissertation status: public - id: '1792' relation: part_of_dissertation status: public - id: '2255' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: On the approximation of intrinsic volumes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2015' ... --- _id: '10893' abstract: - lang: eng text: Saddle periodic orbits are an essential and stable part of the topological skeleton of a 3D vector field. Nevertheless, there is currently no efficient algorithm to robustly extract these features. In this chapter, we present a novel technique to extract saddle periodic orbits. Exploiting the analytic properties of such an orbit, we propose a scalar measure based on the finite-time Lyapunov exponent (FTLE) that indicates its presence. Using persistent homology, we can then extract the robust cycles of this field. These cycles thereby represent the saddle periodic orbits of the given vector field. We discuss the different existing FTLE approximation schemes regarding their applicability to this specific problem and propose an adapted version of FTLE called Normalized Velocity Separation. Finally, we evaluate our method using simple analytic vector field data. acknowledgement: First, we thank the reviewers of this paper for their ideas and critical comments. In addition, we thank Ronny Peikert and Filip Sadlo for a fruitful discussions. This research is supported by the European Commission under the TOPOSYS project FP7-ICT-318493-STREP, the European Social Fund (ESF App. No. 100098251), and the European Science Foundation under the ACAT Research Network Program. article_processing_charge: No author: - first_name: Jens full_name: Kasten, Jens last_name: Kasten - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Wieland full_name: Reich, Wieland last_name: Reich - first_name: Gerik full_name: Scheuermann, Gerik last_name: Scheuermann citation: ama: 'Kasten J, Reininghaus J, Reich W, Scheuermann G. Toward the extraction of saddle periodic orbits. In: Bremer P-T, Hotz I, Pascucci V, Peikert R, eds. Topological Methods in Data Analysis and Visualization III . Vol 1. Mathematics and Visualization. Cham: Springer; 2014:55-69. doi:10.1007/978-3-319-04099-8_4' apa: 'Kasten, J., Reininghaus, J., Reich, W., & Scheuermann, G. (2014). Toward the extraction of saddle periodic orbits. In P.-T. Bremer, I. Hotz, V. Pascucci, & R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III (Vol. 1, pp. 55–69). Cham: Springer. https://doi.org/10.1007/978-3-319-04099-8_4' chicago: 'Kasten, Jens, Jan Reininghaus, Wieland Reich, and Gerik Scheuermann. “Toward the Extraction of Saddle Periodic Orbits.” In Topological Methods in Data Analysis and Visualization III , edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 1:55–69. Mathematics and Visualization. Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_4.' ieee: 'J. Kasten, J. Reininghaus, W. Reich, and G. Scheuermann, “Toward the extraction of saddle periodic orbits,” in Topological Methods in Data Analysis and Visualization III , vol. 1, P.-T. Bremer, I. Hotz, V. Pascucci, and R. Peikert, Eds. Cham: Springer, 2014, pp. 55–69.' ista: 'Kasten J, Reininghaus J, Reich W, Scheuermann G. 2014.Toward the extraction of saddle periodic orbits. In: Topological Methods in Data Analysis and Visualization III . vol. 1, 55–69.' mla: Kasten, Jens, et al. “Toward the Extraction of Saddle Periodic Orbits.” Topological Methods in Data Analysis and Visualization III , edited by Peer-Timo Bremer et al., vol. 1, Springer, 2014, pp. 55–69, doi:10.1007/978-3-319-04099-8_4. short: J. Kasten, J. Reininghaus, W. Reich, G. Scheuermann, in:, P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis and Visualization III , Springer, Cham, 2014, pp. 55–69. date_created: 2022-03-21T07:11:23Z date_published: 2014-03-19T00:00:00Z date_updated: 