--- _id: '8940' abstract: - lang: eng text: We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric. acknowledgement: This work has been funded by the European Research Council under the European Union’s ERC Grant Agreement Number 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). The third author also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. Open access funding provided by the Institute of Science and Technology (IST Austria). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Siargey full_name: Kachanovich, Siargey last_name: Kachanovich - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Boissonnat J-D, Kachanovich S, Wintraecken M. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 2021;66(1):386-434. doi:10.1007/s00454-020-00250-8' apa: 'Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00250-8' chicago: 'Boissonnat, Jean-Daniel, Siargey Kachanovich, and Mathijs Wintraecken. “Triangulating Submanifolds: An Elementary and Quantified Version of Whitney’s Method.” Discrete & Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00250-8.' ieee: 'J.-D. Boissonnat, S. Kachanovich, and M. Wintraecken, “Triangulating submanifolds: An elementary and quantified version of Whitney’s method,” Discrete & Computational Geometry, vol. 66, no. 1. Springer Nature, pp. 386–434, 2021.' ista: 'Boissonnat J-D, Kachanovich S, Wintraecken M. 2021. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 66(1), 386–434.' mla: 'Boissonnat, Jean-Daniel, et al. “Triangulating Submanifolds: An Elementary and Quantified Version of Whitney’s Method.” Discrete & Computational Geometry, vol. 66, no. 1, Springer Nature, 2021, pp. 386–434, doi:10.1007/s00454-020-00250-8.' short: J.-D. Boissonnat, S. Kachanovich, M. Wintraecken, Discrete & Computational Geometry 66 (2021) 386–434. date_created: 2020-12-12T11:07:02Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-09-05T15:02:40Z day: '01' ddc: - '516' department: - _id: HeEd doi: 10.1007/s00454-020-00250-8 ec_funded: 1 external_id: isi: - '000597770300001' file: - access_level: open_access checksum: c848986091e56699dc12de85adb1e39c content_type: application/pdf creator: kschuh date_created: 2021-08-06T09:52:29Z date_updated: 2021-08-06T09:52:29Z file_id: '9795' file_name: 2021_DescreteCompGeopmetry_Boissonnat.pdf file_size: 983307 relation: main_file success: 1 file_date_updated: 2021-08-06T09:52:29Z has_accepted_license: '1' intvolume: ' 66' isi: 1 issue: '1' keyword: - Theoretical Computer Science - Computational Theory and Mathematics - Geometry and Topology - Discrete Mathematics and Combinatorics language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 386-434 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Discrete & Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: 'Triangulating submanifolds: An elementary and quantified version of Whitney’s method' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 66 year: '2021' ... --- _id: '9111' abstract: - lang: eng text: 'We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.' acknowledgement: "AB was supported in part by the European Union’s Horizon 2020 research and innovation\r\nprogramme under the Marie Sklodowska-Curie GrantAgreement No. 754411 and NSF IIS-1513616. OB was supported in part by the Israel Science Foundation, Grant 1965/19. BW was supported in part by NSF IIS-1513616 and DBI-1661375. EM was supported in part by NSF CMMI-1800466, DMS-1800446, and CCF-1907591.We would like to thank the Institute for Mathematics and its Applications for hosting a workshop titled Bridging Statistics and Sheaves in May 2018, where this work was conceived.\r\nOpen Access funding provided by Institute of Science and Technology (IST Austria)." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown - first_name: Omer full_name: Bobrowski, Omer last_name: Bobrowski - first_name: Elizabeth full_name: Munch, Elizabeth last_name: Munch - first_name: Bei full_name: Wang, Bei last_name: Wang citation: ama: Brown A, Bobrowski O, Munch E, Wang B. Probabilistic convergence and stability of random mapper graphs. Journal of Applied and Computational Topology. 2021;5(1):99-140. doi:10.1007/s41468-020-00063-x apa: Brown, A., Bobrowski, O., Munch, E., & Wang, B. (2021). Probabilistic convergence and stability of random mapper graphs. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00063-x chicago: Brown, Adam, Omer Bobrowski, Elizabeth Munch, and Bei Wang. “Probabilistic Convergence and Stability of Random Mapper Graphs.” Journal of Applied and Computational Topology. Springer Nature, 2021. https://doi.org/10.1007/s41468-020-00063-x. ieee: A. Brown, O. Bobrowski, E. Munch, and B. Wang, “Probabilistic convergence and stability of random mapper graphs,” Journal of Applied and Computational Topology, vol. 5, no. 1. Springer Nature, pp. 99–140, 2021. ista: Brown A, Bobrowski O, Munch E, Wang B. 2021. Probabilistic convergence and stability of random mapper graphs. Journal of Applied and Computational Topology. 5(1), 99–140. mla: Brown, Adam, et al. “Probabilistic Convergence and Stability of Random Mapper Graphs.” Journal of Applied and Computational Topology, vol. 5, no. 1, Springer Nature, 2021, pp. 99–140, doi:10.1007/s41468-020-00063-x. short: A. Brown, O. Bobrowski, E. Munch, B. Wang, Journal of Applied and Computational Topology 5 (2021) 99–140. date_created: 2021-02-11T14:41:02Z date_published: 2021-03-01T00:00:00Z date_updated: 2023-09-05T15:37:56Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s41468-020-00063-x ec_funded: 1 external_id: arxiv: - '1909.03488' file: - access_level: open_access checksum: 3f02e9d47c428484733da0f588a3c069 content_type: application/pdf creator: dernst date_created: 2021-02-11T14:43:59Z date_updated: 2021-02-11T14:43:59Z file_id: '9112' file_name: 2020_JourApplCompTopology_Brown.pdf file_size: 2090265 relation: main_file success: 1 file_date_updated: 2021-02-11T14:43:59Z has_accepted_license: '1' intvolume: ' 5' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 99-140 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of Applied and Computational Topology publication_identifier: eissn: - 2367-1734 issn: - 2367-1726 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Probabilistic convergence and stability of random mapper graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2021' ... --- _id: '9056' abstract: - lang: eng text: "In this thesis we study persistence of multi-covers of Euclidean balls and the geometric structures underlying their computation, in particular Delaunay mosaics and Voronoi tessellations. The k-fold cover for some discrete input point set consists of the space where at least k balls of radius r around the input points overlap. Persistence is a notion that captures, in some sense, the topology of the shape underlying the input. While persistence is usually computed for the union of balls, the k-fold cover is of interest as it captures local density,\r\nand thus might approximate the shape of the input better if the input data is noisy. To compute persistence of these k-fold covers, we need a discretization that is provided by higher-order Delaunay mosaics. We present and implement a simple and efficient algorithm for the computation of higher-order Delaunay mosaics, and use it to give experimental results for their combinatorial properties. The algorithm makes use of a new geometric structure, the rhomboid tiling. It contains the higher-order Delaunay mosaics as slices, and by introducing a filtration\r\nfunction on the tiling, we also obtain higher-order α-shapes as slices. These allow us to compute persistence of the multi-covers for varying radius r; the computation for varying k is less straight-foward and involves the rhomboid tiling directly. We apply our algorithms to experimental sphere packings to shed light on their structural properties. Finally, inspired by periodic structures in packings and materials, we propose and implement an algorithm for periodic Delaunay triangulations to be integrated into the Computational Geometry Algorithms Library (CGAL), and discuss the implications on persistence for periodic data sets." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 citation: ama: Osang GF. Multi-cover persistence and Delaunay mosaics. 2021. doi:10.15479/AT:ISTA:9056 apa: Osang, G. F. (2021). Multi-cover persistence and Delaunay mosaics. Institute of Science and Technology Austria, Klosterneuburg. https://doi.org/10.15479/AT:ISTA:9056 chicago: Osang, Georg F. “Multi-Cover Persistence and Delaunay Mosaics.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:9056. ieee: G. F. Osang, “Multi-cover persistence and Delaunay mosaics,” Institute of Science and Technology Austria, Klosterneuburg, 2021. ista: 'Osang GF. 2021. Multi-cover persistence and Delaunay mosaics. Klosterneuburg: Institute of Science and Technology Austria.' mla: Osang, Georg F. Multi-Cover Persistence and Delaunay Mosaics. Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:9056. short: G.F. Osang, Multi-Cover Persistence and Delaunay Mosaics, Institute of Science and Technology Austria, 2021. date_created: 2021-02-02T14:11:06Z date_published: 2021-02-01T00:00:00Z date_updated: 2023-09-07T13:29:01Z day: '01' ddc: - '006' - '514' - '516' degree_awarded: PhD department: - _id: HeEd - _id: GradSch doi: 10.15479/AT:ISTA:9056 file: - access_level: closed checksum: bcf27986147cab0533b6abadd74e7629 content_type: application/zip creator: patrickd date_created: 2021-02-02T14:09:25Z date_updated: 2021-02-03T10:37:28Z file_id: '9063' file_name: thesis_source.zip file_size: 13446994 relation: source_file - access_level: open_access checksum: 9cc8af266579a464385bbe2aff6af606 content_type: application/pdf creator: patrickd date_created: 2021-02-02T14:09:18Z date_updated: 2021-02-02T14:09:18Z file_id: '9064' file_name: thesis_pdfA2b.pdf file_size: 5210329 relation: main_file success: 1 file_date_updated: 2021-02-03T10:37:28Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '134' place: Klosterneuburg publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '187' relation: part_of_dissertation status: public - id: '8703' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Multi-cover persistence and Delaunay mosaics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '10204' abstract: - lang: eng text: Two common representations of close packings of identical spheres consisting of hexagonal layers, called Barlow stackings, appear abundantly in minerals and metals. These motifs, however, occupy an identical portion of space and bear identical first-order topological signatures as measured by persistent homology. Here we present a novel method based on k-fold covers that unambiguously distinguishes between these patterns. Moreover, our approach provides topological evidence that the FCC motif is the more stable of the two in the context of evolving experimental sphere packings during the transition from disordered to an ordered state. We conclude that our approach can be generalised to distinguish between various Barlow stackings manifested in minerals and metals. acknowledgement: MS acknowledges the support by Australian Research Council funding through the ARC Training Centre for M3D Innovation (IC180100008). MS thanks M. Hanifpour and N. Francois for their input and valuable discussions. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant no. 788183 and from the Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31. article_processing_charge: No article_type: original author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mohammad full_name: Saadatfar, Mohammad last_name: Saadatfar citation: ama: Osang GF, Edelsbrunner H, Saadatfar M. Topological signatures and stability of hexagonal close packing and Barlow stackings. Soft Matter. 2021;17(40):9107-9115. doi:10.1039/d1sm00774b apa: Osang, G. F., Edelsbrunner, H., & Saadatfar, M. (2021). Topological signatures and stability of hexagonal close packing and Barlow stackings. Soft Matter. Royal Society of Chemistry . https://doi.org/10.1039/d1sm00774b chicago: Osang, Georg F, Herbert Edelsbrunner, and Mohammad Saadatfar. “Topological Signatures and Stability of Hexagonal Close Packing and Barlow Stackings.” Soft Matter. Royal Society of Chemistry , 2021. https://doi.org/10.1039/d1sm00774b. ieee: G. F. Osang, H. Edelsbrunner, and M. Saadatfar, “Topological signatures and stability of hexagonal close packing and Barlow stackings,” Soft Matter, vol. 17, no. 40. Royal Society of Chemistry , pp. 9107–9115, 2021. ista: Osang GF, Edelsbrunner H, Saadatfar M. 2021. Topological signatures and stability of hexagonal close packing and Barlow stackings. Soft Matter. 17(40), 9107–9115. mla: Osang, Georg F., et al. “Topological Signatures and Stability of Hexagonal Close Packing and Barlow Stackings.” Soft Matter, vol. 17, no. 40, Royal Society of Chemistry , 2021, pp. 9107–15, doi:10.1039/d1sm00774b. short: G.F. Osang, H. Edelsbrunner, M. Saadatfar, Soft Matter 17 (2021) 9107–9115. date_created: 2021-10-31T23:01:30Z date_published: 2021-10-20T00:00:00Z date_updated: 2023-10-03T09:24:27Z day: '20' ddc: - '540' department: - _id: HeEd doi: 10.1039/d1sm00774b ec_funded: 1 external_id: isi: - '000700090000001' pmid: - '34569592' file: - access_level: open_access checksum: b4da0c420530295e61b153960f6cb350 content_type: application/pdf creator: dernst date_created: 2023-10-03T09:21:42Z date_updated: 2023-10-03T09:21:42Z file_id: '14385' file_name: 2021_SoftMatter_acceptedversion_Osang.pdf file_size: 4678788 relation: main_file success: 1 file_date_updated: 2023-10-03T09:21:42Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '40' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 9107-9115 pmid: 1 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: Soft Matter publication_identifier: eissn: - 1744-6848 issn: - 1744-683X publication_status: published publisher: 'Royal Society of Chemistry ' quality_controlled: '1' scopus_import: '1' status: public title: Topological signatures and stability of hexagonal close packing and Barlow stackings type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2021' ... --- _id: '9605' abstract: - lang: eng text: 'Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness. ' acknowledgement: The authors want to thank the reviewers for many helpful comments and suggestions. alternative_title: - LIPIcs article_number: '27' article_processing_charge: No author: - first_name: René full_name: Corbet, René last_name: Corbet - first_name: Michael full_name: Kerber, Michael last_name: Kerber - first_name: Michael full_name: Lesnick, Michael last_name: Lesnick - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 citation: ama: 'Corbet R, Kerber M, Lesnick M, Osang GF. Computing the multicover bifiltration. In: Leibniz International Proceedings in Informatics. Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.SoCG.2021.27' apa: 'Corbet, R., Kerber, M., Lesnick, M., & Osang, G. F. (2021). Computing the multicover bifiltration. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.27' chicago: Corbet, René, Michael Kerber, Michael Lesnick, and Georg F Osang. “Computing the Multicover Bifiltration.” In Leibniz International Proceedings in Informatics, Vol. 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.27. ieee: R. Corbet, M. Kerber, M. Lesnick, and G. F. Osang, “Computing the multicover bifiltration,” in Leibniz International Proceedings in Informatics, Online, 2021, vol. 189. ista: 'Corbet R, Kerber M, Lesnick M, Osang GF. 2021. Computing the multicover bifiltration. Leibniz International Proceedings in Informatics. SoCG: International Symposium on Computational Geometry, LIPIcs, vol. 189, 27.' mla: Corbet, René, et al. “Computing the Multicover Bifiltration.” Leibniz International Proceedings in Informatics, vol. 189, 27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.SoCG.2021.27. short: R. Corbet, M. Kerber, M. Lesnick, G.F. Osang, in:, Leibniz International Proceedings in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. conference: end_date: 2021-06-11 location: Online name: 'SoCG: International Symposium on Computational Geometry' start_date: 2021-06-07 date_created: 2021-06-27T22:01:49Z date_published: 2021-06-02T00:00:00Z date_updated: 2023-10-04T12:03:39Z day: '02' ddc: - '516' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2021.27 external_id: arxiv: - '2103.07823' file: - access_level: open_access checksum: 0de217501e7ba8b267d58deed0d51761 content_type: application/pdf creator: cziletti date_created: 2021-06-28T12:40:47Z date_updated: 2021-06-28T12:40:47Z file_id: '9610' file_name: 2021_LIPIcs_Corbet.pdf file_size: '1367983' relation: main_file success: 1 file_date_updated: 2021-06-28T12:40:47Z has_accepted_license: '1' intvolume: ' 189' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Leibniz International Proceedings in Informatics publication_identifier: isbn: - '9783959771849' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: link: - relation: extended_version url: https://arxiv.org/abs/2103.07823 record: - id: '12709' relation: later_version status: public scopus_import: '1' status: public title: Computing the multicover bifiltration tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 189 year: '2021' ... --- _id: '9441' abstract: - lang: eng text: "Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation \U0001D4AF of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. " acknowledgement: We thank Dominique Attali, Guilherme de Fonseca, Arijit Ghosh, Vincent Pilaud and Aurélien Alvarez for their comments and suggestions. We also acknowledge the reviewers. alternative_title: - LIPIcs article_processing_charge: No author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Siargey full_name: Kachanovich, Siargey last_name: Kachanovich - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Boissonnat J-D, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:17:1-17:16. doi:10.4230/LIPIcs.SoCG.2021.17' apa: 'Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 17:1-17:16). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.17' chicago: 'Boissonnat, Jean-Daniel, Siargey Kachanovich, and Mathijs Wintraecken. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter-Freudenthal-Kuhn Triangulations.” In 37th International Symposium on Computational Geometry (SoCG 2021), 189:17:1-17:16. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.17.' ieee: J.-D. Boissonnat, S. Kachanovich, and M. Wintraecken, “Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations,” in 37th International Symposium on Computational Geometry (SoCG 2021), Virtual, 2021, vol. 189, p. 17:1-17:16. ista: 'Boissonnat J-D, Kachanovich S, Wintraecken M. 2021. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. 37th International Symposium on Computational Geometry (SoCG 2021). SoCG: Symposium on Computational GeometryLeibniz International Proceedings in Informatics (LIPIcs), LIPIcs, vol. 189, 17:1-17:16.' mla: Boissonnat, Jean-Daniel, et al. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter-Freudenthal-Kuhn Triangulations.” 37th International Symposium on Computational Geometry (SoCG 2021), vol. 189, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, p. 17:1-17:16, doi:10.4230/LIPIcs.SoCG.2021.17. short: J.-D. Boissonnat, S. Kachanovich, M. Wintraecken, in:, 37th International Symposium on Computational Geometry (SoCG 2021), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, p. 17:1-17:16. conference: end_date: 2021-06-11 location: Virtual name: 'SoCG: Symposium on Computational Geometry' start_date: 2021-06-07 date_created: 2021-06-02T10:10:55Z date_published: 2021-06-02T00:00:00Z date_updated: 2023-10-10T07:34:34Z day: '02' ddc: - '005' - '516' - '514' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2021.17 ec_funded: 1 file: - access_level: open_access checksum: c322aa48d5d35a35877896cc565705b6 content_type: application/pdf creator: mwintrae date_created: 2021-06-02T10:22:33Z date_updated: 2021-06-02T10:22:33Z file_id: '9442' file_name: LIPIcs-SoCG-2021-17.pdf file_size: 1972902 relation: main_file success: 1 file_date_updated: 2021-06-02T10:22:33Z has_accepted_license: '1' intvolume: ' 189' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 17:1-17:16 place: Dagstuhl, Germany project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 37th International Symposium on Computational Geometry (SoCG 2021) publication_identifier: isbn: - 978-3-95977-184-9 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '12960' relation: later_version status: public series_title: Leibniz International Proceedings in Informatics (LIPIcs) status: public title: Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 189 year: '2021' ... --- _id: '8338' abstract: - lang: eng text: Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory. acknowledgement: This research was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. W.K.S. was also supported by the Australian Research Council (DP1401000851). A.V.A. was also supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 78818 Alpha). article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander I. full_name: Bobenko, Alexander I. last_name: Bobenko - first_name: Wolfgang K. full_name: Schief, Wolfgang K. last_name: Schief - first_name: Jan full_name: Techter, Jan last_name: Techter citation: ama: Akopyan A, Bobenko AI, Schief WK, Techter J. On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. 