2022-06-21T12:01:47Z day: '19' department: - _id: HeEd doi: 10.1007/978-3-319-04099-8_4 ec_funded: 1 editor: - first_name: Peer-Timo full_name: Bremer, Peer-Timo last_name: Bremer - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Valerio full_name: Pascucci, Valerio last_name: Pascucci - first_name: Ronald full_name: Peikert, Ronald last_name: Peikert intvolume: ' 1' language: - iso: eng month: '03' oa_version: None page: 55-69 place: Cham project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: 'Topological Methods in Data Analysis and Visualization III ' publication_identifier: eisbn: - '9783319040998' eissn: - 2197-666X isbn: - '9783319040981' issn: - 1612-3786 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' series_title: Mathematics and Visualization status: public title: Toward the extraction of saddle periodic orbits type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2014' ... --- _id: '1816' abstract: - lang: eng text: Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques. acknowledgement: 'Work by Martin Held and Stefan Huber was supported by Austrian Science Fund (FWF): L367-N15 and P25816-N15.' author: - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Peter full_name: Meerwald, Peter last_name: Meerwald - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt citation: ama: Huber S, Held M, Meerwald P, Kwitt R. Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. 2014;24(1):61-86. doi:10.1142/S0218195914500034 apa: Huber, S., Held, M., Meerwald, P., & Kwitt, R. (2014). Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. World Scientific Publishing. https://doi.org/10.1142/S0218195914500034 chicago: Huber, Stefan, Martin Held, Peter Meerwald, and Roland Kwitt. “Topology-Preserving Watermarking of Vector Graphics.” International Journal of Computational Geometry and Applications. World Scientific Publishing, 2014. https://doi.org/10.1142/S0218195914500034. ieee: S. Huber, M. Held, P. Meerwald, and R. Kwitt, “Topology-preserving watermarking of vector graphics,” International Journal of Computational Geometry and Applications, vol. 24, no. 1. World Scientific Publishing, pp. 61–86, 2014. ista: Huber S, Held M, Meerwald P, Kwitt R. 2014. Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications. 24(1), 61–86. mla: Huber, Stefan, et al. “Topology-Preserving Watermarking of Vector Graphics.” International Journal of Computational Geometry and Applications, vol. 24, no. 1, World Scientific Publishing, 2014, pp. 61–86, doi:10.1142/S0218195914500034. short: S. Huber, M. Held, P. Meerwald, R. Kwitt, International Journal of Computational Geometry and Applications 24 (2014) 61–86. date_created: 2018-12-11T11:54:10Z date_published: 2014-03-16T00:00:00Z date_updated: 2021-01-12T06:53:23Z day: '16' ddc: - '000' department: - _id: HeEd doi: 10.1142/S0218195914500034 file: - access_level: open_access checksum: be45c133ab4d43351260e21beaa8f4b1 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:43Z date_updated: 2020-07-14T12:45:17Z file_id: '4704' file_name: IST-2016-443-v1+1_S0218195914500034.pdf file_size: 991734 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 24' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 61 - 86 publication: International Journal of Computational Geometry and Applications publication_status: published publisher: World Scientific Publishing publist_id: '5290' pubrep_id: '443' quality_controlled: '1' scopus_import: 1 status: public title: Topology-preserving watermarking of vector graphics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2014' ... --- _id: '1842' abstract: - lang: eng text: We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices. acknowledgement: Marek Krčál was supported by the ERC Advanced Grant No. 267165. author: - first_name: Josef full_name: Cibulka, Josef last_name: Cibulka - first_name: Pu full_name: Gao, Pu last_name: Gao - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál - first_name: Tomáš full_name: Valla, Tomáš last_name: Valla - first_name: Pavel full_name: Valtr, Pavel last_name: Valtr citation: ama: Cibulka J, Gao P, Krcál M, Valla T, Valtr P. On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. 