2021;66:938-976. doi:10.1007/s00454-020-00240-w apa: Akopyan, A., Bobenko, A. I., Schief, W. K., & Techter, J. (2021). On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00240-w chicago: Akopyan, Arseniy, Alexander I. Bobenko, Wolfgang K. Schief, and Jan Techter. “On Mutually Diagonal Nets on (Confocal) Quadrics and 3-Dimensional Webs.” Discrete and Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00240-w. ieee: A. Akopyan, A. I. Bobenko, W. K. Schief, and J. Techter, “On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs,” Discrete and Computational Geometry, vol. 66. Springer Nature, pp. 938–976, 2021. ista: Akopyan A, Bobenko AI, Schief WK, Techter J. 2021. On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. 66, 938–976. mla: Akopyan, Arseniy, et al. “On Mutually Diagonal Nets on (Confocal) Quadrics and 3-Dimensional Webs.” Discrete and Computational Geometry, vol. 66, Springer Nature, 2021, pp. 938–76, doi:10.1007/s00454-020-00240-w. short: A. Akopyan, A.I. Bobenko, W.K. Schief, J. Techter, Discrete and Computational Geometry 66 (2021) 938–976. date_created: 2020-09-06T22:01:13Z date_published: 2021-10-01T00:00:00Z date_updated: 2024-03-07T14:51:11Z day: '01' department: - _id: HeEd doi: 10.1007/s00454-020-00240-w ec_funded: 1 external_id: arxiv: - '1908.00856' isi: - '000564488500002' intvolume: ' 66' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.00856 month: '10' oa: 1 oa_version: Preprint page: 938-976 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2021' ... --- _id: '8248' abstract: - lang: eng text: 'We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.' acknowledgement: "Open access funding provided by the Institute of Science and Technology (IST Austria). Arijit Ghosh is supported by the Ramanujan Fellowship (No. SB/S2/RJN-064/2015), India.\r\nThis work has been funded by the European Research Council under the European Union’s ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). The third author is supported by Ramanujan Fellowship (No. SB/S2/RJN-064/2015), India. The fifth author also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Arijit full_name: Ghosh, Arijit last_name: Ghosh - first_name: Andre full_name: Lieutier, Andre last_name: Lieutier - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat J-D, Dyer R, Ghosh A, Lieutier A, Wintraecken M. Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. 2021;66:666-686. doi:10.1007/s00454-020-00233-9 apa: Boissonnat, J.-D., Dyer, R., Ghosh, A., Lieutier, A., & Wintraecken, M. (2021). Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00233-9 chicago: Boissonnat, Jean-Daniel, Ramsay Dyer, Arijit Ghosh, Andre Lieutier, and Mathijs Wintraecken. “Local Conditions for Triangulating Submanifolds of Euclidean Space.” Discrete and Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00233-9. ieee: J.-D. Boissonnat, R. Dyer, A. Ghosh, A. Lieutier, and M. Wintraecken, “Local conditions for triangulating submanifolds of Euclidean space,” Discrete and Computational Geometry, vol. 66. Springer Nature, pp. 666–686, 2021. ista: Boissonnat J-D, Dyer R, Ghosh A, Lieutier A, Wintraecken M. 2021. Local conditions for triangulating submanifolds of Euclidean space. Discrete and Computational Geometry. 66, 666–686. mla: Boissonnat, Jean-Daniel, et al. “Local Conditions for Triangulating Submanifolds of Euclidean Space.” Discrete and Computational Geometry, vol. 66, Springer Nature, 2021, pp. 666–86, doi:10.1007/s00454-020-00233-9. short: J.-D. Boissonnat, R. Dyer, A. Ghosh, A. Lieutier, M. Wintraecken, Discrete and Computational Geometry 66 (2021) 666–686. date_created: 2020-08-11T07:11:51Z date_published: 2021-09-01T00:00:00Z date_updated: 2024-03-07T14:54:59Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-020-00233-9 ec_funded: 1 external_id: isi: - '000558119300001' has_accepted_license: '1' intvolume: ' 66' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00454-020-00233-9 month: '09' oa: 1 oa_version: Published Version page: 666-686 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Local conditions for triangulating submanifolds of Euclidean space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2021' ... --- _id: '7905' abstract: - lang: eng text: We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms. acknowledgement: Open access funding provided by Institute of Science and Technology (IST Austria). This work was partially supported by NSF IIS-1513616 and NSF ABI-1661375. The authors would like to thank the anonymous referees for their insightful comments. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown - first_name: Bei full_name: Wang, Bei last_name: Wang citation: ama: Brown A, Wang B. Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry. 2021;65:1166-1198. doi:10.1007/s00454-020-00206-y apa: Brown, A., & Wang, B. (2021). Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00206-y chicago: Brown, Adam, and Bei Wang. “Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives.” Discrete and Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00206-y. ieee: A. Brown and B. Wang, “Sheaf-theoretic stratification learning from geometric and topological perspectives,” Discrete and Computational Geometry, vol. 65. Springer Nature, pp. 1166–1198, 2021. ista: Brown A, Wang B. 2021. Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry. 65, 1166–1198. mla: Brown, Adam, and Bei Wang. “Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives.” Discrete and Computational Geometry, vol. 65, Springer Nature, 2021, pp. 1166–98, doi:10.1007/s00454-020-00206-y. short: A. Brown, B. Wang, Discrete and Computational Geometry 65 (2021) 1166–1198. date_created: 2020-05-30T10:26:04Z date_published: 2021-06-01T00:00:00Z date_updated: 2024-03-07T15:01:58Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-020-00206-y external_id: arxiv: - '1712.07734' isi: - '000536324700001' file: - access_level: open_access checksum: 487a84ea5841b75f04f66d7ebd71b67e content_type: application/pdf creator: dernst date_created: 2020-11-25T09:06:41Z date_updated: 2020-11-25T09:06:41Z file_id: '8803' file_name: 2020_DiscreteCompGeometry_Brown.pdf file_size: 1013730 relation: main_file success: 1 file_date_updated: 2020-11-25T09:06:41Z has_accepted_license: '1' intvolume: ' 65' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1166-1198 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete and Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Sheaf-theoretic stratification learning from geometric and topological perspectives tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 65 year: '2021' ... --- _id: '7567' abstract: - lang: eng text: Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Aruni full_name: Choudhary, Aruni last_name: Choudhary - first_name: Siargey full_name: Kachanovich, Siargey last_name: Kachanovich - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Choudhary A, Kachanovich S, Wintraecken M. Coxeter triangulations have good quality. Mathematics in Computer Science. 2020;14:141-176. doi:10.1007/s11786-020-00461-5 apa: Choudhary, A., Kachanovich, S., & Wintraecken, M. (2020). Coxeter triangulations have good quality. Mathematics in Computer Science. Springer Nature. https://doi.org/10.1007/s11786-020-00461-5 chicago: Choudhary, Aruni, Siargey Kachanovich, and Mathijs Wintraecken. “Coxeter Triangulations Have Good Quality.” Mathematics in Computer Science. Springer Nature, 2020. https://doi.org/10.1007/s11786-020-00461-5. ieee: A. Choudhary, S. Kachanovich, and M. Wintraecken, “Coxeter triangulations have good quality,” Mathematics in Computer Science, vol. 14. Springer Nature, pp. 141–176, 2020. ista: Choudhary A, Kachanovich S, Wintraecken M. 2020. Coxeter triangulations have good quality. Mathematics in Computer Science. 14, 141–176. mla: Choudhary, Aruni, et al. “Coxeter Triangulations Have Good Quality.” Mathematics in Computer Science, vol. 14, Springer Nature, 2020, pp. 141–76, doi:10.1007/s11786-020-00461-5. short: A. Choudhary, S. Kachanovich, M. Wintraecken, Mathematics in Computer Science 14 (2020) 141–176. date_created: 2020-03-05T13:30:18Z date_published: 2020-03-01T00:00:00Z date_updated: 2021-01-12T08:14:13Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s11786-020-00461-5 ec_funded: 1 file: - access_level: open_access checksum: 1d145f3ab50ccee735983cb89236e609 content_type: application/pdf creator: dernst date_created: 2020-11-20T10:18:02Z date_updated: 2020-11-20T10:18:02Z file_id: '8783' file_name: 2020_MathCompScie_Choudhary.pdf file_size: 872275 relation: main_file success: 1 file_date_updated: 2020-11-20T10:18:02Z has_accepted_license: '1' intvolume: ' 14' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 141-176 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Mathematics in Computer Science publication_identifier: eissn: - 1661-8289 issn: - 1661-8270 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Coxeter triangulations have good quality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2020' ... --- _id: '8135' abstract: - lang: eng text: Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics. acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 78818 Alpha and No 638176). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). alternative_title: - Abel Symposia article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck - first_name: Peter full_name: Synak, Peter id: 331776E2-F248-11E8-B48F-1D18A9856A87 last_name: Synak citation: ama: 'Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In: Topological Data Analysis. Vol 15. Springer Nature; 2020:181-218. doi:10.1007/978-3-030-43408-3_8' apa: Edelsbrunner, H., Nikitenko, A., Ölsböck, K., & Synak, P. (2020). Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In Topological Data Analysis (Vol. 15, pp. 181–218). Springer Nature. https://doi.org/10.1007/978-3-030-43408-3_8 chicago: Edelsbrunner, Herbert, Anton Nikitenko, Katharina Ölsböck, and Peter Synak. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” In Topological Data Analysis, 15:181–218. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-43408-3_8. ieee: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, and P. Synak, “Radius functions on Poisson–Delaunay mosaics and related complexes experimentally,” in Topological Data Analysis, 2020, vol. 15, pp. 181–218. ista: Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. 2020. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. Topological Data Analysis. , Abel Symposia, vol. 15, 181–218. mla: Edelsbrunner, Herbert, et al. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” Topological Data Analysis, vol. 15, Springer Nature, 2020, pp. 181–218, doi:10.1007/978-3-030-43408-3_8. short: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, P. Synak, in:, Topological Data Analysis, Springer Nature, 2020, pp. 181–218. date_created: 2020-07-19T22:00:59Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:17:06Z day: '22' ddc: - '510' department: - _id: HeEd doi: 10.1007/978-3-030-43408-3_8 ec_funded: 1 file: - access_level: open_access checksum: 7b5e0de10675d787a2ddb2091370b8d8 content_type: application/pdf creator: dernst date_created: 2020-10-08T08:56:14Z date_updated: 2020-10-08T08:56:14Z file_id: '8628' file_name: 2020-B-01-PoissonExperimentalSurvey.pdf file_size: 2207071 relation: main_file success: 1 file_date_updated: 2020-10-08T08:56:14Z has_accepted_license: '1' intvolume: ' 15' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 181-218 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Topological Data Analysis publication_identifier: eissn: - '21978549' isbn: - '9783030434076' issn: - '21932808' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Radius functions on Poisson–Delaunay mosaics and related complexes experimentally type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '9249' abstract: - lang: eng text: Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In this paper, we describe a new coordinate system where every 3-integer coordinates grid point corresponds to a rhombic dodecahedron centroid. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. We also present the characterization of 3D digital lines and study it as the intersection of multiple digital planes. Characterization of 3D digital sphere with relevant topological features is proposed as well along with the 48-symmetry appearing in the new coordinate system. acknowledgement: "This work has been partially supported by the European Research Council (ERC) under\r\nthe European Union’s Horizon 2020 research and innovation programme, grant no. 788183, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35. " article_processing_charge: No article_type: original author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Gaëlle full_name: Largeteau-Skapin, Gaëlle last_name: Largeteau-Skapin - first_name: Rita full_name: Zrour, Rita last_name: Zrour - first_name: Eric full_name: Andres, Eric last_name: Andres citation: ama: Biswas R, Largeteau-Skapin G, Zrour R, Andres E. Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. 2020;4(1):143-158. doi:10.1515/mathm-2020-0106 apa: Biswas, R., Largeteau-Skapin, G., Zrour, R., & Andres, E. (2020). Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. De Gruyter. https://doi.org/10.1515/mathm-2020-0106 chicago: Biswas, Ranita, Gaëlle Largeteau-Skapin, Rita Zrour, and Eric Andres. “Digital Objects in Rhombic Dodecahedron Grid.” Mathematical Morphology - Theory and Applications. De Gruyter, 2020. https://doi.org/10.1515/mathm-2020-0106. ieee: R. Biswas, G. Largeteau-Skapin, R. Zrour, and E. Andres, “Digital objects in rhombic dodecahedron grid,” Mathematical Morphology - Theory and Applications, vol. 4, no. 1. De Gruyter, pp. 143–158, 2020. ista: Biswas R, Largeteau-Skapin G, Zrour R, Andres E. 2020. Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. 4(1), 143–158. mla: Biswas, Ranita, et al. “Digital Objects in Rhombic Dodecahedron Grid.” Mathematical Morphology - Theory and Applications, vol. 4, no. 1, De Gruyter, 2020, pp. 143–58, doi:10.1515/mathm-2020-0106. short: R. Biswas, G. Largeteau-Skapin, R. Zrour, E. Andres, Mathematical Morphology - Theory and Applications 4 (2020) 143–158. date_created: 2021-03-16T08:55:19Z date_published: 2020-11-17T00:00:00Z date_updated: 2021-03-22T09:01:50Z day: '17' ddc: - '510' department: - _id: HeEd doi: 10.1515/mathm-2020-0106 ec_funded: 1 file: - access_level: open_access checksum: 4a1043fa0548a725d464017fe2483ce0 content_type: application/pdf creator: dernst date_created: 2021-03-22T08:56:37Z date_updated: 2021-03-22T08:56:37Z file_id: '9272' file_name: 2020_MathMorpholTheoryAppl_Biswas.pdf file_size: 3668725 relation: main_file success: 1 file_date_updated: 2021-03-22T08:56:37Z has_accepted_license: '1' intvolume: ' 4' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 143-158 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Mathematical Morphology - Theory and Applications publication_identifier: issn: - 2353-3390 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: Digital objects in rhombic dodecahedron grid tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '9299' abstract: - lang: eng text: We call a multigraph non-homotopic if it can be drawn in the plane in such a way that no two edges connecting the same pair of vertices can be continuously transformed into each other without passing through a vertex, and no loop can be shrunk to its end-vertex in the same way. It is easy to see that a non-homotopic multigraph on n>1 vertices can have arbitrarily many edges. We prove that the number of crossings between the edges of a non-homotopic multigraph with n vertices and m>4n edges is larger than cm2n for some constant c>0 , and that this bound is tight up to a polylogarithmic factor. We also show that the lower bound is not asymptotically sharp as n is fixed and m⟶∞ . acknowledgement: Supported by the National Research, Development and Innovation Office, NKFIH, KKP-133864, K-131529, K-116769, K-132696, by the Higher Educational Institutional Excellence Program 2019 NKFIH-1158-6/2019, the Austrian Science Fund (FWF), grant Z 342-N31, by the Ministry of Education and Science of the Russian Federation MegaGrant No. 075-15-2019-1926, and by the ERC Synergy Grant “Dynasnet” No. 810115. A full version can be found at https://arxiv.org/abs/2006.14908. article_processing_charge: No author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: Gábor full_name: Tardos, Gábor last_name: Tardos - first_name: Géza full_name: Tóth, Géza last_name: Tóth citation: ama: 'Pach J, Tardos G, Tóth G. Crossings between non-homotopic edges. In: 28th International Symposium on Graph Drawing and Network Visualization. Vol 12590. LNCS. Springer Nature; 2020:359-371. doi:10.1007/978-3-030-68766-3_28' apa: 'Pach, J., Tardos, G., & Tóth, G. (2020). Crossings between non-homotopic edges. In 28th International Symposium on Graph Drawing and Network Visualization (Vol. 12590, pp. 359–371). Virtual, Online: Springer Nature. https://doi.org/10.1007/978-3-030-68766-3_28' chicago: Pach, János, Gábor Tardos, and Géza Tóth. “Crossings between Non-Homotopic Edges.” In 28th International Symposium on Graph Drawing and Network Visualization, 12590:359–71. LNCS. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-68766-3_28. ieee: J. Pach, G. Tardos, and G. Tóth, “Crossings between non-homotopic edges,” in 28th International Symposium on Graph Drawing and Network Visualization, Virtual, Online, 2020, vol. 12590, pp. 359–371. ista: 'Pach J, Tardos G, Tóth G. 2020. Crossings between non-homotopic edges. 28th International Symposium on Graph Drawing and Network Visualization. GD: Graph Drawing and Network VisualizationLNCS vol. 12590, 359–371.' mla: Pach, János, et al. “Crossings between Non-Homotopic Edges.” 28th International Symposium on Graph Drawing and Network Visualization, vol. 12590, Springer Nature, 2020, pp. 359–71, doi:10.1007/978-3-030-68766-3_28. short: J. Pach, G. Tardos, G. Tóth, in:, 28th International Symposium on Graph Drawing and Network Visualization, Springer Nature, 2020, pp. 359–371. conference: end_date: 2020-09-18 location: Virtual, Online name: 'GD: Graph Drawing and Network Visualization' start_date: 2020-09-16 date_created: 2021-03-28T22:01:44Z date_published: 2020-09-20T00:00:00Z date_updated: 2021-04-06T11:32:32Z day: '20' department: - _id: HeEd doi: 10.1007/978-3-030-68766-3_28 external_id: arxiv: - '2006.14908' intvolume: ' 12590' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.14908 month: '09' oa: 1 oa_version: Preprint page: 359-371 project: - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: 28th International Symposium on Graph Drawing and Network Visualization publication_identifier: eissn: - 1611-3349 isbn: - '9783030687656' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: Crossings between non-homotopic edges type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12590 year: '2020' ... --- _id: '9630' abstract: - lang: eng text: Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context. acknowledgement: This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). article_processing_charge: Yes article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: Edelsbrunner H, Virk Z, Wagner H. Topological data analysis in information space. Journal of Computational Geometry. 2020;11(2):162-182. doi:10.20382/jocg.v11i2a7 apa: Edelsbrunner, H., Virk, Z., & Wagner, H. (2020). Topological data analysis in information space. Journal of Computational Geometry. Carleton University. https://doi.org/10.20382/jocg.v11i2a7 chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Topological Data Analysis in Information Space.” Journal of Computational Geometry. Carleton University, 2020. https://doi.org/10.20382/jocg.v11i2a7. ieee: H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in information space,” Journal of Computational Geometry, vol. 11, no. 2. Carleton University, pp. 162–182, 2020. ista: Edelsbrunner H, Virk Z, Wagner H. 2020. Topological data analysis in information space. Journal of Computational Geometry. 11(2), 162–182. mla: Edelsbrunner, Herbert, et al. “Topological Data Analysis in Information Space.” Journal of Computational Geometry, vol. 11, no. 2, Carleton University, 2020, pp. 162–82, doi:10.20382/jocg.v11i2a7. short: H. Edelsbrunner, Z. Virk, H. Wagner, Journal of Computational Geometry 11 (2020) 162–182. date_created: 2021-07-04T22:01:26Z date_published: 2020-12-14T00:00:00Z date_updated: 2021-08-11T12:26:34Z day: '14' ddc: - '510' - '000' department: - _id: HeEd doi: 10.20382/jocg.v11i2a7 file: - access_level: open_access checksum: f02d0b2b3838e7891a6c417fc34ffdcd content_type: application/pdf creator: asandaue date_created: 2021-08-11T11:55:11Z date_updated: 2021-08-11T11:55:11Z file_id: '9882' file_name: 2020_JournalOfComputationalGeometry_Edelsbrunner.pdf file_size: 1449234 relation: main_file success: 1 file_date_updated: 2021-08-11T11:55:11Z has_accepted_license: '1' intvolume: ' 11' issue: '2' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '12' oa: 1 oa_version: Published Version page: 162-182 project: - _id: 0aa4bc98-070f-11eb-9043-e6fff9c6a316 grant_number: I4887 name: Discretization in Geometry and Dynamics publication: Journal of Computational Geometry publication_identifier: eissn: - 1920180X publication_status: published publisher: Carleton University quality_controlled: '1' scopus_import: '1' status: public title: Topological data analysis in information space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 11 year: '2020' ... --- _id: '8538' abstract: - lang: eng text: We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods. acknowledgement: " This paper would not be written if not for Dan Reznik’s curiosity and persistence; we are very grateful to him. We also thank R. Garcia and J. Koiller for interesting discussions. It is a pleasure to thank the Mathematical Institute of the University of Heidelberg for its stimulating atmosphere. ST thanks M. Bialy for interesting discussions and the Tel Aviv\r\nUniversity for its invariable hospitality. AA was supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). RS is supported by NSF Grant DMS-1807320. ST was supported by NSF grant DMS-1510055 and SFB/TRR 191." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Richard full_name: Schwartz, Richard last_name: Schwartz - first_name: Serge full_name: Tabachnikov, Serge last_name: Tabachnikov citation: ama: Akopyan A, Schwartz R, Tabachnikov S. Billiards in ellipses revisited. European Journal of Mathematics. 2020. doi:10.1007/s40879-020-00426-9 apa: Akopyan, A., Schwartz, R., & Tabachnikov, S. (2020). Billiards in ellipses revisited. European Journal of Mathematics. Springer Nature. https://doi.org/10.1007/s40879-020-00426-9 chicago: Akopyan, Arseniy, Richard Schwartz, and Serge Tabachnikov. “Billiards in Ellipses Revisited.” European Journal of Mathematics. Springer Nature, 2020. https://doi.org/10.1007/s40879-020-00426-9. ieee: A. Akopyan, R. Schwartz, and S. Tabachnikov, “Billiards in ellipses revisited,” European Journal of Mathematics. Springer Nature, 2020. ista: Akopyan A, Schwartz R, Tabachnikov S. 2020. Billiards in ellipses revisited. European Journal of Mathematics. mla: Akopyan, Arseniy, et al. “Billiards in Ellipses Revisited.” European Journal of Mathematics, Springer Nature, 2020, doi:10.1007/s40879-020-00426-9. short: A. Akopyan, R. Schwartz, S. Tabachnikov, European Journal of Mathematics (2020). date_created: 2020-09-20T22:01:38Z date_published: 2020-09-09T00:00:00Z date_updated: 2021-12-02T15:10:17Z day: '09' department: - _id: HeEd doi: 10.1007/s40879-020-00426-9 ec_funded: 1 external_id: arxiv: - '2001.02934' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2001.02934 month: '09' oa: 1 oa_version: Preprint project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: European Journal of Mathematics publication_identifier: eissn: - 2199-6768 issn: - 2199-675X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Billiards in ellipses revisited type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '7952' abstract: - lang: eng text: "Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation \U0001D4AF of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation \U0001D4AF. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary. " alternative_title: - LIPIcs article_number: 20:1-20:18 article_processing_charge: No author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Boissonnat J-D, Wintraecken M. The topological correctness of PL-approximations of isomanifolds. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.20' apa: 'Boissonnat, J.-D., & Wintraecken, M. (2020). The topological correctness of PL-approximations of isomanifolds. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.20' chicago: Boissonnat, Jean-Daniel, and Mathijs Wintraecken. “The Topological Correctness of PL-Approximations of Isomanifolds.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.20. ieee: J.-D. Boissonnat and M. Wintraecken, “The topological correctness of PL-approximations of isomanifolds,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Boissonnat J-D, Wintraecken M. 2020. The topological correctness of PL-approximations of isomanifolds. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 20:1-20:18.' mla: Boissonnat, Jean-Daniel, and Mathijs Wintraecken. “The Topological Correctness of PL-Approximations of Isomanifolds.” 36th International Symposium on Computational Geometry, vol. 164, 20:1-20:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.20. short: J.-D. Boissonnat, M. Wintraecken, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-09T07:24:11Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-08-02T06:49:16Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2020.20 ec_funded: 1 file: - access_level: open_access checksum: 38cbfa4f5d484d267a35d44d210df044 content_type: application/pdf creator: dernst date_created: 2020-06-17T10:13:34Z date_updated: 2020-07-14T12:48:06Z file_id: '7969' file_name: 2020_LIPIcsSoCG_Boissonnat.pdf file_size: 1009739 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - 978-3-95977-143-6 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '9649' relation: later_version status: public scopus_import: '1' status: public title: The topological correctness of PL-approximations of isomanifolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '74' abstract: - lang: eng text: "We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about \ the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily \ radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class\r\nof compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.\r\nWe use a simpler form of Gromov’s pancake argument \ to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian\r\nmeasures." article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: 'Akopyan A, Karasev R. Gromov’s waist of non-radial Gaussian measures and radial non-Gaussian measures. In: Klartag B, Milman E, eds. Geometric Aspects of Functional Analysis. Vol 2256. LNM. Springer Nature; 2020:1-27. doi:10.1007/978-3-030-36020-7_1' apa: Akopyan, A., & Karasev, R. (2020). Gromov’s waist of non-radial Gaussian measures and radial non-Gaussian measures. In B. Klartag & E. Milman (Eds.), Geometric Aspects of Functional Analysis (Vol. 2256, pp. 1–27). Springer Nature. https://doi.org/10.1007/978-3-030-36020-7_1 chicago: Akopyan, Arseniy, and Roman Karasev. “Gromov’s Waist of Non-Radial Gaussian Measures and Radial Non-Gaussian Measures.” In Geometric Aspects of Functional Analysis, edited by Bo’az Klartag and Emanuel Milman, 2256:1–27. LNM. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-36020-7_1. ieee: A. Akopyan and R. Karasev, “Gromov’s waist of non-radial Gaussian measures and radial non-Gaussian measures,” in Geometric Aspects of Functional Analysis, vol. 2256, B. Klartag and E. Milman, Eds. Springer Nature, 2020, pp. 1–27. ista: 'Akopyan A, Karasev R. 2020.Gromov’s waist of non-radial Gaussian measures and radial non-Gaussian measures. In: Geometric Aspects of Functional Analysis. vol. 2256, 1–27.' mla: Akopyan, Arseniy, and Roman Karasev. “Gromov’s Waist of Non-Radial Gaussian Measures and Radial Non-Gaussian Measures.” Geometric Aspects of Functional Analysis, edited by Bo’az Klartag and Emanuel Milman, vol. 2256, Springer Nature, 2020, pp. 1–27, doi:10.1007/978-3-030-36020-7_1. short: A. Akopyan, R. Karasev, in:, B. Klartag, E. Milman (Eds.), Geometric Aspects of Functional Analysis, Springer Nature, 2020, pp. 1–27. date_created: 2018-12-11T11:44:29Z date_published: 2020-06-21T00:00:00Z date_updated: 2023-08-17T13:48:31Z day: '21' department: - _id: HeEd - _id: JaMa doi: 10.1007/978-3-030-36020-7_1 ec_funded: 1 editor: - first_name: Bo'az full_name: Klartag, Bo'az last_name: Klartag - first_name: Emanuel full_name: Milman, Emanuel last_name: Milman external_id: arxiv: - '1808.07350' isi: - '000557689300003' intvolume: ' 2256' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1808.07350 month: '06' oa: 1 oa_version: Preprint page: 1-27 project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication: Geometric Aspects of Functional Analysis publication_identifier: eisbn: - '9783030360207' eissn: - '16179692' isbn: - '9783030360191' issn: - '00758434' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNM status: public title: Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures type: book_chapter user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2256 year: '2020' ... --- _id: '7554' abstract: - lang: eng text: Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$. article_processing_charge: No article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Nikitenko A. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 2020;64(4):595-614. doi:10.1137/S0040585X97T989726 apa: Edelsbrunner, H., & Nikitenko, A. (2020). Weighted Poisson–Delaunay mosaics. Theory of Probability and Its Applications. SIAM. https://doi.org/10.1137/S0040585X97T989726 chicago: Edelsbrunner, Herbert, and Anton Nikitenko. “Weighted Poisson–Delaunay Mosaics.” Theory of Probability and Its Applications. SIAM, 2020. https://doi.org/10.1137/S0040585X97T989726. ieee: H. Edelsbrunner and A. Nikitenko, “Weighted Poisson–Delaunay mosaics,” Theory of Probability and its Applications, vol. 64, no. 4. SIAM, pp. 595–614, 2020. ista: Edelsbrunner H, Nikitenko A. 2020. Weighted Poisson–Delaunay mosaics. Theory of Probability and its Applications. 64(4), 595–614. mla: Edelsbrunner, Herbert, and Anton Nikitenko. “Weighted Poisson–Delaunay Mosaics.” Theory of Probability and Its Applications, vol. 64, no. 4, SIAM, 2020, pp. 595–614, doi:10.1137/S0040585X97T989726. short: H. Edelsbrunner, A. Nikitenko, Theory of Probability and Its Applications 64 (2020) 595–614. date_created: 2020-03-01T23:00:39Z date_published: 2020-02-13T00:00:00Z date_updated: 2023-08-18T06:45:48Z day: '13' department: - _id: HeEd doi: 10.1137/S0040585X97T989726 ec_funded: 1 external_id: arxiv: - '1705.08735' isi: - '000551393100007' intvolume: ' 64' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.08735 month: '02' oa: 1 oa_version: Preprint page: 595-614 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Theory of Probability and its Applications publication_identifier: eissn: - '10957219' issn: - 0040585X publication_status: published publisher: SIAM quality_controlled: '1' scopus_import: '1' status: public title: Weighted Poisson–Delaunay mosaics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2020' ... --- _id: '7666' abstract: - lang: eng text: Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups. acknowledgement: This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through Grant No. I02979-N35 of the Austrian Science Fund (FWF). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Edelsbrunner H, Ölsböck K. Tri-partitions and bases of an ordered complex. Discrete and Computational Geometry. 2020;64:759-775. doi:10.1007/s00454-020-00188-x apa: Edelsbrunner, H., & Ölsböck, K. (2020). Tri-partitions and bases of an ordered complex. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00188-x chicago: Edelsbrunner, Herbert, and Katharina Ölsböck. “Tri-Partitions and Bases of an Ordered Complex.” Discrete and Computational Geometry. Springer Nature, 2020. https://doi.org/10.1007/s00454-020-00188-x. ieee: H. Edelsbrunner and K. Ölsböck, “Tri-partitions and bases of an ordered complex,” Discrete and Computational Geometry, vol. 64. Springer Nature, pp. 759–775, 2020. ista: Edelsbrunner H, Ölsböck K. 2020. Tri-partitions and bases of an ordered complex. Discrete and Computational Geometry. 64, 759–775. mla: Edelsbrunner, Herbert, and Katharina Ölsböck. “Tri-Partitions and Bases of an Ordered Complex.” Discrete and Computational Geometry, vol. 64, Springer Nature, 2020, pp. 759–75, doi:10.1007/s00454-020-00188-x. short: H. Edelsbrunner, K. Ölsböck, Discrete and Computational Geometry 64 (2020) 759–775. date_created: 2020-04-19T22:00:56Z date_published: 2020-03-20T00:00:00Z date_updated: 2023-08-21T06:13:48Z day: '20' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-020-00188-x ec_funded: 1 external_id: isi: - '000520918800001' file: - access_level: open_access checksum: f8cc96e497f00c38340b5dafe0cb91d7 content_type: application/pdf creator: dernst date_created: 2020-11-20T13:22:21Z date_updated: 2020-11-20T13:22:21Z file_id: '8786' file_name: 2020_DiscreteCompGeo_Edelsbrunner.pdf file_size: 701673 relation: main_file success: 1 file_date_updated: 2020-11-20T13:22:21Z has_accepted_license: '1' intvolume: ' 64' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 759-775 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Discrete and Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Tri-partitions and bases of an ordered complex tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2020' ... --- _id: '7962' abstract: - lang: eng text: 'A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.' article_processing_charge: No article_type: original author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: Bruce full_name: Reed, Bruce last_name: Reed - first_name: Yelena full_name: Yuditsky, Yelena last_name: Yuditsky citation: ama: Pach J, Reed B, Yuditsky Y. Almost all string graphs are intersection graphs of plane convex sets. Discrete and Computational Geometry. 2020;63(4):888-917. doi:10.1007/s00454-020-00213-z apa: Pach, J., Reed, B., & Yuditsky, Y. (2020). Almost all string graphs are intersection graphs of plane convex sets. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00213-z chicago: Pach, János, Bruce Reed, and Yelena Yuditsky. “Almost All String Graphs Are Intersection Graphs of Plane Convex Sets.” Discrete and Computational Geometry. Springer Nature, 2020. https://doi.org/10.1007/s00454-020-00213-z. ieee: J. Pach, B. Reed, and Y. Yuditsky, “Almost all string graphs are intersection graphs of plane convex sets,” Discrete and Computational Geometry, vol. 63, no. 4. Springer Nature, pp. 888–917, 2020. ista: Pach J, Reed B, Yuditsky Y. 2020. Almost all string graphs are intersection graphs of plane convex sets. Discrete and Computational Geometry. 63(4), 888–917. mla: Pach, János, et al. “Almost All String Graphs Are Intersection Graphs of Plane Convex Sets.” Discrete and Computational Geometry, vol. 63, no. 4, Springer Nature, 2020, pp. 888–917, doi:10.1007/s00454-020-00213-z. short: J. Pach, B. Reed, Y. Yuditsky, Discrete and Computational Geometry 63 (2020) 888–917. date_created: 2020-06-14T22:00:51Z date_published: 2020-06-05T00:00:00Z date_updated: 2023-08-21T08:49:18Z day: '05' department: - _id: HeEd doi: 10.1007/s00454-020-00213-z external_id: arxiv: - '1803.06710' isi: - '000538229000001' intvolume: ' 63' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.06710 month: '06' oa: 1 oa_version: Preprint page: 888-917 project: - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: Discrete and Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Almost all string graphs are intersection graphs of plane convex sets type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 63 year: '2020' ... --- _id: '8323' article_processing_charge: No article_type: letter_note author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach citation: ama: Pach J. A farewell to Ricky Pollack. Discrete and Computational Geometry. 2020;64:571-574. doi:10.1007/s00454-020-00237-5 apa: Pach, J. (2020). A farewell to Ricky Pollack. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00237-5 chicago: Pach, János. “A Farewell to Ricky Pollack.” Discrete and Computational Geometry. Springer Nature, 2020. https://doi.org/10.1007/s00454-020-00237-5. ieee: J. Pach, “A farewell to Ricky Pollack,” Discrete and Computational Geometry, vol. 64. Springer Nature, pp. 571–574, 2020. ista: Pach J. 2020. A farewell to Ricky Pollack. Discrete and Computational Geometry. 64, 571–574. mla: Pach, János. “A Farewell to Ricky Pollack.” Discrete and Computational Geometry, vol. 64, Springer Nature, 2020, pp. 571–74, doi:10.1007/s00454-020-00237-5. short: J. Pach, Discrete and Computational Geometry 64 (2020) 571–574. date_created: 2020-08-30T22:01:12Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-08-22T09:05:04Z day: '01' department: - _id: HeEd doi: 10.1007/s00454-020-00237-5 external_id: isi: - '000561483500001' intvolume: ' 64' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00454-020-00237-5 month: '10' oa: 1 oa_version: None page: 571-574 publication: Discrete and Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer Nature scopus_import: '1' status: public title: A farewell to Ricky Pollack type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2020' ... --- _id: '8580' abstract: - lang: eng text: We evaluate the usefulness of persistent homology in the analysis of heart rate variability. In our approach we extract several topological descriptors characterising datasets of RR-intervals, which are later used in classical machine learning algorithms. By this method we are able to differentiate the group of patients with the history of transient ischemic attack and the group of hypertensive patients. article_number: '9158054' article_processing_charge: No author: - first_name: Grzegorz full_name: Graff, Grzegorz last_name: Graff - first_name: Beata full_name: Graff, Beata last_name: Graff - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: Krzysztof full_name: Narkiewicz, Krzysztof last_name: Narkiewicz citation: ama: 'Graff G, Graff B, Jablonski G, Narkiewicz K. The application of persistent homology in the analysis of heart rate variability. In: 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . IEEE; 2020. doi:10.1109/ESGCO49734.2020.9158054' apa: 'Graff, G., Graff, B., Jablonski, G., & Narkiewicz, K. (2020). The application of persistent homology in the analysis of heart rate variability. In 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . Pisa, Italy: IEEE. https://doi.org/10.1109/ESGCO49734.2020.9158054' chicago: 'Graff, Grzegorz, Beata Graff, Grzegorz Jablonski, and Krzysztof Narkiewicz. “The Application of Persistent Homology in the Analysis of Heart Rate Variability.” In 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . IEEE, 2020. https://doi.org/10.1109/ESGCO49734.2020.9158054.' ieee: 'G. Graff, B. Graff, G. Jablonski, and K. Narkiewicz, “The application of persistent homology in the analysis of heart rate variability,” in 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, , Pisa, Italy, 2020.' ista: 'Graff G, Graff B, Jablonski G, Narkiewicz K. 2020. The application of persistent homology in the analysis of heart rate variability. 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, . ESGCO: European Study Group on Cardiovascular Oscillations, 9158054.' mla: 'Graff, Grzegorz, et al. “The Application of Persistent Homology in the Analysis of Heart Rate Variability.” 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, , 9158054, IEEE, 2020, doi:10.1109/ESGCO49734.2020.9158054.' short: 'G. Graff, B. Graff, G. Jablonski, K. Narkiewicz, in:, 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, , IEEE, 2020.' conference: end_date: 2020-07-15 location: Pisa, Italy name: 'ESGCO: European Study Group on Cardiovascular Oscillations' start_date: 2020-07-15 date_created: 2020-09-28T08:59:27Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-08-22T09:33:34Z day: '01' department: - _id: HeEd doi: 10.1109/ESGCO49734.2020.9158054 external_id: isi: - '000621172600045' isi: 1 language: - iso: eng month: '08' oa_version: None publication: '11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, ' publication_identifier: isbn: - '9781728157511' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: The application of persistent homology in the analysis of heart rate variability type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '10867' abstract: - lang: eng text: In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces. acknowledgement: ' Supported by the Russian Foundation for Basic Research grant 18-01-00036.' article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Karasev R. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020;2020(3):669-697. doi:10.1093/imrn/rny037 apa: Akopyan, A., & Karasev, R. (2020). Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rny037 chicago: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices. Oxford University Press, 2020. https://doi.org/10.1093/imrn/rny037. ieee: A. Akopyan and R. Karasev, “Waist of balls in hyperbolic and spherical spaces,” International Mathematics Research Notices, vol. 2020, no. 3. Oxford University Press, pp. 669–697, 2020. ista: Akopyan A, Karasev R. 2020. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020(3), 669–697. mla: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices, vol. 2020, no. 3, Oxford University Press, 2020, pp. 669–97, doi:10.1093/imrn/rny037. short: A. Akopyan, R. Karasev, International Mathematics Research Notices 2020 (2020) 669–697. date_created: 2022-03-18T11:39:30Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-24T14:19:55Z day: '01' department: - _id: HeEd doi: 10.1093/imrn/rny037 external_id: arxiv: - '1702.07513' isi: - '000522852700002' intvolume: ' 2020' isi: 1 issue: '3' keyword: - General Mathematics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.07513 month: '02' oa: 1 oa_version: Preprint page: 669-697 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Waist of balls in hyperbolic and spherical spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '7460' abstract: - lang: eng text: "Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.