2014;53(1):64-79. doi:10.1007/s00454-014-9646-x apa: Cibulka, J., Gao, P., Krcál, M., Valla, T., & Valtr, P. (2014). On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-014-9646-x chicago: Cibulka, Josef, Pu Gao, Marek Krcál, Tomáš Valla, and Pavel Valtr. “On the Geometric Ramsey Number of Outerplanar Graphs.” Discrete & Computational Geometry. Springer, 2014. https://doi.org/10.1007/s00454-014-9646-x. ieee: J. Cibulka, P. Gao, M. Krcál, T. Valla, and P. Valtr, “On the geometric ramsey number of outerplanar graphs,” Discrete & Computational Geometry, vol. 53, no. 1. Springer, pp. 64–79, 2014. ista: Cibulka J, Gao P, Krcál M, Valla T, Valtr P. 2014. On the geometric ramsey number of outerplanar graphs. Discrete & Computational Geometry. 53(1), 64–79. mla: Cibulka, Josef, et al. “On the Geometric Ramsey Number of Outerplanar Graphs.” Discrete & Computational Geometry, vol. 53, no. 1, Springer, 2014, pp. 64–79, doi:10.1007/s00454-014-9646-x. short: J. Cibulka, P. Gao, M. Krcál, T. Valla, P. Valtr, Discrete & Computational Geometry 53 (2014) 64–79. date_created: 2018-12-11T11:54:18Z date_published: 2014-11-14T00:00:00Z date_updated: 2021-01-12T06:53:33Z day: '14' department: - _id: UlWa - _id: HeEd doi: 10.1007/s00454-014-9646-x intvolume: ' 53' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1310.7004 month: '11' oa: 1 oa_version: Submitted Version page: 64 - 79 publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '5260' scopus_import: 1 status: public title: On the geometric ramsey number of outerplanar graphs type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 53 year: '2014' ... --- _id: '1876' abstract: - lang: eng text: We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets. article_processing_charge: No article_type: original author: - first_name: Nikolai full_name: Dolbilin, Nikolai last_name: Dolbilin - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Alexey full_name: Glazyrin, Alexey last_name: Glazyrin - first_name: Oleg full_name: Musin, Oleg last_name: Musin citation: ama: Dolbilin N, Edelsbrunner H, Glazyrin A, Musin O. Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. 2014;14(3):491-504. doi:10.17323/1609-4514-2014-14-3-491-504 apa: Dolbilin, N., Edelsbrunner, H., Glazyrin, A., & Musin, O. (2014). Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. Independent University of Moscow. https://doi.org/10.17323/1609-4514-2014-14-3-491-504 chicago: Dolbilin, Nikolai, Herbert Edelsbrunner, Alexey Glazyrin, and Oleg Musin. “Functionals on Triangulations of Delaunay Sets.” Moscow Mathematical Journal. Independent University of Moscow, 2014. https://doi.org/10.17323/1609-4514-2014-14-3-491-504. ieee: N. Dolbilin, H. Edelsbrunner, A. Glazyrin, and O. Musin, “Functionals on triangulations of delaunay sets,” Moscow Mathematical Journal, vol. 14, no. 3. Independent University of Moscow, pp. 491–504, 2014. ista: Dolbilin N, Edelsbrunner H, Glazyrin A, Musin O. 2014. Functionals on triangulations of delaunay sets. Moscow Mathematical Journal. 