\r\n\r\nFor the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Ölsböck K. The hole system of triangulated shapes. 2020. doi:10.15479/AT:ISTA:7460 apa: Ölsböck, K. (2020). The hole system of triangulated shapes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7460 chicago: Ölsböck, Katharina. “The Hole System of Triangulated Shapes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7460. ieee: K. Ölsböck, “The hole system of triangulated shapes,” Institute of Science and Technology Austria, 2020. ista: Ölsböck K. 2020. The hole system of triangulated shapes. Institute of Science and Technology Austria. mla: Ölsböck, Katharina. The Hole System of Triangulated Shapes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7460. short: K. Ölsböck, The Hole System of Triangulated Shapes, Institute of Science and Technology Austria, 2020. date_created: 2020-02-06T14:56:53Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-09-07T13:15:30Z day: '10' ddc: - '514' degree_awarded: PhD department: - _id: HeEd - _id: GradSch doi: 10.15479/AT:ISTA:7460 file: - access_level: open_access checksum: 1df9f8c530b443c0e63a3f2e4fde412e content_type: application/pdf creator: koelsboe date_created: 2020-02-06T14:43:54Z date_updated: 2020-07-14T12:47:58Z file_id: '7461' file_name: thesis_ist-final_noack.pdf file_size: 76195184 relation: main_file - access_level: closed checksum: 7a52383c812b0be64d3826546509e5a4 content_type: application/x-zip-compressed creator: koelsboe date_created: 2020-02-06T14:52:45Z date_updated: 2020-07-14T12:47:58Z description: latex source files, figures file_id: '7462' file_name: latex-files.zip file_size: 122103715 relation: source_file file_date_updated: 2020-07-14T12:47:58Z has_accepted_license: '1' keyword: - shape reconstruction - hole manipulation - ordered complexes - Alpha complex - Wrap complex - computational topology - Bregman geometry language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '02' oa: 1 oa_version: Published Version page: '155' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6608' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: The hole system of triangulated shapes tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7944' abstract: - lang: eng text: "This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.\r\n\r\nFor triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.\r\n\r\nIn the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 citation: ama: Masárová Z. Reconfiguration problems. 2020. doi:10.15479/AT:ISTA:7944 apa: Masárová, Z. (2020). Reconfiguration problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7944 chicago: Masárová, Zuzana. “Reconfiguration Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7944. ieee: Z. Masárová, “Reconfiguration problems,” Institute of Science and Technology Austria, 2020. ista: Masárová Z. 2020. Reconfiguration problems. Institute of Science and Technology Austria. mla: Masárová, Zuzana. Reconfiguration Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7944. short: Z. Masárová, Reconfiguration Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-06-08T00:49:46Z date_published: 2020-06-09T00:00:00Z date_updated: 2023-09-07T13:17:37Z day: '09' ddc: - '516' - '514' degree_awarded: PhD department: - _id: HeEd - _id: UlWa doi: 10.15479/AT:ISTA:7944 file: - access_level: open_access checksum: df688bc5a82b50baee0b99d25fc7b7f0 content_type: application/pdf creator: zmasarov date_created: 2020-06-08T00:34:00Z date_updated: 2020-07-14T12:48:05Z file_id: '7945' file_name: THESIS_Zuzka_Masarova.pdf file_size: 13661779 relation: main_file - access_level: closed checksum: 45341a35b8f5529c74010b7af43ac188 content_type: application/zip creator: zmasarov date_created: 2020-06-08T00:35:30Z date_updated: 2020-07-14T12:48:05Z file_id: '7946' file_name: THESIS_Zuzka_Masarova_SOURCE_FILES.zip file_size: 32184006 relation: source_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' keyword: - reconfiguration - reconfiguration graph - triangulations - flip - constrained triangulations - shellability - piecewise-linear balls - token swapping - trees - coloured weighted token swapping language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ month: '06' oa: 1 oa_version: Published Version page: '160' publication_identifier: isbn: - 978-3-99078-005-3 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7950' relation: part_of_dissertation status: public - id: '5986' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Reconfiguration problems tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8703' abstract: - lang: eng text: 'Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity. ' alternative_title: - LIPIcs article_number: '75' article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: Mael full_name: Rouxel-Labbé, Mael last_name: Rouxel-Labbé - first_name: Monique full_name: Teillaud, Monique last_name: Teillaud citation: ama: 'Osang GF, Rouxel-Labbé M, Teillaud M. Generalizing CGAL periodic Delaunay triangulations. In: 28th Annual European Symposium on Algorithms. Vol 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.ESA.2020.75' apa: 'Osang, G. F., Rouxel-Labbé, M., & Teillaud, M. (2020). Generalizing CGAL periodic Delaunay triangulations. In 28th Annual European Symposium on Algorithms (Vol. 173). Virtual, Online; Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.75' chicago: Osang, Georg F, Mael Rouxel-Labbé, and Monique Teillaud. “Generalizing CGAL Periodic Delaunay Triangulations.” In 28th Annual European Symposium on Algorithms, Vol. 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ESA.2020.75. ieee: G. F. Osang, M. Rouxel-Labbé, and M. Teillaud, “Generalizing CGAL periodic Delaunay triangulations,” in 28th Annual European Symposium on Algorithms, Virtual, Online; Pisa, Italy, 2020, vol. 173. ista: 'Osang GF, Rouxel-Labbé M, Teillaud M. 2020. Generalizing CGAL periodic Delaunay triangulations. 28th Annual European Symposium on Algorithms. ESA: Annual European Symposium on Algorithms, LIPIcs, vol. 173, 75.' mla: Osang, Georg F., et al. “Generalizing CGAL Periodic Delaunay Triangulations.” 28th Annual European Symposium on Algorithms, vol. 173, 75, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.ESA.2020.75. short: G.F. Osang, M. Rouxel-Labbé, M. Teillaud, in:, 28th Annual European Symposium on Algorithms, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-09 location: Virtual, Online; Pisa, Italy name: 'ESA: Annual European Symposium on Algorithms' start_date: 2020-09-07 date_created: 2020-10-25T23:01:18Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-09-07T13:29:00Z day: '26' ddc: - '000' department: - _id: HeEd doi: 10.4230/LIPIcs.ESA.2020.75 ec_funded: 1 file: - access_level: open_access checksum: fe0f7c49a99ed870c671b911e10d5496 content_type: application/pdf creator: cziletti date_created: 2020-10-27T14:31:52Z date_updated: 2020-10-27T14:31:52Z file_id: '8712' file_name: 2020_LIPIcs_Osang.pdf file_size: 733291 relation: main_file success: 1 file_date_updated: 2020-10-27T14:31:52Z has_accepted_license: '1' intvolume: ' 173' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: 28th Annual European Symposium on Algorithms publication_identifier: isbn: - '9783959771627' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '9056' relation: dissertation_contains status: public scopus_import: '1' status: public title: Generalizing CGAL periodic Delaunay triangulations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 173 year: '2020' ... --- _id: '8163' abstract: - lang: eng text: Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces. acknowledgement: "The authors are greatly indebted to Dror Atariah, Günther Rote and John Sullivan for discussion and suggestions. The authors also thank Jean-Daniel Boissonnat, Ramsay Dyer, David de Laat and Rien van de Weijgaert for discussion. This work has been supported in part by the European Union’s Seventh Framework Programme for Research of the\r\nEuropean Commission, under FET-Open grant number 255827 (CGL Computational Geometry Learning) and ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions), the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement number 754411,and the Austrian Science Fund (FWF): Z00342 N31." article_processing_charge: No article_type: original author: - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Vegter G, Wintraecken M. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 2020;57(2):193-199. doi:10.1556/012.2020.57.2.1454 apa: Vegter, G., & Wintraecken, M. (2020). Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó. https://doi.org/10.1556/012.2020.57.2.1454 chicago: Vegter, Gert, and Mathijs Wintraecken. “Refutation of a Claim Made by Fejes Tóth on the Accuracy of Surface Meshes.” Studia Scientiarum Mathematicarum Hungarica. Akadémiai Kiadó, 2020. https://doi.org/10.1556/012.2020.57.2.1454. ieee: G. Vegter and M. Wintraecken, “Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes,” Studia Scientiarum Mathematicarum Hungarica, vol. 57, no. 2. Akadémiai Kiadó, pp. 193–199, 2020. ista: Vegter G, Wintraecken M. 2020. Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes. Studia Scientiarum Mathematicarum Hungarica. 57(2), 193–199. mla: Vegter, Gert, and Mathijs Wintraecken. “Refutation of a Claim Made by Fejes Tóth on the Accuracy of Surface Meshes.” Studia Scientiarum Mathematicarum Hungarica, vol. 57, no. 2, Akadémiai Kiadó, 2020, pp. 193–99, doi:10.1556/012.2020.57.2.1454. short: G. Vegter, M. Wintraecken, Studia Scientiarum Mathematicarum Hungarica 57 (2020) 193–199. date_created: 2020-07-24T07:09:18Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-10-10T13:05:27Z day: '24' ddc: - '510' department: - _id: HeEd doi: 10.1556/012.2020.57.2.1454 ec_funded: 1 external_id: isi: - '000570978400005' file: - access_level: open_access content_type: application/pdf creator: mwintrae date_created: 2020-07-24T07:09:06Z date_updated: 2020-07-24T07:09:06Z file_id: '8164' file_name: 57-2-05_4214-1454Vegter-Wintraecken_OpenAccess_CC-BY-NC.pdf file_size: 1476072 relation: main_file file_date_updated: 2020-07-24T07:09:06Z has_accepted_license: '1' intvolume: ' 57' isi: 1 issue: '2' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 193-199 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: Studia Scientiarum Mathematicarum Hungarica publication_identifier: eissn: - 1588-2896 issn: - 0081-6906 publication_status: published publisher: Akadémiai Kiadó quality_controlled: '1' scopus_import: '1' status: public title: Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2020' ... --- _id: '9157' abstract: - lang: eng text: Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy. acknowledgement: "The authors of this paper thank Roland Roth for suggesting the analysis of the weighted\r\ncurvature derivatives for the purpose of improving molecular dynamics simulations and for his continued encouragement. They also thank Patrice Koehl for the implementation of the formulas and for his encouragement and advise along the road. Finally, they thank two anonymous reviewers for their constructive criticism.\r\nThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Akopyan A, Edelsbrunner H. The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 2020;8(1):51-67. doi:10.1515/cmb-2020-0100 apa: Akopyan, A., & Edelsbrunner, H. (2020). The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. De Gruyter. https://doi.org/10.1515/cmb-2020-0100 chicago: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Mean Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics. De Gruyter, 2020. https://doi.org/10.1515/cmb-2020-0100. ieee: A. Akopyan and H. Edelsbrunner, “The weighted mean curvature derivative of a space-filling diagram,” Computational and Mathematical Biophysics, vol. 8, no. 1. De Gruyter, pp. 51–67, 2020. ista: Akopyan A, Edelsbrunner H. 2020. The weighted mean curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 8(1), 51–67. mla: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Mean Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics, vol. 8, no. 1, De Gruyter, 2020, pp. 51–67, doi:10.1515/cmb-2020-0100. short: A. Akopyan, H. Edelsbrunner, Computational and Mathematical Biophysics 8 (2020) 51–67. date_created: 2021-02-17T15:13:01Z date_published: 2020-06-20T00:00:00Z date_updated: 2023-10-17T12:34:51Z day: '20' ddc: - '510' department: - _id: HeEd doi: 10.1515/cmb-2020-0100 ec_funded: 1 file: - access_level: open_access checksum: cea41de9937d07a3b927d71ee8b4e432 content_type: application/pdf creator: dernst date_created: 2021-02-19T13:56:24Z date_updated: 2021-02-19T13:56:24Z file_id: '9171' file_name: 2020_CompMathBiophysics_Akopyan2.pdf file_size: 562359 relation: main_file success: 1 file_date_updated: 2021-02-19T13:56:24Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 51-67 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computational and Mathematical Biophysics publication_identifier: issn: - 2544-7297 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: The weighted mean curvature derivative of a space-filling diagram tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2020' ... --- _id: '9156' abstract: - lang: eng text: The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy. acknowledgement: "The authors of this paper thank Roland Roth for suggesting the analysis of theweighted\r\ncurvature derivatives for the purpose of improving molecular dynamics simulations. They also thank Patrice Koehl for the implementation of the formulas and for his encouragement and advise along the road. Finally, they thank two anonymous reviewers for their constructive criticism.\r\nThis project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Akopyan A, Edelsbrunner H. The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 2020;8(1):74-88. doi:10.1515/cmb-2020-0101 apa: Akopyan, A., & Edelsbrunner, H. (2020). The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. De Gruyter. https://doi.org/10.1515/cmb-2020-0101 chicago: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics. De Gruyter, 2020. https://doi.org/10.1515/cmb-2020-0101. ieee: A. Akopyan and H. Edelsbrunner, “The weighted Gaussian curvature derivative of a space-filling diagram,” Computational and Mathematical Biophysics, vol. 8, no. 1. De Gruyter, pp. 74–88, 2020. ista: Akopyan A, Edelsbrunner H. 2020. The weighted Gaussian curvature derivative of a space-filling diagram. Computational and Mathematical Biophysics. 8(1), 74–88. mla: Akopyan, Arseniy, and Herbert Edelsbrunner. “The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram.” Computational and Mathematical Biophysics, vol. 8, no. 1, De Gruyter, 2020, pp. 74–88, doi:10.1515/cmb-2020-0101. short: A. Akopyan, H. Edelsbrunner, Computational and Mathematical Biophysics 8 (2020) 74–88. date_created: 2021-02-17T15:12:44Z date_published: 2020-07-21T00:00:00Z date_updated: 2023-10-17T12:35:10Z day: '21' ddc: - '510' department: - _id: HeEd doi: 10.1515/cmb-2020-0101 ec_funded: 1 external_id: arxiv: - '1908.06777' file: - access_level: open_access checksum: ca43a7440834eab6bbea29c59b56ef3a content_type: application/pdf creator: dernst date_created: 2021-02-19T13:33:19Z date_updated: 2021-02-19T13:33:19Z file_id: '9170' file_name: 2020_CompMathBiophysics_Akopyan.pdf file_size: 707452 relation: main_file success: 1 file_date_updated: 2021-02-19T13:33:19Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 74-88 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computational and Mathematical Biophysics publication_identifier: issn: - 2544-7297 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: The weighted Gaussian curvature derivative of a space-filling diagram tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2020' ... --- _id: '15064' abstract: - lang: eng text: We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspaces of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for Čech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive Čech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems. acknowledgement: This research has been supported by the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”, by Polish MNiSzW Grant No. 2621/7.PR/12/2013/2, by the Polish National Science Center under Maestro Grant No. 2014/14/A/ST1/00453 and Grant No. DEC-2013/09/N/ST6/02995. Open Access funding provided by Projekt DEAL. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: U. full_name: Bauer, U. last_name: Bauer - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: M. full_name: Mrozek, M. last_name: Mrozek citation: ama: Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 2020;4(4):455-480. doi:10.1007/s41468-020-00058-8 apa: Bauer, U., Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2020). Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00058-8 chicago: Bauer, U., Herbert Edelsbrunner, Grzegorz Jablonski, and M. Mrozek. “Čech-Delaunay Gradient Flow and Homology Inference for Self-Maps.” Journal of Applied and Computational Topology. Springer Nature, 2020. https://doi.org/10.1007/s41468-020-00058-8. ieee: U. Bauer, H. Edelsbrunner, G. Jablonski, and M. Mrozek, “Čech-Delaunay gradient flow and homology inference for self-maps,” Journal of Applied and Computational Topology, vol. 4, no. 4. Springer Nature, pp. 455–480, 2020. ista: Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. 2020. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 4(4), 455–480. mla: Bauer, U., et al. “Čech-Delaunay Gradient Flow and Homology Inference for Self-Maps.” Journal of Applied and Computational Topology, vol. 4, no. 4, Springer Nature, 2020, pp. 455–80, doi:10.1007/s41468-020-00058-8. short: U. Bauer, H. Edelsbrunner, G. Jablonski, M. Mrozek, Journal of Applied and Computational Topology 4 (2020) 455–480. date_created: 2024-03-04T10:47:49Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-03-04T10:54:04Z day: '01' ddc: - '500' department: - _id: HeEd doi: 10.1007/s41468-020-00058-8 file: - access_level: open_access checksum: eed1168b6e66cd55272c19bb7fca8a1c content_type: application/pdf creator: dernst date_created: 2024-03-04T10:52:42Z date_updated: 2024-03-04T10:52:42Z file_id: '15065' file_name: 2020_JourApplCompTopology_Bauer.pdf file_size: 851190 relation: main_file success: 1 file_date_updated: 2024-03-04T10:52:42Z has_accepted_license: '1' intvolume: ' 4' issue: '4' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 455-480 publication: Journal of Applied and Computational Topology publication_identifier: eissn: - 2367-1734 issn: - 2367-1726 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Čech-Delaunay gradient flow and homology inference for self-maps tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '6515' abstract: - lang: eng text: We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature. author: - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Dyer R, Vegter G, Wintraecken M. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 2019;10(1):223–256. doi:10.20382/jocg.v10i1a9 apa: Dyer, R., Vegter, G., & Wintraecken, M. (2019). Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . Carleton University. https://doi.org/10.20382/jocg.v10i1a9 chicago: Dyer, Ramsay, Gert Vegter, and Mathijs Wintraecken. “Simplices Modelled on Spaces of Constant Curvature.” Journal of Computational Geometry . Carleton University, 2019. https://doi.org/10.20382/jocg.v10i1a9. ieee: R. Dyer, G. Vegter, and M. Wintraecken, “Simplices modelled on spaces of constant curvature,” Journal of Computational Geometry , vol. 10, no. 1. Carleton University, pp. 223–256, 2019. ista: Dyer R, Vegter G, Wintraecken M. 2019. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 10(1), 223–256. mla: Dyer, Ramsay, et al. “Simplices Modelled on Spaces of Constant Curvature.” Journal of Computational Geometry , vol. 10, no. 1, Carleton University, 2019, pp. 223–256, doi:10.20382/jocg.v10i1a9. short: R. Dyer, G. Vegter, M. Wintraecken, Journal of Computational Geometry 10 (2019) 223–256. date_created: 2019-06-03T09:35:33Z date_published: 2019-07-01T00:00:00Z date_updated: 2021-01-12T08:07:50Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.20382/jocg.v10i1a9 ec_funded: 1 file: - access_level: open_access checksum: 57b4df2f16a74eb499734ec8ee240178 content_type: application/pdf creator: mwintrae date_created: 2019-06-03T09:30:01Z date_updated: 2020-07-14T12:47:32Z file_id: '6516' file_name: mainJournalFinal.pdf file_size: 2170882 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 10' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 223–256 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'Journal of Computational Geometry ' publication_identifier: issn: - 1920-180X publication_status: published publisher: Carleton University quality_controlled: '1' scopus_import: 1 status: public title: Simplices modelled on spaces of constant curvature tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2019' ... --- _id: '6628' abstract: - lang: eng text: Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space. author: - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Vegter G, Wintraecken M. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In: The 31st Canadian Conference in Computational Geometry. ; 2019:275-279.' apa: Vegter, G., & Wintraecken, M. (2019). The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In The 31st Canadian Conference in Computational Geometry (pp. 275–279). Edmonton, Canada. chicago: Vegter, Gert, and Mathijs Wintraecken. “The Extrinsic Nature of the Hausdorff Distance of Optimal Triangulations of Manifolds.” In The 31st Canadian Conference in Computational Geometry, 275–79, 2019. ieee: G. Vegter and M. Wintraecken, “The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds,” in The 31st Canadian Conference in Computational Geometry, Edmonton, Canada, 2019, pp. 275–279. ista: 'Vegter G, Wintraecken M. 2019. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. The 31st Canadian Conference in Computational Geometry. CCCG: Canadian Conference in Computational Geometry, 275–279.' mla: Vegter, Gert, and Mathijs Wintraecken. “The Extrinsic Nature of the Hausdorff Distance of Optimal Triangulations of Manifolds.” The 31st Canadian Conference in Computational Geometry, 2019, pp. 275–79. short: G. Vegter, M. Wintraecken, in:, The 31st Canadian Conference in Computational Geometry, 2019, pp. 275–279. conference: end_date: 2019-08-10 location: Edmonton, Canada name: 'CCCG: Canadian Conference in Computational Geometry' start_date: 2019-08-08 date_created: 2019-07-12T08:34:57Z date_published: 2019-08-01T00:00:00Z date_updated: 2021-01-12T08:08:16Z day: '01' ddc: - '004' department: - _id: HeEd ec_funded: 1 file: - access_level: open_access checksum: ceabd152cfa55170d57763f9c6c60a53 content_type: application/pdf creator: mwintrae date_created: 2019-07-12T08:32:46Z date_updated: 2020-07-14T12:47:34Z file_id: '6629' file_name: IntrinsicExtrinsicCCCG2019.pdf file_size: 321176 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 275-279 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: The 31st Canadian Conference in Computational Geometry publication_status: published quality_controlled: '1' scopus_import: 1 status: public title: The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6648' abstract: - lang: eng text: "Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory\r\nneeded for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context." alternative_title: - LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Virk Z, Wagner H. Topological data analysis in information space. In: 35th International Symposium on Computational Geometry. Vol 129. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019:31:1-31:14. doi:10.4230/LIPICS.SOCG.2019.31' apa: 'Edelsbrunner, H., Virk, Z., & Wagner, H. (2019). Topological data analysis in information space. In 35th International Symposium on Computational Geometry (Vol. 129, p. 31:1-31:14). Portland, OR, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2019.31' chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Topological Data Analysis in Information Space.” In 35th International Symposium on Computational Geometry, 129:31:1-31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.SOCG.2019.31. ieee: H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in information space,” in 35th International Symposium on Computational Geometry, Portland, OR, United States, 2019, vol. 129, p. 31:1-31:14. ista: 'Edelsbrunner H, Virk Z, Wagner H. 2019. Topological data analysis in information space. 35th International Symposium on Computational Geometry. SoCG 2019: Symposium on Computational Geometry, LIPIcs, vol. 129, 31:1-31:14.' mla: Edelsbrunner, Herbert, et al. “Topological Data Analysis in Information Space.” 35th International Symposium on Computational Geometry, vol. 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 31:1-31:14, doi:10.4230/LIPICS.SOCG.2019.31. short: H. Edelsbrunner, Z. Virk, H. Wagner, in:, 35th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 31:1-31:14. conference: end_date: 2019-06-21 location: Portland, OR, United States name: 'SoCG 2019: Symposium on Computational Geometry' start_date: 2019-06-18 date_created: 2019-07-17T10:36:09Z date_published: 2019-06-01T00:00:00Z date_updated: 2021-01-12T08:08:23Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.4230/LIPICS.SOCG.2019.31 external_id: arxiv: - '1903.08510' file: - access_level: open_access checksum: 8ec8720730d4c789bf7b06540f1c29f4 content_type: application/pdf creator: dernst date_created: 2019-07-24T06:40:01Z date_updated: 2020-07-14T12:47:35Z file_id: '6666' file_name: 2019_LIPICS_Edelsbrunner.pdf file_size: 1355179 relation: main_file file_date_updated: 2020-07-14T12:47:35Z has_accepted_license: '1' intvolume: ' 129' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 31:1-31:14 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: 35th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771047' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Topological data analysis in information space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 129 year: '2019' ... --- _id: '6989' abstract: - lang: eng text: 'When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with hole(s) to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special simple holes guarantee foldability. ' acknowledgement: This research was performed in part at the 33rd BellairsWinter Workshop on Computational Geometry. Wethank all other participants for a fruitful atmosphere. article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Hugo A full_name: Akitaya, Hugo A last_name: Akitaya - first_name: Kenneth C full_name: Cheung, Kenneth C last_name: Cheung - first_name: Erik D full_name: Demaine, Erik D last_name: Demaine - first_name: Martin L full_name: Demaine, Martin L last_name: Demaine - first_name: Sandor P full_name: Fekete, Sandor P last_name: Fekete - first_name: Linda full_name: Kleist, Linda last_name: Kleist - first_name: Irina full_name: Kostitsyna, Irina last_name: Kostitsyna - first_name: Maarten full_name: Löffler, Maarten last_name: Löffler - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Klara full_name: Mundilova, Klara last_name: Mundilova - first_name: Christiane full_name: Schmidt, Christiane last_name: Schmidt citation: ama: 'Aichholzer O, Akitaya HA, Cheung KC, et al. Folding polyominoes with holes into a cube. In: Proceedings of the 31st Canadian Conference on Computational Geometry. Canadian Conference on Computational Geometry; 2019:164-170.' apa: 'Aichholzer, O., Akitaya, H. A., Cheung, K. C., Demaine, E. D., Demaine, M. L., Fekete, S. P., … Schmidt, C. (2019). Folding polyominoes with holes into a cube. In Proceedings of the 31st Canadian Conference on Computational Geometry (pp. 164–170). Edmonton, Canada: Canadian Conference on Computational Geometry.' chicago: Aichholzer, Oswin, Hugo A Akitaya, Kenneth C Cheung, Erik D Demaine, Martin L Demaine, Sandor P Fekete, Linda Kleist, et al. “Folding Polyominoes with Holes into a Cube.” In Proceedings of the 31st Canadian Conference on Computational Geometry, 164–70. Canadian Conference on Computational Geometry, 2019. ieee: O. Aichholzer et al., “Folding polyominoes with holes into a cube,” in Proceedings of the 31st Canadian Conference on Computational Geometry, Edmonton, Canada, 2019, pp. 164–170. ista: 'Aichholzer O, Akitaya HA, Cheung KC, Demaine ED, Demaine ML, Fekete SP, Kleist L, Kostitsyna I, Löffler M, Masárová Z, Mundilova K, Schmidt C. 2019. Folding polyominoes with holes into a cube. Proceedings of the 31st Canadian Conference on Computational Geometry. CCCG: Canadian Conference in Computational Geometry, 164–170.' mla: Aichholzer, Oswin, et al. “Folding Polyominoes with Holes into a Cube.” Proceedings of the 31st Canadian Conference on Computational Geometry, Canadian Conference on Computational Geometry, 2019, pp. 164–70. short: O. Aichholzer, H.A. Akitaya, K.C. Cheung, E.D. Demaine, M.L. Demaine, S.P. Fekete, L. Kleist, I. Kostitsyna, M. Löffler, Z. Masárová, K. Mundilova, C. Schmidt, in:, Proceedings of the 31st Canadian Conference on Computational Geometry, Canadian Conference on Computational Geometry, 2019, pp. 164–170. conference: end_date: 2019-08-10 location: Edmonton, Canada name: 'CCCG: Canadian Conference in Computational Geometry' start_date: 2019-08-08 date_created: 2019-11-04T16:46:11Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-04T10:57:42Z day: '01' department: - _id: HeEd external_id: arxiv: - '1910.09917' language: - iso: eng main_file_link: - open_access: '1' url: https://cccg.ca/proceedings/2019/proceedings.pdf month: '08' oa: 1 oa_version: Published Version page: 164-170 publication: Proceedings of the 31st Canadian Conference on Computational Geometry publication_status: published publisher: Canadian Conference on Computational Geometry quality_controlled: '1' related_material: record: - id: '8317' relation: extended_version status: public scopus_import: '1' status: public title: Folding polyominoes with holes into a cube type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 year: '2019' ... --- _id: '6671' abstract: - lang: eng text: 'In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: André full_name: Lieutier, André last_name: Lieutier - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat J-D, Lieutier A, Wintraecken M. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. 2019;3(1-2):29–58. doi:10.1007/s41468-019-00029-8 apa: Boissonnat, J.-D., Lieutier, A., & Wintraecken, M. (2019). The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-019-00029-8 chicago: Boissonnat, Jean-Daniel, André Lieutier, and Mathijs Wintraecken. “The Reach, Metric Distortion, Geodesic Convexity and the Variation of Tangent Spaces.” Journal of Applied and Computational Topology. Springer Nature, 2019. https://doi.org/10.1007/s41468-019-00029-8. ieee: J.-D. Boissonnat, A. Lieutier, and M. Wintraecken, “The reach, metric distortion, geodesic convexity and the variation of tangent spaces,” Journal of Applied and Computational Topology, vol. 3, no. 1–2. Springer Nature, pp. 29–58, 2019. ista: Boissonnat J-D, Lieutier A, Wintraecken M. 2019. The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. 3(1–2), 29–58. mla: Boissonnat, Jean-Daniel, et al. “The Reach, Metric Distortion, Geodesic Convexity and the Variation of Tangent Spaces.” Journal of Applied and Computational Topology, vol. 3, no. 1–2, Springer Nature, 2019, pp. 29–58, doi:10.1007/s41468-019-00029-8. short: J.-D. Boissonnat, A. Lieutier, M. Wintraecken, Journal of Applied and Computational Topology 3 (2019) 29–58. date_created: 2019-07-24T08:37:29Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-08-22T12:37:47Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1007/s41468-019-00029-8 ec_funded: 1 file: - access_level: open_access checksum: a5b244db9f751221409cf09c97ee0935 content_type: application/pdf creator: dernst date_created: 2019-07-31T08:09:56Z date_updated: 2020-07-14T12:47:36Z file_id: '6741' file_name: 2019_JournAppliedComputTopol_Boissonnat.pdf file_size: 2215157 relation: main_file file_date_updated: 2020-07-14T12:47:36Z has_accepted_license: '1' intvolume: ' 3' issue: 1-2 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 29–58 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Journal of Applied and Computational Topology publication_identifier: eissn: - 2367-1734 issn: - 2367-1726 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: The reach, metric distortion, geodesic convexity and the variation of tangent spaces tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2019' ... --- _id: '6050' abstract: - lang: eng text: 'We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. ' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Fedorov, Roman last_name: Fedorov citation: ama: Akopyan A, Fedorov R. Two circles and only a straightedge. Proceedings of the American Mathematical Society. 2019;147:91-102. doi:10.1090/proc/14240 apa: Akopyan, A., & Fedorov, R. (2019). Two circles and only a straightedge. Proceedings of the American Mathematical Society. AMS. https://doi.org/10.1090/proc/14240 chicago: Akopyan, Arseniy, and Roman Fedorov. “Two Circles and Only a Straightedge.” Proceedings of the American Mathematical Society. AMS, 2019. https://doi.org/10.1090/proc/14240. ieee: A. Akopyan and R. Fedorov, “Two circles and only a straightedge,” Proceedings of the American Mathematical Society, vol. 147. AMS, pp. 91–102, 2019. ista: Akopyan A, Fedorov R. 2019. Two circles and only a straightedge. Proceedings of the American Mathematical Society. 147, 91–102. mla: Akopyan, Arseniy, and Roman Fedorov. “Two Circles and Only a Straightedge.” Proceedings of the American Mathematical Society, vol. 147, AMS, 2019, pp. 91–102, doi:10.1090/proc/14240. short: A. Akopyan, R. Fedorov, Proceedings of the American Mathematical Society 147 (2019) 91–102. date_created: 2019-02-24T22:59:19Z date_published: 2019-01-01T00:00:00Z date_updated: 2023-08-24T14:48:59Z day: '01' department: - _id: HeEd doi: 10.1090/proc/14240 external_id: arxiv: - '1709.02562' isi: - '000450363900008' intvolume: ' 147' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1709.02562 month: '01' oa: 1 oa_version: Preprint page: 91-102 publication: Proceedings of the American Mathematical Society publication_status: published publisher: AMS quality_controlled: '1' scopus_import: '1' status: public title: Two circles and only a straightedge type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 147 year: '2019' ... --- _id: '6634' abstract: - lang: eng text: In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alfredo full_name: Hubard, Alfredo last_name: Hubard - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Hubard A, Karasev R. Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. 2019;53(2):457-490. doi:10.12775/TMNA.2019.008 apa: Akopyan, A., Hubard, A., & Karasev, R. (2019). Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. Akademicka Platforma Czasopism. https://doi.org/10.12775/TMNA.2019.008 chicago: Akopyan, Arseniy, Alfredo Hubard, and Roman Karasev. “Lower and Upper Bounds for the Waists of Different Spaces.” Topological Methods in Nonlinear Analysis. Akademicka Platforma Czasopism, 2019. https://doi.org/10.12775/TMNA.2019.008. ieee: A. Akopyan, A. Hubard, and R. Karasev, “Lower and upper bounds for the waists of different spaces,” Topological Methods in Nonlinear Analysis, vol. 53, no. 2. Akademicka Platforma Czasopism, pp. 457–490, 2019. ista: Akopyan A, Hubard A, Karasev R. 2019. Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. 53(2), 457–490. mla: Akopyan, Arseniy, et al. “Lower and Upper Bounds for the Waists of Different Spaces.” Topological Methods in Nonlinear Analysis, vol. 53, no. 2, Akademicka Platforma Czasopism, 2019, pp. 457–90, doi:10.12775/TMNA.2019.008. short: A. Akopyan, A. Hubard, R. Karasev, Topological Methods in Nonlinear Analysis 53 (2019) 457–490. date_created: 2019-07-14T21:59:19Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-08-29T06:32:48Z day: '01' department: - _id: HeEd doi: 10.12775/TMNA.2019.008 ec_funded: 1 external_id: arxiv: - '1612.06926' isi: - '000472541600004' intvolume: ' 53' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1612.06926 month: '06' oa: 1 oa_version: Preprint page: 457-490 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Topological Methods in Nonlinear Analysis publication_status: published publisher: Akademicka Platforma Czasopism quality_controlled: '1' scopus_import: '1' status: public title: Lower and upper bounds for the waists of different spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 53 year: '2019' ... --- _id: '6756' abstract: - lang: eng text: "We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over \U0001D54A2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models." article_number: A163 article_processing_charge: No article_type: original author: - first_name: Pratyush full_name: Pranav, Pratyush last_name: Pranav - first_name: Robert J. full_name: Adler, Robert J. last_name: Adler - first_name: Thomas full_name: Buchert, Thomas last_name: Buchert - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Bernard J.T. full_name: Jones, Bernard J.T. last_name: Jones - first_name: Armin full_name: Schwartzman, Armin last_name: Schwartzman - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner - first_name: Rien full_name: Van De Weygaert, Rien last_name: Van De Weygaert citation: ama: Pranav P, Adler RJ, Buchert T, et al. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 2019;627. doi:10.1051/0004-6361/201834916 apa: Pranav, P., Adler, R. J., Buchert, T., Edelsbrunner, H., Jones, B. J. T., Schwartzman, A., … Van De Weygaert, R. (2019). Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834916 chicago: Pranav, Pratyush, Robert J. Adler, Thomas Buchert, Herbert Edelsbrunner, Bernard J.T. Jones, Armin Schwartzman, Hubert Wagner, and Rien Van De Weygaert. “Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background.” Astronomy and Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834916. ieee: P. Pranav et al., “Unexpected topology of the temperature fluctuations in the cosmic microwave background,” Astronomy and Astrophysics, vol. 627. EDP Sciences, 2019. ista: Pranav P, Adler RJ, Buchert T, Edelsbrunner H, Jones BJT, Schwartzman A, Wagner H, Van De Weygaert R. 2019. Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. 627, A163. mla: Pranav, Pratyush, et al. “Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background.” Astronomy and Astrophysics, vol. 627, A163, EDP Sciences, 2019, doi:10.1051/0004-6361/201834916. short: P. Pranav, R.J. Adler, T. Buchert, H. Edelsbrunner, B.J.T. Jones, A. Schwartzman, H. Wagner, R. Van De Weygaert, Astronomy and Astrophysics 627 (2019). date_created: 2019-08-04T21:59:18Z date_published: 2019-07-17T00:00:00Z date_updated: 2023-08-29T07:01:48Z day: '17' ddc: - '520' - '530' department: - _id: HeEd doi: 10.1051/0004-6361/201834916 external_id: arxiv: - '1812.07678' isi: - '000475839300003' file: - access_level: open_access checksum: 83b9209ed9eefbdcefd89019c5a97805 content_type: application/pdf creator: dernst date_created: 2019-08-05T08:08:59Z date_updated: 2020-07-14T12:47:39Z file_id: '6766' file_name: 2019_AstronomyAstrophysics_Pranav.pdf file_size: 14420451 relation: main_file file_date_updated: 2020-07-14T12:47:39Z has_accepted_license: '1' intvolume: ' 627' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 265683E4-B435-11E9-9278-68D0E5697425 grant_number: M62909-18-1-2038 name: Toward Computational Information Topology - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Astronomy and Astrophysics publication_identifier: eissn: - '14320746' issn: - '00046361' publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: Unexpected topology of the temperature fluctuations in the cosmic microwave background tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 627 year: '2019' ... --- _id: '6793' abstract: - lang: eng text: The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Ivan full_name: Izmestiev, Ivan last_name: Izmestiev citation: ama: Akopyan A, Izmestiev I. The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. 2019;51(5):765-775. doi:10.1112/blms.12276 apa: Akopyan, A., & Izmestiev, I. (2019). The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/blms.12276 chicago: Akopyan, Arseniy, and Ivan Izmestiev. “The Regge Symmetry, Confocal Conics, and the Schläfli Formula.” Bulletin of the London Mathematical Society. London Mathematical Society, 2019. https://doi.org/10.1112/blms.12276. ieee: A. Akopyan and I. Izmestiev, “The Regge symmetry, confocal conics, and the Schläfli formula,” Bulletin of the London Mathematical Society, vol. 51, no. 5. London Mathematical Society, pp. 765–775, 2019. ista: Akopyan A, Izmestiev I. 2019. The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. 51(5), 765–775. mla: Akopyan, Arseniy, and Ivan Izmestiev. “The Regge Symmetry, Confocal Conics, and the Schläfli Formula.” Bulletin of the London Mathematical Society, vol. 51, no. 5, London Mathematical Society, 2019, pp. 765–75, doi:10.1112/blms.12276. short: A. Akopyan, I. Izmestiev, Bulletin of the London Mathematical Society 51 (2019) 765–775. date_created: 2019-08-11T21:59:23Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-29T07:08:34Z day: '01' department: - _id: HeEd doi: 10.1112/blms.12276 ec_funded: 1 external_id: arxiv: - '1903.04929' isi: - '000478560200001' intvolume: ' 51' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.04929 month: '10' oa: 1 oa_version: Preprint page: 765-775 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: Bulletin of the London Mathematical Society publication_identifier: eissn: - '14692120' issn: - '00246093' publication_status: published publisher: London Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: The Regge symmetry, confocal conics, and the Schläfli formula type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 51 year: '2019' ... --- _id: '6828' abstract: - lang: eng text: In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group . article_processing_charge: No article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown citation: ama: Brown A. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 2019;538:261-289. doi:10.1016/j.jalgebra.2019.07.027 apa: Brown, A. (2019). Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2019.07.027 chicago: Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra. Elsevier, 2019. https://doi.org/10.1016/j.jalgebra.2019.07.027. ieee: A. Brown, “Arakawa-Suzuki functors for Whittaker modules,” Journal of Algebra, vol. 538. Elsevier, pp. 261–289, 2019. ista: Brown A. 2019. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 538, 261–289. mla: Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra, vol. 538, Elsevier, 2019, pp. 261–89, doi:10.1016/j.jalgebra.2019.07.027. short: A. Brown, Journal of Algebra 538 (2019) 261–289. date_created: 2019-08-22T07:54:13Z date_published: 2019-11-15T00:00:00Z date_updated: 2023-08-29T07:11:47Z day: '15' department: - _id: HeEd doi: 10.1016/j.jalgebra.2019.07.027 external_id: arxiv: - '1805.04676' isi: - '000487176300011' intvolume: ' 538' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.04676 month: '11' oa: 1 oa_version: Preprint page: 261-289 publication: Journal of Algebra publication_identifier: issn: - 0021-8693 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Arakawa-Suzuki functors for Whittaker modules type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 538 year: '2019' ... --- _id: '7216' abstract: - lang: eng text: 'We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.' article_number: '8917514' article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: James full_name: Cook, James last_name: Cook - first_name: Alex full_name: Fabrikant, Alex last_name: Fabrikant - first_name: Marco full_name: Gruteser, Marco last_name: Gruteser citation: ama: 'Osang GF, Cook J, Fabrikant A, Gruteser M. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In: 2019 IEEE Intelligent Transportation Systems Conference. IEEE; 2019. doi:10.1109/ITSC.2019.8917514' apa: 'Osang, G. F., Cook, J., Fabrikant, A., & Gruteser, M. (2019). LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE. https://doi.org/10.1109/ITSC.2019.8917514' chicago: 'Osang, Georg F, James Cook, Alex Fabrikant, and Marco Gruteser. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” In 2019 IEEE Intelligent Transportation Systems Conference. IEEE, 2019. https://doi.org/10.1109/ITSC.2019.8917514.' ieee: 'G. F. Osang, J. Cook, A. Fabrikant, and M. Gruteser, “LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale,” in 2019 IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 2019.' ista: 'Osang GF, Cook J, Fabrikant A, Gruteser M. 2019. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. 2019 IEEE Intelligent Transportation Systems Conference. ITSC: Intelligent Transportation Systems Conference, 8917514.' mla: 'Osang, Georg F., et al. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” 2019 IEEE Intelligent Transportation Systems Conference, 8917514, IEEE, 2019, doi:10.1109/ITSC.2019.8917514.' short: G.F. Osang, J. Cook, A. Fabrikant, M. Gruteser, in:, 2019 IEEE Intelligent Transportation Systems Conference, IEEE, 2019. conference: end_date: 2019-10-30 location: Auckland, New Zealand name: 'ITSC: Intelligent Transportation Systems Conference' start_date: 2019-10-27 date_created: 2019-12-29T23:00:47Z date_published: 2019-11-28T00:00:00Z date_updated: 2023-09-06T14:50:28Z day: '28' department: - _id: HeEd doi: 10.1109/ITSC.2019.8917514 external_id: isi: - '000521238102050' isi: 1 language: - iso: eng month: '11' oa_version: None publication: 2019 IEEE Intelligent Transportation Systems Conference publication_identifier: isbn: - '9781538670248' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '5678' abstract: - lang: eng text: "The order-k Voronoi tessellation of a locally finite set \U0001D44B⊆ℝ\U0001D45B decomposes ℝ\U0001D45B into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Nikitenko A. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 2019;62(4):865–878. doi:10.1007/s00454-018-0049-2 apa: Edelsbrunner, H., & Nikitenko, A. (2019). Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. Springer. https://doi.org/10.1007/s00454-018-0049-2 chicago: Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry. Springer, 2019. https://doi.org/10.1007/s00454-018-0049-2. ieee: H. Edelsbrunner and A. Nikitenko, “Poisson–Delaunay Mosaics of Order k,” Discrete and Computational Geometry, vol. 62, no. 4. Springer, pp. 865–878, 2019. ista: Edelsbrunner H, Nikitenko A. 2019. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 62(4), 865–878. mla: Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry, vol. 62, no. 4, Springer, 2019, pp. 865–878, doi:10.1007/s00454-018-0049-2. short: H. Edelsbrunner, A. Nikitenko, Discrete and Computational Geometry 62 (2019) 865–878. date_created: 2018-12-16T22:59:20Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-07T12:07:12Z day: '01' ddc: - '516' department: - _id: HeEd doi: 10.1007/s00454-018-0049-2 ec_funded: 1 external_id: arxiv: - '1709.09380' isi: - '000494042900008' file: - access_level: open_access checksum: f9d00e166efaccb5a76bbcbb4dcea3b4 content_type: application/pdf creator: dernst date_created: 2019-02-06T10:10:46Z date_updated: 2020-07-14T12:47:10Z file_id: '5932' file_name: 2018_DiscreteCompGeometry_Edelsbrunner.pdf file_size: 599339 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 62' isi: 1 issue: '4' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 865–878 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete and Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer quality_controlled: '1' related_material: record: - id: '6287' relation: dissertation_contains status: public scopus_import: '1' status: public title: Poisson–Delaunay Mosaics of Order k tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 62 year: '2019' ... --- _id: '6608' abstract: - lang: eng text: We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Edelsbrunner H, Ölsböck K. Holes and dependences in an ordered complex. Computer Aided Geometric Design. 2019;73:1-15. doi:10.1016/j.cagd.2019.06.003 apa: Edelsbrunner, H., & Ölsböck, K. (2019). Holes and dependences in an ordered complex. Computer Aided Geometric Design. Elsevier. https://doi.org/10.1016/j.cagd.2019.06.003 chicago: Edelsbrunner, Herbert, and Katharina Ölsböck. “Holes and Dependences in an Ordered Complex.” Computer Aided Geometric Design. Elsevier, 2019. https://doi.org/10.1016/j.cagd.2019.06.003. ieee: H. Edelsbrunner and K. Ölsböck, “Holes and dependences in an ordered complex,” Computer Aided Geometric Design, vol. 73. Elsevier, pp. 1–15, 2019. ista: Edelsbrunner H, Ölsböck K. 2019. Holes and dependences in an ordered complex. Computer Aided Geometric Design. 73, 1–15. mla: Edelsbrunner, Herbert, and Katharina Ölsböck. “Holes and Dependences in an Ordered Complex.” Computer Aided Geometric Design, vol. 73, Elsevier, 2019, pp. 1–15, doi:10.1016/j.cagd.2019.06.003. short: H. Edelsbrunner, K. Ölsböck, Computer Aided Geometric Design 73 (2019) 1–15. date_created: 2019-07-07T21:59:20Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-09-07T13:15:29Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.cagd.2019.06.003 ec_funded: 1 external_id: isi: - '000485207800001' file: - access_level: open_access checksum: 7c99be505dc7533257d42eb1830cef04 content_type: application/pdf creator: kschuh date_created: 2019-07-08T15:24:26Z date_updated: 2020-07-14T12:47:34Z file_id: '6624' file_name: Elsevier_2019_Edelsbrunner.pdf file_size: 2665013 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 73' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 1-15 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Computer Aided Geometric Design publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '7460' relation: dissertation_contains status: public scopus_import: '1' status: public title: Holes and dependences in an ordered complex tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 73 year: '2019' ... --- _id: '7950' abstract: - lang: eng text: "The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:\r\n1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.\r\n2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.\r\n3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices \ have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved." article_number: '1903.06981' article_processing_charge: No author: - first_name: Ahmad full_name: Biniaz, Ahmad last_name: Biniaz - first_name: Kshitij full_name: Jain, Kshitij last_name: Jain - first_name: Anna full_name: Lubiw, Anna last_name: Lubiw - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Tillmann full_name: Miltzow, Tillmann last_name: Miltzow - first_name: Debajyoti full_name: Mondal, Debajyoti last_name: Mondal - first_name: Anurag Murty full_name: Naredla, Anurag Murty last_name: Naredla - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Alexi full_name: Turcotte, Alexi last_name: Turcotte citation: ama: Biniaz A, Jain K, Lubiw A, et al. Token swapping on trees. arXiv. apa: Biniaz, A., Jain, K., Lubiw, A., Masárová, Z., Miltzow, T., Mondal, D., … Turcotte, A. (n.d.). Token swapping on trees. arXiv. chicago: Biniaz, Ahmad, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. “Token Swapping on Trees.” ArXiv, n.d. ieee: A. Biniaz et al., “Token swapping on trees,” arXiv. . ista: Biniaz A, Jain K, Lubiw A, Masárová Z, Miltzow T, Mondal D, Naredla AM, Tkadlec J, Turcotte A. Token swapping on trees. arXiv, 1903.06981. mla: Biniaz, Ahmad, et al. “Token Swapping on Trees.” ArXiv, 1903.06981. short: A. Biniaz, K. Jain, A. Lubiw, Z. Masárová, T. Miltzow, D. Mondal, A.M. Naredla, J. Tkadlec, A. Turcotte, ArXiv (n.d.). date_created: 2020-06-08T12:25:25Z date_published: 2019-03-16T00:00:00Z date_updated: 2024-01-04T12:42:08Z day: '16' department: - _id: HeEd - _id: UlWa - _id: KrCh external_id: arxiv: - '1903.06981' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.06981 month: '03' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted related_material: record: - id: '7944' relation: dissertation_contains status: public - id: '12833' relation: later_version status: public status: public title: Token swapping on trees type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '188' abstract: - lang: eng text: Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex. acknowledgement: This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund alternative_title: - Leibniz International Proceedings in Information, LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Virk Z, Wagner H. Smallest enclosing spheres and Chernoff points in Bregman geometry. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:35:1-35:13. doi:10.4230/LIPIcs.SoCG.2018.35' apa: 'Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35' chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry,” 99:35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.35. ieee: 'H. Edelsbrunner, Z. Virk, and H. Wagner, “Smallest enclosing spheres and Chernoff points in Bregman geometry,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 35:1-35:13.' ista: 'Edelsbrunner H, Virk Z, Wagner H. 2018. Smallest enclosing spheres and Chernoff points in Bregman geometry. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 35:1-35:13.' mla: Edelsbrunner, Herbert, et al. Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13, doi:10.4230/LIPIcs.SoCG.2018.35. short: H. Edelsbrunner, Z. Virk, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:05Z date_published: 2018-06-11T00:00:00Z date_updated: 2021-01-12T06:53:48Z day: '11' ddc: - '000' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2018.35 file: - access_level: open_access checksum: 7509403803b3ac1aee94bbc2ad293d21 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:31:31Z date_updated: 2020-07-14T12:45:20Z file_id: '5724' file_name: 2018_LIPIcs_Edelsbrunner.pdf file_size: 489080 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 35:1 - 35:13 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7733' quality_controlled: '1' scopus_import: 1 status: public title: Smallest enclosing spheres and Chernoff points in Bregman geometry tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '201' abstract: - lang: eng text: 'We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: Iglesias Ham M. Multiple covers with balls. 2018. doi:10.15479/AT:ISTA:th_1026 apa: Iglesias Ham, M. (2018). Multiple covers with balls. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1026 chicago: Iglesias Ham, Mabel. “Multiple Covers with Balls.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1026. ieee: M. Iglesias Ham, “Multiple covers with balls,” Institute of Science and Technology Austria, 2018. ista: Iglesias Ham M. 2018. Multiple covers with balls. Institute of Science and Technology Austria. mla: Iglesias Ham, Mabel. Multiple Covers with Balls. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1026. short: M. Iglesias Ham, Multiple Covers with Balls, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-07T12:25:32Z day: '11' ddc: - '514' - '516' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_1026 file: - access_level: closed checksum: dd699303623e96d1478a6ae07210dd05 content_type: application/zip creator: kschuh date_created: 2019-02-05T07:43:31Z date_updated: 2020-07-14T12:45:24Z file_id: '5918' file_name: IST-2018-1025-v2+5_ist-thesis-iglesias-11June2018(1).zip file_size: 11827713 relation: source_file - access_level: open_access checksum: ba163849a190d2b41d66fef0e4983294 content_type: application/pdf creator: kschuh date_created: 2019-02-05T07:43:45Z date_updated: 2020-07-14T12:45:24Z file_id: '5919' file_name: IST-2018-1025-v2+4_ThesisIglesiasFinal11June2018.pdf file_size: 4783846 relation: main_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '171' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7712' pubrep_id: '1026' status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Multiple covers with balls type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '187' abstract: - lang: eng text: 'Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. ' acknowledgement: This work is partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). alternative_title: - LIPIcs article_number: '34' author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 citation: ama: 'Edelsbrunner H, Osang GF. The multi-cover persistence of Euclidean balls. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPIcs.SoCG.2018.34' apa: 'Edelsbrunner, H., & Osang, G. F. (2018). The multi-cover persistence of Euclidean balls (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.34' chicago: Edelsbrunner, Herbert, and Georg F Osang. “The Multi-Cover Persistence of Euclidean Balls,” Vol. 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.34. ieee: 'H. Edelsbrunner and G. F. Osang, “The multi-cover persistence of Euclidean balls,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99.' ista: 'Edelsbrunner H, Osang GF. 2018. The multi-cover persistence of Euclidean balls. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 99, 34.' mla: Edelsbrunner, Herbert, and Georg F. Osang. The Multi-Cover Persistence of Euclidean Balls. Vol. 99, 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPIcs.SoCG.2018.34. short: H. Edelsbrunner, G.F. Osang, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. conference: end_date: 2018-06-14 location: Budapest, Hungary name: 'SoCG: Symposium on Computational Geometry' start_date: 2018-06-11 date_created: 2018-12-11T11:45:05Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-07T13:29:00Z day: '11' ddc: - '516' department: - _id: HeEd doi: 10.4230/LIPIcs.SoCG.2018.34 file: - access_level: open_access checksum: d8c0533ad0018eb4ed1077475eb8fc18 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:27:22Z date_updated: 2020-07-14T12:45:19Z file_id: '5738' file_name: 2018_LIPIcs_Edelsbrunner_Osang.pdf file_size: 528018 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 99' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7732' quality_controlled: '1' related_material: record: - id: '9317' relation: later_version status: public - id: '9056' relation: dissertation_contains status: public scopus_import: 1 status: public title: The multi-cover persistence of Euclidean balls tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2018' ... --- _id: '692' abstract: - lang: eng text: We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X citation: ama: Akopyan A. 3-Webs generated by confocal conics and circles. Geometriae Dedicata. 2018;194(1):55-64. doi:10.1007/s10711-017-0265-6 apa: Akopyan, A. (2018). 3-Webs generated by confocal conics and circles. Geometriae Dedicata. Springer. https://doi.org/10.1007/s10711-017-0265-6 chicago: Akopyan, Arseniy. “3-Webs Generated by Confocal Conics and Circles.” Geometriae Dedicata. Springer, 2018. https://doi.org/10.1007/s10711-017-0265-6. ieee: A. Akopyan, “3-Webs generated by confocal conics and circles,” Geometriae Dedicata, vol. 194, no. 1. Springer, pp. 55–64, 2018. ista: Akopyan A. 2018. 3-Webs generated by confocal conics and circles. Geometriae Dedicata. 194(1), 55–64. mla: Akopyan, Arseniy. “3-Webs Generated by Confocal Conics and Circles.” Geometriae Dedicata, vol. 194, no. 1, Springer, 2018, pp. 55–64, doi:10.1007/s10711-017-0265-6. short: A. Akopyan, Geometriae Dedicata 194 (2018) 55–64. date_created: 2018-12-11T11:47:57Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-08T11:40:29Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s10711-017-0265-6 ec_funded: 1 external_id: isi: - '000431418800004' file: - access_level: open_access checksum: 1febcfc1266486053a069e3425ea3713 content_type: application/pdf creator: kschuh date_created: 2020-01-03T11:35:08Z date_updated: 2020-07-14T12:47:44Z file_id: '7222' file_name: 2018_Springer_Akopyan.pdf file_size: 1140860 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 194' isi: 1 issue: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 55 - 64 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Geometriae Dedicata publication_status: published publisher: Springer publist_id: '7014' quality_controlled: '1' scopus_import: '1' status: public title: 3-Webs generated by confocal conics and circles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 194 year: '2018' ... --- _id: '58' abstract: - lang: eng text: 'Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Erel full_name: Segal Halevi, Erel last_name: Segal Halevi citation: ama: Akopyan A, Segal Halevi E. Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. 2018;32(3):2242-2257. doi:10.1137/16M110407X apa: Akopyan, A., & Segal Halevi, E. (2018). Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M110407X chicago: Akopyan, Arseniy, and Erel Segal Halevi. “Counting Blanks in Polygonal Arrangements.” SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics , 2018. https://doi.org/10.1137/16M110407X. ieee: A. Akopyan and E. Segal Halevi, “Counting blanks in polygonal arrangements,” SIAM Journal on Discrete Mathematics, vol. 32, no. 3. Society for Industrial and Applied Mathematics , pp. 2242–2257, 2018. ista: Akopyan A, Segal Halevi E. 2018. Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. 32(3), 2242–2257. mla: Akopyan, Arseniy, and Erel Segal Halevi. “Counting Blanks in Polygonal Arrangements.” SIAM Journal on Discrete Mathematics, vol. 32, no. 3, Society for Industrial and Applied Mathematics , 2018, pp. 2242–57, doi:10.1137/16M110407X. short: A. Akopyan, E. Segal Halevi, SIAM Journal on Discrete Mathematics 32 (2018) 2242–2257. date_created: 2018-12-11T11:44:24Z date_published: 2018-09-06T00:00:00Z date_updated: 2023-09-11T12:48:39Z day: '06' department: - _id: HeEd doi: 10.1137/16M110407X ec_funded: 1 external_id: arxiv: - '1604.00960' isi: - '000450810500036' intvolume: ' 32' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1604.00960 month: '09' oa: 1 oa_version: Preprint page: 2242 - 2257 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: SIAM Journal on Discrete Mathematics publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '7996' quality_controlled: '1' scopus_import: '1' status: public title: Counting blanks in polygonal arrangements type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2018' ... --- _id: '458' abstract: - lang: eng text: We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem. acknowledgement: DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”; People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) REA grant agreement n◦[291734] article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexander full_name: Bobenko, Alexander last_name: Bobenko citation: ama: Akopyan A, Bobenko A. Incircular nets and confocal conics. Transactions of the American Mathematical Society. 2018;370(4):2825-2854. doi:10.1090/tran/7292 apa: Akopyan, A., & Bobenko, A. (2018). Incircular nets and confocal conics. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/7292 chicago: Akopyan, Arseniy, and Alexander Bobenko. “Incircular Nets and Confocal Conics.” Transactions of the American Mathematical Society. American Mathematical Society, 2018. https://doi.org/10.1090/tran/7292. ieee: A. Akopyan and A. Bobenko, “Incircular nets and confocal conics,” Transactions of the American Mathematical Society, vol. 370, no. 4. American Mathematical Society, pp. 2825–2854, 2018. ista: Akopyan A, Bobenko A. 2018. Incircular nets and confocal conics. Transactions of the American Mathematical Society. 