14(3), 491–504. mla: Dolbilin, Nikolai, et al. “Functionals on Triangulations of Delaunay Sets.” Moscow Mathematical Journal, vol. 14, no. 3, Independent University of Moscow, 2014, pp. 491–504, doi:10.17323/1609-4514-2014-14-3-491-504. short: N. Dolbilin, H. Edelsbrunner, A. Glazyrin, O. Musin, Moscow Mathematical Journal 14 (2014) 491–504. date_created: 2018-12-11T11:54:29Z date_published: 2014-07-01T00:00:00Z date_updated: 2022-03-03T11:47:09Z day: '01' department: - _id: HeEd doi: 10.17323/1609-4514-2014-14-3-491-504 external_id: arxiv: - '1211.7053' intvolume: ' 14' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1211.7053 month: '07' oa: 1 oa_version: Submitted Version page: 491 - 504 publication: Moscow Mathematical Journal publication_identifier: issn: - '16093321' publication_status: published publisher: Independent University of Moscow publist_id: '5220' quality_controlled: '1' scopus_import: '1' status: public title: Functionals on triangulations of delaunay sets type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2014' ... --- _id: '1929' abstract: - lang: eng text: We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales. acknowledgement: We would like to offer our special thanks to students of the Department of Mathematics of Demidov Yaroslavl State University A. A. Gorokhov and V. N. Knyazev for participation in developing the program and assistance in preparation of test data. This work was supported by grant 11.G34.31.0053 from the government of the Russian Federation. article_processing_charge: No article_type: original author: - first_name: V V full_name: Alexeev, V V last_name: Alexeev - first_name: V G full_name: Bogaevskaya, V G last_name: Bogaevskaya - first_name: M M full_name: Preobrazhenskaya, M M last_name: Preobrazhenskaya - first_name: A Y full_name: Ukhalov, A Y last_name: Ukhalov - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Olga full_name: Yakimova, Olga last_name: Yakimova citation: ama: Alexeev VV, Bogaevskaya VG, Preobrazhenskaya MM, Ukhalov AY, Edelsbrunner H, Yakimova O. An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. 2014;203(6):754-760. doi:10.1007/s10958-014-2165-8 apa: Alexeev, V. V., Bogaevskaya, V. G., Preobrazhenskaya, M. M., Ukhalov, A. Y., Edelsbrunner, H., & Yakimova, O. (2014). An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. Springer. https://doi.org/10.1007/s10958-014-2165-8 chicago: Alexeev, V V, V G Bogaevskaya, M M Preobrazhenskaya, A Y Ukhalov, Herbert Edelsbrunner, and Olga Yakimova. “An Algorithm for Cartographic Generalization That Preserves Global Topology.” Journal of Mathematical Sciences. Springer, 2014. https://doi.org/10.1007/s10958-014-2165-8. ieee: V. V. Alexeev, V. G. Bogaevskaya, M. M. Preobrazhenskaya, A. Y. Ukhalov, H. Edelsbrunner, and O. Yakimova, “An algorithm for cartographic generalization that preserves global topology,” Journal of Mathematical Sciences, vol. 203, no. 6. Springer, pp. 754–760, 2014. ista: Alexeev VV, Bogaevskaya VG, Preobrazhenskaya MM, Ukhalov AY, Edelsbrunner H, Yakimova O. 2014. An algorithm for cartographic generalization that preserves global topology. Journal of Mathematical Sciences. 203(6), 754–760. mla: Alexeev, V. V., et al. “An Algorithm for Cartographic Generalization That Preserves Global Topology.” Journal of Mathematical Sciences, vol. 203, no. 6, Springer, 2014, pp. 754–60, doi:10.1007/s10958-014-2165-8. short: V.V. Alexeev, V.G. Bogaevskaya, M.M. Preobrazhenskaya, A.Y. Ukhalov, H. Edelsbrunner, O. Yakimova, Journal of Mathematical Sciences 203 (2014) 754–760. date_created: 2018-12-11T11:54:46Z date_published: 2014-11-16T00:00:00Z date_updated: 2022-05-24T10:39:06Z day: '16' department: - _id: HeEd doi: 10.1007/s10958-014-2165-8 intvolume: ' 203' issue: '6' language: - iso: eng month: '11' oa_version: None page: 754 - 760 publication: Journal of Mathematical Sciences publication_identifier: eissn: - 1573-8795 issn: - 1072-3374 publication_status: published publisher: Springer publist_id: '5165' quality_controlled: '1' scopus_import: '1' status: public title: An algorithm for cartographic generalization that preserves global topology type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 203 year: '2014' ...