370(4), 2825–2854. mla: Akopyan, Arseniy, and Alexander Bobenko. “Incircular Nets and Confocal Conics.” Transactions of the American Mathematical Society, vol. 370, no. 4, American Mathematical Society, 2018, pp. 2825–54, doi:10.1090/tran/7292. short: A. Akopyan, A. Bobenko, Transactions of the American Mathematical Society 370 (2018) 2825–2854. date_created: 2018-12-11T11:46:35Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-11T14:19:12Z day: '01' department: - _id: HeEd doi: 10.1090/tran/7292 ec_funded: 1 external_id: isi: - '000423197800019' intvolume: ' 370' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1602.04637 month: '04' oa: 1 oa_version: Preprint page: 2825 - 2854 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Transactions of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '7363' quality_controlled: '1' scopus_import: '1' status: public title: Incircular nets and confocal conics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 370 year: '2018' ... --- _id: '106' abstract: - lang: eng text: The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Anton full_name: Petrunin, Anton last_name: Petrunin citation: ama: Akopyan A, Petrunin A. Long geodesics on convex surfaces. Mathematical Intelligencer. 2018;40(3):26-31. doi:10.1007/s00283-018-9795-5 apa: Akopyan, A., & Petrunin, A. (2018). Long geodesics on convex surfaces. Mathematical Intelligencer. Springer. https://doi.org/10.1007/s00283-018-9795-5 chicago: Akopyan, Arseniy, and Anton Petrunin. “Long Geodesics on Convex Surfaces.” Mathematical Intelligencer. Springer, 2018. https://doi.org/10.1007/s00283-018-9795-5. ieee: A. Akopyan and A. Petrunin, “Long geodesics on convex surfaces,” Mathematical Intelligencer, vol. 40, no. 3. Springer, pp. 26–31, 2018. ista: Akopyan A, Petrunin A. 2018. Long geodesics on convex surfaces. Mathematical Intelligencer. 40(3), 26–31. mla: Akopyan, Arseniy, and Anton Petrunin. “Long Geodesics on Convex Surfaces.” Mathematical Intelligencer, vol. 40, no. 3, Springer, 2018, pp. 26–31, doi:10.1007/s00283-018-9795-5. short: A. Akopyan, A. Petrunin, Mathematical Intelligencer 40 (2018) 26–31. date_created: 2018-12-11T11:44:40Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-13T08:49:16Z day: '01' department: - _id: HeEd doi: 10.1007/s00283-018-9795-5 external_id: arxiv: - '1702.05172' isi: - '000444141200005' intvolume: ' 40' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.05172 month: '09' oa: 1 oa_version: Preprint page: 26 - 31 publication: Mathematical Intelligencer publication_status: published publisher: Springer publist_id: '7948' quality_controlled: '1' scopus_import: '1' status: public title: Long geodesics on convex surfaces type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 40 year: '2018' ... --- _id: '530' abstract: - lang: eng text: Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: 'Edelsbrunner H, Iglesias Ham M. Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. 2018;68:119-133. doi:10.1016/j.comgeo.2017.06.014' apa: 'Edelsbrunner, H., & Iglesias Ham, M. (2018). Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2017.06.014' chicago: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls I: Inclusion–Exclusion.” Computational Geometry: Theory and Applications. Elsevier, 2018. https://doi.org/10.1016/j.comgeo.2017.06.014.' ieee: 'H. Edelsbrunner and M. Iglesias Ham, “Multiple covers with balls I: Inclusion–exclusion,” Computational Geometry: Theory and Applications, vol. 68. Elsevier, pp. 119–133, 2018.' ista: 'Edelsbrunner H, Iglesias Ham M. 2018. Multiple covers with balls I: Inclusion–exclusion. Computational Geometry: Theory and Applications. 68, 119–133.' mla: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls I: Inclusion–Exclusion.” Computational Geometry: Theory and Applications, vol. 68, Elsevier, 2018, pp. 119–33, doi:10.1016/j.comgeo.2017.06.014.' short: 'H. Edelsbrunner, M. Iglesias Ham, Computational Geometry: Theory and Applications 68 (2018) 119–133.' date_created: 2018-12-11T11:46:59Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-13T08:59:00Z day: '01' ddc: - '000' department: - _id: HeEd doi: 10.1016/j.comgeo.2017.06.014 ec_funded: 1 external_id: isi: - '000415778300010' file: - access_level: open_access checksum: 1c8d58cd489a66cd3e2064c1141c8c5e content_type: application/pdf creator: dernst date_created: 2019-02-12T06:47:52Z date_updated: 2020-07-14T12:46:38Z file_id: '5953' file_name: 2018_Edelsbrunner.pdf file_size: 708357 relation: main_file file_date_updated: 2020-07-14T12:46:38Z has_accepted_license: '1' intvolume: ' 68' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Preprint page: 119 - 133 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: 'Computational Geometry: Theory and Applications' publication_status: published publisher: Elsevier publist_id: '7289' quality_controlled: '1' scopus_import: '1' status: public title: 'Multiple covers with balls I: Inclusion–exclusion' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 68 year: '2018' ... --- _id: '193' abstract: - lang: eng text: 'We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki''16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block''16] for analyzing the hardware costs of an iMHF.' acknowledgement: Leonid Reyzin was supported in part by IST Austria and by US NSF grants 1012910, 1012798, and 1422965; this research was performed while he was visiting IST Austria. article_processing_charge: No author: - first_name: Joel F full_name: Alwen, Joel F id: 2A8DFA8C-F248-11E8-B48F-1D18A9856A87 last_name: Alwen - first_name: Peter full_name: Gazi, Peter last_name: Gazi - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Lenoid full_name: Reyzin, Lenoid last_name: Reyzin - first_name: Michal full_name: Rolinek, Michal id: 3CB3BC06-F248-11E8-B48F-1D18A9856A87 last_name: Rolinek - first_name: Michal full_name: Rybar, Michal id: 2B3E3DE8-F248-11E8-B48F-1D18A9856A87 last_name: Rybar citation: ama: 'Alwen JF, Gazi P, Kamath Hosdurg C, et al. On the memory hardness of data independent password hashing functions. In: Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ACM; 2018:51-65. doi:10.1145/3196494.3196534' apa: 'Alwen, J. F., Gazi, P., Kamath Hosdurg, C., Klein, K., Osang, G. F., Pietrzak, K. Z., … Rybar, M. (2018). On the memory hardness of data independent password hashing functions. In Proceedings of the 2018 on Asia Conference on Computer and Communication Security (pp. 51–65). Incheon, Republic of Korea: ACM. https://doi.org/10.1145/3196494.3196534' chicago: Alwen, Joel F, Peter Gazi, Chethan Kamath Hosdurg, Karen Klein, Georg F Osang, Krzysztof Z Pietrzak, Lenoid Reyzin, Michal Rolinek, and Michal Rybar. “On the Memory Hardness of Data Independent Password Hashing Functions.” In Proceedings of the 2018 on Asia Conference on Computer and Communication Security, 51–65. ACM, 2018. https://doi.org/10.1145/3196494.3196534. ieee: J. F. Alwen et al., “On the memory hardness of data independent password hashing functions,” in Proceedings of the 2018 on Asia Conference on Computer and Communication Security, Incheon, Republic of Korea, 2018, pp. 51–65. ista: 'Alwen JF, Gazi P, Kamath Hosdurg C, Klein K, Osang GF, Pietrzak KZ, Reyzin L, Rolinek M, Rybar M. 2018. On the memory hardness of data independent password hashing functions. Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ASIACCS: Asia Conference on Computer and Communications Security , 51–65.' mla: Alwen, Joel F., et al. “On the Memory Hardness of Data Independent Password Hashing Functions.” Proceedings of the 2018 on Asia Conference on Computer and Communication Security, ACM, 2018, pp. 51–65, doi:10.1145/3196494.3196534. short: J.F. Alwen, P. Gazi, C. Kamath Hosdurg, K. Klein, G.F. Osang, K.Z. Pietrzak, L. Reyzin, M. Rolinek, M. Rybar, in:, Proceedings of the 2018 on Asia Conference on Computer and Communication Security, ACM, 2018, pp. 51–65. conference: end_date: 2018-06-08 location: Incheon, Republic of Korea name: 'ASIACCS: Asia Conference on Computer and Communications Security ' start_date: 2018-06-04 date_created: 2018-12-11T11:45:07Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-13T09:13:12Z day: '01' department: - _id: KrPi - _id: HeEd - _id: VlKo doi: 10.1145/3196494.3196534 ec_funded: 1 external_id: isi: - '000516620100005' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2016/783 month: '06' oa: 1 oa_version: Submitted Version page: 51 - 65 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Proceedings of the 2018 on Asia Conference on Computer and Communication Security publication_status: published publisher: ACM publist_id: '7723' quality_controlled: '1' scopus_import: '1' status: public title: On the memory hardness of data independent password hashing functions type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '312' abstract: - lang: eng text: Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice. acknowledgement: This work was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics,” through grant I02979-N35 of the Austrian Science Fund (FWF). article_processing_charge: No article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: Edelsbrunner H, Iglesias Ham M. On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. 2018;32(1):750-782. doi:10.1137/16M1097201 apa: Edelsbrunner, H., & Iglesias Ham, M. (2018). On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1097201 chicago: Edelsbrunner, Herbert, and Mabel Iglesias Ham. “On the Optimality of the FCC Lattice for Soft Sphere Packing.” SIAM J Discrete Math. Society for Industrial and Applied Mathematics , 2018. https://doi.org/10.1137/16M1097201. ieee: H. Edelsbrunner and M. Iglesias Ham, “On the optimality of the FCC lattice for soft sphere packing,” SIAM J Discrete Math, vol. 32, no. 1. Society for Industrial and Applied Mathematics , pp. 750–782, 2018. ista: Edelsbrunner H, Iglesias Ham M. 2018. On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. 32(1), 750–782. mla: Edelsbrunner, Herbert, and Mabel Iglesias Ham. “On the Optimality of the FCC Lattice for Soft Sphere Packing.” SIAM J Discrete Math, vol. 32, no. 1, Society for Industrial and Applied Mathematics , 2018, pp. 750–82, doi:10.1137/16M1097201. short: H. Edelsbrunner, M. Iglesias Ham, SIAM J Discrete Math 32 (2018) 750–782. date_created: 2018-12-11T11:45:46Z date_published: 2018-03-29T00:00:00Z date_updated: 2023-09-13T09:34:38Z day: '29' department: - _id: HeEd doi: 10.1137/16M1097201 external_id: isi: - '000428958900038' intvolume: ' 32' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://pdfs.semanticscholar.org/d2d5/6da00fbc674e6a8b1bb9d857167e54200dc6.pdf month: '03' oa: 1 oa_version: Submitted Version page: 750 - 782 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: SIAM J Discrete Math publication_identifier: issn: - '08954801' publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '7553' quality_controlled: '1' scopus_import: '1' status: public title: On the optimality of the FCC lattice for soft sphere packing type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2018' ... --- _id: '409' abstract: - lang: eng text: We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X citation: ama: Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005 apa: Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005 chicago: Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique. Elsevier, 2018. https://doi.org/10.1016/j.crma.2018.03.005. ieee: A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4. Elsevier, pp. 412–414, 2018. ista: Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414. mla: Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005. short: A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414. date_created: 2018-12-11T11:46:19Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-13T09:34:12Z day: '01' department: - _id: HeEd doi: 10.1016/j.crma.2018.03.005 external_id: arxiv: - '1805.01652' isi: - '000430402700009' intvolume: ' 356' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.01652 month: '04' oa: 1 oa_version: Preprint page: 412-414 publication: Comptes Rendus Mathematique publication_identifier: issn: - 1631073X publication_status: published publisher: Elsevier publist_id: '7420' quality_controlled: '1' scopus_import: '1' status: public title: On the number of non-hexagons in a planar tiling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 356 year: '2018' ... --- _id: '87' abstract: - lang: eng text: Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics. article_processing_charge: No article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Nikitenko A. Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. 2018;28(5):3215-3238. doi:10.1214/18-AAP1389 apa: Edelsbrunner, H., & Nikitenko, A. (2018). Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/18-AAP1389 chicago: Edelsbrunner, Herbert, and Anton Nikitenko. “Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics.” Annals of Applied Probability. Institute of Mathematical Statistics, 2018. https://doi.org/10.1214/18-AAP1389. ieee: H. Edelsbrunner and A. Nikitenko, “Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics,” Annals of Applied Probability, vol. 28, no. 5. Institute of Mathematical Statistics, pp. 3215–3238, 2018. ista: Edelsbrunner H, Nikitenko A. 2018. Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics. Annals of Applied Probability. 28(5), 3215–3238. mla: Edelsbrunner, Herbert, and Anton Nikitenko. “Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics.” Annals of Applied Probability, vol. 28, no. 5, Institute of Mathematical Statistics, 2018, pp. 3215–38, doi:10.1214/18-AAP1389. short: H. Edelsbrunner, A. Nikitenko, Annals of Applied Probability 28 (2018) 3215–3238. date_created: 2018-12-11T11:44:33Z date_published: 2018-10-01T00:00:00Z date_updated: 2023-09-15T12:10:35Z day: '01' department: - _id: HeEd doi: 10.1214/18-AAP1389 external_id: arxiv: - '1705.02870' isi: - '000442893500018' intvolume: ' 28' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.02870 month: '10' oa: 1 oa_version: Preprint page: 3215 - 3238 project: - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Annals of Applied Probability publication_status: published publisher: Institute of Mathematical Statistics publist_id: '7967' quality_controlled: '1' related_material: record: - id: '6287' relation: dissertation_contains status: public scopus_import: '1' status: public title: Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 28 year: '2018' ... --- _id: '6355' abstract: - lang: eng text: We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle. article_number: e7 article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov citation: ama: Akopyan A, Avvakumov S. Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. 2018;6. doi:10.1017/fms.2018.7 apa: Akopyan, A., & Avvakumov, S. (2018). Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2018.7 chicago: Akopyan, Arseniy, and Sergey Avvakumov. “Any Cyclic Quadrilateral Can Be Inscribed in Any Closed Convex Smooth Curve.” Forum of Mathematics, Sigma. Cambridge University Press, 2018. https://doi.org/10.1017/fms.2018.7. ieee: A. Akopyan and S. Avvakumov, “Any cyclic quadrilateral can be inscribed in any closed convex smooth curve,” Forum of Mathematics, Sigma, vol. 6. Cambridge University Press, 2018. ista: Akopyan A, Avvakumov S. 2018. Any cyclic quadrilateral can be inscribed in any closed convex smooth curve. Forum of Mathematics, Sigma. 6, e7. mla: Akopyan, Arseniy, and Sergey Avvakumov. “Any Cyclic Quadrilateral Can Be Inscribed in Any Closed Convex Smooth Curve.” Forum of Mathematics, Sigma, vol. 6, e7, Cambridge University Press, 2018, doi:10.1017/fms.2018.7. short: A. Akopyan, S. Avvakumov, Forum of Mathematics, Sigma 6 (2018). date_created: 2019-04-30T06:09:57Z date_published: 2018-05-31T00:00:00Z date_updated: 2023-09-19T14:50:12Z day: '31' ddc: - '510' department: - _id: UlWa - _id: HeEd - _id: JaMa doi: 10.1017/fms.2018.7 ec_funded: 1 external_id: arxiv: - '1712.10205' isi: - '000433915500001' file: - access_level: open_access checksum: 5a71b24ba712a3eb2e46165a38fbc30a content_type: application/pdf creator: dernst date_created: 2019-04-30T06:14:58Z date_updated: 2020-07-14T12:47:28Z file_id: '6356' file_name: 2018_ForumMahtematics_Akopyan.pdf file_size: 249246 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication: Forum of Mathematics, Sigma publication_identifier: issn: - 2050-5094 publication_status: published publisher: Cambridge University Press quality_controlled: '1' related_material: record: - id: '8156' relation: dissertation_contains status: public status: public title: Any cyclic quadrilateral can be inscribed in any closed convex smooth curve tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2018' ... --- _id: '1064' abstract: - lang: eng text: 'In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy - first_name: Mikhail full_name: Grigorev, Mikhail last_name: Grigorev citation: ama: Akopyan A, Balitskiy A, Grigorev M. On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. 2018;59(4):1001-1009. doi:10.1007/s00454-017-9883-x apa: Akopyan, A., Balitskiy, A., & Grigorev, M. (2018). On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-017-9883-x chicago: Akopyan, Arseniy, Alexey Balitskiy, and Mikhail Grigorev. “On the Circle Covering Theorem by A.W. Goodman and R.E. Goodman.” Discrete & Computational Geometry. Springer, 2018. https://doi.org/10.1007/s00454-017-9883-x. ieee: A. Akopyan, A. Balitskiy, and M. Grigorev, “On the circle covering theorem by A.W. Goodman and R.E. Goodman,” Discrete & Computational Geometry, vol. 59, no. 4. Springer, pp. 1001–1009, 2018. ista: Akopyan A, Balitskiy A, Grigorev M. 2018. On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. 59(4), 1001–1009. mla: Akopyan, Arseniy, et al. “On the Circle Covering Theorem by A.W. Goodman and R.E. Goodman.” Discrete & Computational Geometry, vol. 59, no. 4, Springer, 2018, pp. 1001–09, doi:10.1007/s00454-017-9883-x. short: A. Akopyan, A. Balitskiy, M. Grigorev, Discrete & Computational Geometry 59 (2018) 1001–1009. date_created: 2018-12-11T11:49:57Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-20T12:08:51Z day: '01' ddc: - '516' - '000' department: - _id: HeEd doi: 10.1007/s00454-017-9883-x ec_funded: 1 external_id: isi: - '000432205500011' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-01-18T09:27:36Z date_updated: 2019-01-18T09:27:36Z file_id: '5844' file_name: 2018_DiscreteComp_Akopyan.pdf file_size: 482518 relation: main_file success: 1 file_date_updated: 2019-01-18T09:27:36Z has_accepted_license: '1' intvolume: ' 59' isi: 1 issue: '4' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1001-1009 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Discrete & Computational Geometry publication_identifier: eissn: - '14320444' issn: - '01795376' publication_status: published publisher: Springer publist_id: '6324' quality_controlled: '1' scopus_import: '1' status: public title: On the circle covering theorem by A.W. Goodman and R.E. Goodman tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 59 year: '2018' ... --- _id: '75' abstract: - lang: eng text: We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization. article_number: '1804.03057' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Avvakumov S, Karasev R. Convex fair partitions into arbitrary number of pieces. 2018. doi:10.48550/arXiv.1804.03057 apa: Akopyan, A., Avvakumov, S., & Karasev, R. (2018). Convex fair partitions into arbitrary number of pieces. arXiv. https://doi.org/10.48550/arXiv.1804.03057 chicago: Akopyan, Arseniy, Sergey Avvakumov, and Roman Karasev. “Convex Fair Partitions into Arbitrary Number of Pieces.” arXiv, 2018. https://doi.org/10.48550/arXiv.1804.03057. ieee: A. Akopyan, S. Avvakumov, and R. Karasev, “Convex fair partitions into arbitrary number of pieces.” arXiv, 2018. ista: Akopyan A, Avvakumov S, Karasev R. 2018. Convex fair partitions into arbitrary number of pieces. 1804.03057. mla: Akopyan, Arseniy, et al. Convex Fair Partitions into Arbitrary Number of Pieces. 1804.03057, arXiv, 2018, doi:10.48550/arXiv.1804.03057. short: A. Akopyan, S. Avvakumov, R. Karasev, (2018). date_created: 2018-12-11T11:44:30Z date_published: 2018-09-13T00:00:00Z date_updated: 2023-12-18T10:51:02Z day: '13' department: - _id: HeEd - _id: JaMa doi: 10.48550/arXiv.1804.03057 ec_funded: 1 external_id: arxiv: - '1804.03057' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.03057 month: '09' oa: 1 oa_version: Preprint project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication_status: published publisher: arXiv related_material: record: - id: '8156' relation: dissertation_contains status: public status: public title: Convex fair partitions into arbitrary number of pieces type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '481' abstract: - lang: eng text: We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings. acknowledgement: 'Supported by NSERC and the Ross and Muriel Cheriton Fellowship. Research supported by Austrian Science Fund (FWF): P25816-N15.' author: - first_name: Therese full_name: Biedl, Therese last_name: Biedl - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: Biedl T, Huber S, Palfrader P. Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications. 2017;26(3-4):211-229. doi:10.1142/S0218195916600050 apa: Biedl, T., Huber, S., & Palfrader, P. (2017). Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications. World Scientific Publishing. https://doi.org/10.1142/S0218195916600050 chicago: Biedl, Therese, Stefan Huber, and Peter Palfrader. “Planar Matchings for Weighted Straight Skeletons.” International Journal of Computational Geometry and Applications. World Scientific Publishing, 2017. https://doi.org/10.1142/S0218195916600050. ieee: T. Biedl, S. Huber, and P. Palfrader, “Planar matchings for weighted straight skeletons,” International Journal of Computational Geometry and Applications, vol. 26, no. 3–4. World Scientific Publishing, pp. 211–229, 2017. ista: Biedl T, Huber S, Palfrader P. 2017. Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications. 26(3–4), 211–229. mla: Biedl, Therese, et al. “Planar Matchings for Weighted Straight Skeletons.” International Journal of Computational Geometry and Applications, vol. 26, no. 3–4, World Scientific Publishing, 2017, pp. 211–29, doi:10.1142/S0218195916600050. short: T. Biedl, S. Huber, P. Palfrader, International Journal of Computational Geometry and Applications 26 (2017) 211–229. date_created: 2018-12-11T11:46:43Z date_published: 2017-04-13T00:00:00Z date_updated: 2023-02-21T16:06:22Z day: '13' ddc: - '004' - '514' - '516' department: - _id: HeEd doi: 10.1142/S0218195916600050 file: - access_level: open_access checksum: f79e8558bfe4b368dfefeb8eec2e3a5e content_type: application/pdf creator: system date_created: 2018-12-12T10:09:34Z date_updated: 2020-07-14T12:46:35Z file_id: '4758' file_name: IST-2018-949-v1+1_2016_huber_PLanar_matchings.pdf file_size: 769296 relation: main_file file_date_updated: 2020-07-14T12:46:35Z has_accepted_license: '1' intvolume: ' 26' issue: 3-4 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 211 - 229 publication: International Journal of Computational Geometry and Applications publication_status: published publisher: World Scientific Publishing publist_id: '7338' pubrep_id: '949' quality_controlled: '1' related_material: record: - id: '10892' relation: earlier_version status: public scopus_import: 1 status: public title: Planar matchings for weighted straight skeletons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2017' ... --- _id: '521' abstract: - lang: eng text: Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension. author: - first_name: Kyle full_name: Austin, Kyle last_name: Austin - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk citation: ama: Austin K, Virk Z. Higson compactification and dimension raising. Topology and its Applications. 2017;215:45-57. doi:10.1016/j.topol.2016.10.005 apa: Austin, K., & Virk, Z. (2017). Higson compactification and dimension raising. Topology and Its Applications. Elsevier. https://doi.org/10.1016/j.topol.2016.10.005 chicago: Austin, Kyle, and Ziga Virk. “Higson Compactification and Dimension Raising.” Topology and Its Applications. Elsevier, 2017. https://doi.org/10.1016/j.topol.2016.10.005. ieee: K. Austin and Z. Virk, “Higson compactification and dimension raising,” Topology and its Applications, vol. 215. Elsevier, pp. 45–57, 2017. ista: Austin K, Virk Z. 2017. Higson compactification and dimension raising. Topology and its Applications. 215, 45–57. mla: Austin, Kyle, and Ziga Virk. “Higson Compactification and Dimension Raising.” Topology and Its Applications, vol. 215, Elsevier, 2017, pp. 45–57, doi:10.1016/j.topol.2016.10.005. short: K. Austin, Z. Virk, Topology and Its Applications 215 (2017) 45–57. date_created: 2018-12-11T11:46:56Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:01:21Z day: '01' department: - _id: HeEd doi: 10.1016/j.topol.2016.10.005 intvolume: ' 215' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1608.03954v1 month: '01' oa: 1 oa_version: Submitted Version page: 45 - 57 publication: Topology and its Applications publication_identifier: issn: - '01668641' publication_status: published publisher: Elsevier publist_id: '7299' quality_controlled: '1' status: public title: Higson compactification and dimension raising type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 215 year: '2017' ... --- _id: '568' abstract: - lang: eng text: 'We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).' author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. Persistence of zero sets. Homology, Homotopy and Applications. 2017;19(2):313-342. doi:10.4310/HHA.2017.v19.n2.a16 apa: Franek, P., & Krcál, M. (2017). Persistence of zero sets. Homology, Homotopy and Applications. International Press. https://doi.org/10.4310/HHA.2017.v19.n2.a16 chicago: Franek, Peter, and Marek Krcál. “Persistence of Zero Sets.” Homology, Homotopy and Applications. International Press, 2017. https://doi.org/10.4310/HHA.2017.v19.n2.a16. ieee: P. Franek and M. Krcál, “Persistence of zero sets,” Homology, Homotopy and Applications, vol. 19, no. 2. International Press, pp. 313–342, 2017. ista: Franek P, Krcál M. 2017. Persistence of zero sets. Homology, Homotopy and Applications. 19(2), 313–342. mla: Franek, Peter, and Marek Krcál. “Persistence of Zero Sets.” Homology, Homotopy and Applications, vol. 19, no. 2, International Press, 2017, pp. 313–42, doi:10.4310/HHA.2017.v19.n2.a16. short: P. Franek, M. Krcál, Homology, Homotopy and Applications 19 (2017) 313–342. date_created: 2018-12-11T11:47:14Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:03:12Z day: '01' department: - _id: UlWa - _id: HeEd doi: 10.4310/HHA.2017.v19.n2.a16 ec_funded: 1 intvolume: ' 19' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1507.04310 month: '01' oa: 1 oa_version: Submitted Version page: 313 - 342 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2590DB08-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '701309' name: Atomic-Resolution Structures of Mitochondrial Respiratory Chain Supercomplexes (H2020) publication: Homology, Homotopy and Applications publication_identifier: issn: - '15320073' publication_status: published publisher: International Press publist_id: '7246' quality_controlled: '1' scopus_import: 1 status: public title: Persistence of zero sets type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '5803' abstract: - lang: eng text: Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Biswas R, Bhowmick P. Construction of persistent Voronoi diagram on 3D digital plane. In: Combinatorial Image Analysis. Vol 10256. Cham: Springer Nature; 2017:93-104. doi:10.1007/978-3-319-59108-7_8' apa: 'Biswas, R., & Bhowmick, P. (2017). Construction of persistent Voronoi diagram on 3D digital plane. In Combinatorial image analysis (Vol. 10256, pp. 93–104). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-59108-7_8' chicago: 'Biswas, Ranita, and Partha Bhowmick. “Construction of Persistent Voronoi Diagram on 3D Digital Plane.” In Combinatorial Image Analysis, 10256:93–104. Cham: Springer Nature, 2017. https://doi.org/10.1007/978-3-319-59108-7_8.' ieee: 'R. Biswas and P. Bhowmick, “Construction of persistent Voronoi diagram on 3D digital plane,” in Combinatorial image analysis, vol. 10256, Cham: Springer Nature, 2017, pp. 93–104.' ista: 'Biswas R, Bhowmick P. 2017.Construction of persistent Voronoi diagram on 3D digital plane. In: Combinatorial image analysis. LNCS, vol. 10256, 93–104.' mla: Biswas, Ranita, and Partha Bhowmick. “Construction of Persistent Voronoi Diagram on 3D Digital Plane.” Combinatorial Image Analysis, vol. 10256, Springer Nature, 2017, pp. 93–104, doi:10.1007/978-3-319-59108-7_8. short: R. Biswas, P. Bhowmick, in:, Combinatorial Image Analysis, Springer Nature, Cham, 2017, pp. 93–104. conference: end_date: 2017-06-21 location: Plovdiv, Bulgaria name: 'IWCIA: International Workshop on Combinatorial Image Analysis' start_date: 2017-06-19 date_created: 2019-01-08T20:42:56Z date_published: 2017-05-17T00:00:00Z date_updated: 2022-01-28T07:48:24Z day: '17' department: - _id: HeEd doi: 10.1007/978-3-319-59108-7_8 extern: '1' intvolume: ' 10256' language: - iso: eng month: '05' oa_version: None page: 93-104 place: Cham publication: Combinatorial image analysis publication_identifier: isbn: - 978-3-319-59107-0 - 978-3-319-59108-7 issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Construction of persistent Voronoi diagram on 3D digital plane type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 10256 year: '2017' ... --- _id: '688' abstract: - lang: eng text: 'We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory. ' alternative_title: - LIPIcs author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Edelsbrunner H, Wagner H. Topological data analysis with Bregman divergences. In: Vol 77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2017:391-3916. doi:10.4230/LIPIcs.SoCG.2017.39' apa: 'Edelsbrunner, H., & Wagner, H. (2017). Topological data analysis with Bregman divergences (Vol. 77, pp. 391–3916). Presented at the Symposium on Computational Geometry, SoCG, Brisbane, Australia: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2017.39' chicago: Edelsbrunner, Herbert, and Hubert Wagner. “Topological Data Analysis with Bregman Divergences,” 77:391–3916. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.39. ieee: H. Edelsbrunner and H. Wagner, “Topological data analysis with Bregman divergences,” presented at the Symposium on Computational Geometry, SoCG, Brisbane, Australia, 2017, vol. 77, pp. 391–3916. ista: Edelsbrunner H, Wagner H. 2017. Topological data analysis with Bregman divergences. Symposium on Computational Geometry, SoCG, LIPIcs, vol. 77, 391–3916. mla: Edelsbrunner, Herbert, and Hubert Wagner. Topological Data Analysis with Bregman Divergences. Vol. 77, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 391–3916, doi:10.4230/LIPIcs.SoCG.2017.39. short: H. Edelsbrunner, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 391–3916. conference: end_date: 2017-07-07 location: Brisbane, Australia name: Symposium on Computational Geometry, SoCG start_date: 2017-07-04 date_created: 2018-12-11T11:47:56Z date_published: 2017-06-01T00:00:00Z date_updated: 2021-01-12T08:09:26Z day: '01' ddc: - '514' - '516' department: - _id: HeEd - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2017.39 file: - access_level: open_access checksum: 067ab0cb3f962bae6c3af6bf0094e0f3 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:03Z date_updated: 2020-07-14T12:47:42Z file_id: '4856' file_name: IST-2017-895-v1+1_LIPIcs-SoCG-2017-39.pdf file_size: 990546 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 77' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 391-3916 publication_identifier: issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '7021' pubrep_id: '895' quality_controlled: '1' scopus_import: 1 status: public title: Topological data analysis with Bregman divergences tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 77 year: '2017' ... --- _id: '707' abstract: - lang: eng text: We answer a question of M. Gromov on the waist of the unit ball. author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Karasev R. A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. 2017;49(4):690-693. doi:10.1112/blms.12062 apa: Akopyan, A., & Karasev, R. (2017). A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. Wiley-Blackwell. https://doi.org/10.1112/blms.12062 chicago: Akopyan, Arseniy, and Roman Karasev. “A Tight Estimate for the Waist of the Ball .” Bulletin of the London Mathematical Society. Wiley-Blackwell, 2017. https://doi.org/10.1112/blms.12062. ieee: A. Akopyan and R. Karasev, “A tight estimate for the waist of the ball ,” Bulletin of the London Mathematical Society, vol. 49, no. 4. Wiley-Blackwell, pp. 690–693, 2017. ista: Akopyan A, Karasev R. 2017. A tight estimate for the waist of the ball . Bulletin of the London Mathematical Society. 49(4), 690–693. mla: Akopyan, Arseniy, and Roman Karasev. “A Tight Estimate for the Waist of the Ball .” Bulletin of the London Mathematical Society, vol. 49, no. 4, Wiley-Blackwell, 2017, pp. 690–93, doi:10.1112/blms.12062. short: A. Akopyan, R. Karasev, Bulletin of the London Mathematical Society 49 (2017) 690–693. date_created: 2018-12-11T11:48:02Z date_published: 2017-08-01T00:00:00Z date_updated: 2021-01-12T08:11:41Z day: '01' department: - _id: HeEd doi: 10.1112/blms.12062 ec_funded: 1 intvolume: ' 49' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1608.06279 month: '08' oa: 1 oa_version: Preprint page: 690 - 693 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Bulletin of the London Mathematical Society publication_identifier: issn: - '00246093' publication_status: published publisher: Wiley-Blackwell publist_id: '6982' quality_controlled: '1' scopus_import: 1 status: public title: 'A tight estimate for the waist of the ball ' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 49 year: '2017' ... --- _id: '718' abstract: - lang: eng text: Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 - first_name: Matthias full_name: Reitzner, Matthias last_name: Reitzner citation: ama: Edelsbrunner H, Nikitenko A, Reitzner M. Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. 2017;49(3):745-767. doi:10.1017/apr.2017.20 apa: Edelsbrunner, H., Nikitenko, A., & Reitzner, M. (2017). Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. Cambridge University Press. https://doi.org/10.1017/apr.2017.20 chicago: Edelsbrunner, Herbert, Anton Nikitenko, and Matthias Reitzner. “Expected Sizes of Poisson Delaunay Mosaics and Their Discrete Morse Functions.” Advances in Applied Probability. Cambridge University Press, 2017. https://doi.org/10.1017/apr.2017.20. ieee: H. Edelsbrunner, A. Nikitenko, and M. Reitzner, “Expected sizes of poisson Delaunay mosaics and their discrete Morse functions,” Advances in Applied Probability, vol. 49, no. 3. Cambridge University Press, pp. 745–767, 2017. ista: Edelsbrunner H, Nikitenko A, Reitzner M. 2017. Expected sizes of poisson Delaunay mosaics and their discrete Morse functions. Advances in Applied Probability. 49(3), 745–767. mla: Edelsbrunner, Herbert, et al. “Expected Sizes of Poisson Delaunay Mosaics and Their Discrete Morse Functions.” Advances in Applied Probability, vol. 49, no. 3, Cambridge University Press, 2017, pp. 745–67, doi:10.1017/apr.2017.20. short: H. Edelsbrunner, A. Nikitenko, M. Reitzner, Advances in Applied Probability 49 (2017) 745–767. date_created: 2018-12-11T11:48:07Z date_published: 2017-09-01T00:00:00Z date_updated: 2023-09-07T12:07:12Z day: '01' department: - _id: HeEd doi: 10.1017/apr.2017.20 ec_funded: 1 external_id: arxiv: - '1607.05915' intvolume: ' 49' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.05915 month: '09' oa: 1 oa_version: Preprint page: 745 - 767 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Advances in Applied Probability publication_identifier: issn: - '00018678' publication_status: published publisher: Cambridge University Press publist_id: '6962' quality_controlled: '1' related_material: record: - id: '6287' relation: dissertation_contains status: public scopus_import: 1 status: public title: Expected sizes of poisson Delaunay mosaics and their discrete Morse functions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 49 year: '2017' ... --- _id: '6287' abstract: - lang: eng text: The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Nikitenko A. Discrete Morse theory for random complexes . 2017. doi:10.15479/AT:ISTA:th_873 apa: Nikitenko, A. (2017). Discrete Morse theory for random complexes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_873 chicago: Nikitenko, Anton. “Discrete Morse Theory for Random Complexes .” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_873. ieee: A. Nikitenko, “Discrete Morse theory for random complexes ,” Institute of Science and Technology Austria, 2017. ista: Nikitenko A. 2017. Discrete Morse theory for random complexes . Institute of Science and Technology Austria. mla: Nikitenko, Anton. Discrete Morse Theory for Random Complexes . Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_873. short: A. Nikitenko, Discrete Morse Theory for Random Complexes , Institute of Science and Technology Austria, 2017. date_created: 2019-04-09T15:04:32Z date_published: 2017-10-27T00:00:00Z date_updated: 2023-09-15T12:10:34Z day: '27' ddc: - '514' - '516' - '519' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_873 file: - access_level: open_access checksum: ece7e598a2f060b263c2febf7f3fe7f9 content_type: application/pdf creator: dernst date_created: 2019-04-09T14:54:51Z date_updated: 2020-07-14T12:47:26Z file_id: '6289' file_name: 2017_Thesis_Nikitenko.pdf file_size: 2324870 relation: main_file - access_level: closed checksum: 99b7ad76e317efd447af60f91e29b49b content_type: application/zip creator: dernst date_created: 2019-04-09T14:54:51Z date_updated: 2020-07-14T12:47:26Z file_id: '6290' file_name: 2017_Thesis_Nikitenko_source.zip file_size: 2863219 relation: source_file file_date_updated: 2020-07-14T12:47:26Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '86' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria pubrep_id: '873' related_material: record: - id: '718' relation: part_of_dissertation status: public - id: '5678' relation: part_of_dissertation status: public - id: '87' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: 'Discrete Morse theory for random complexes ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1433' abstract: - lang: eng text: Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology. article_processing_charge: No article_type: original author: - first_name: Ulrich full_name: Bauer, Ulrich last_name: Bauer - first_name: Michael full_name: Kerber, Michael last_name: Kerber - first_name: Jan full_name: Reininghaus, Jan last_name: Reininghaus - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: Bauer U, Kerber M, Reininghaus J, Wagner H. Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. 2017;78:76-90. doi:10.1016/j.jsc.2016.03.008 apa: Bauer, U., Kerber, M., Reininghaus, J., & Wagner, H. (2017). Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. Academic Press. https://doi.org/10.1016/j.jsc.2016.03.008 chicago: Bauer, Ulrich, Michael Kerber, Jan Reininghaus, and Hubert Wagner. “Phat - Persistent Homology Algorithms Toolbox.” Journal of Symbolic Computation. Academic Press, 2017. https://doi.org/10.1016/j.jsc.2016.03.008. ieee: U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat - Persistent homology algorithms toolbox,” Journal of Symbolic Computation, vol. 78. Academic Press, pp. 76–90, 2017. ista: Bauer U, Kerber M, Reininghaus J, Wagner H. 2017. Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. 78, 76–90. mla: Bauer, Ulrich, et al. “Phat - Persistent Homology Algorithms Toolbox.” Journal of Symbolic Computation, vol. 78, Academic Press, 2017, pp. 76–90, doi:10.1016/j.jsc.2016.03.008. short: U. Bauer, M. Kerber, J. Reininghaus, H. Wagner, Journal of Symbolic Computation 78 (2017) 76–90. date_created: 2018-12-11T11:51:59Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T09:42:40Z day: '01' department: - _id: HeEd doi: 10.1016/j.jsc.2016.03.008 ec_funded: 1 external_id: isi: - '000384396000005' intvolume: ' 78' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.jsc.2016.03.008 month: '01' oa: 1 oa_version: Published Version page: 76 - 90 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Journal of Symbolic Computation publication_identifier: issn: - ' 07477171' publication_status: published publisher: Academic Press publist_id: '5765' quality_controlled: '1' related_material: record: - id: '10894' relation: earlier_version status: public scopus_import: '1' status: public title: Phat - Persistent homology algorithms toolbox type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 78 year: '2017' ... --- _id: '1180' abstract: - lang: eng text: In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform. article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Imre full_name: Bárány, Imre last_name: Bárány - first_name: Sinai full_name: Robins, Sinai last_name: Robins citation: ama: Akopyan A, Bárány I, Robins S. Algebraic vertices of non-convex polyhedra. Advances in Mathematics. 2017;308:627-644. doi:10.1016/j.aim.2016.12.026 apa: Akopyan, A., Bárány, I., & Robins, S. (2017). Algebraic vertices of non-convex polyhedra. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2016.12.026 chicago: Akopyan, Arseniy, Imre Bárány, and Sinai Robins. “Algebraic Vertices of Non-Convex Polyhedra.” Advances in Mathematics. Academic Press, 2017. https://doi.org/10.1016/j.aim.2016.12.026. ieee: A. Akopyan, I. Bárány, and S. Robins, “Algebraic vertices of non-convex polyhedra,” Advances in Mathematics, vol. 308. Academic Press, pp. 627–644, 2017. ista: Akopyan A, Bárány I, Robins S. 2017. Algebraic vertices of non-convex polyhedra. Advances in Mathematics. 308, 627–644. mla: Akopyan, Arseniy, et al. “Algebraic Vertices of Non-Convex Polyhedra.” Advances in Mathematics, vol. 308, Academic Press, 2017, pp. 627–44, doi:10.1016/j.aim.2016.12.026. short: A. Akopyan, I. Bárány, S. Robins, Advances in Mathematics 308 (2017) 627–644. date_created: 2018-12-11T11:50:34Z date_published: 2017-02-21T00:00:00Z date_updated: 2023-09-20T11:21:27Z day: '21' department: - _id: HeEd doi: 10.1016/j.aim.2016.12.026 ec_funded: 1 external_id: isi: - '000409292900015' intvolume: ' 308' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1508.07594 month: '02' oa: 1 oa_version: Submitted Version page: 627 - 644 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Advances in Mathematics publication_identifier: issn: - '00018708' publication_status: published publisher: Academic Press publist_id: '6173' quality_controlled: '1' scopus_import: '1' status: public title: Algebraic vertices of non-convex polyhedra type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 308 year: '2017' ... --- _id: '1173' abstract: - lang: eng text: We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions. acknowledgement: This research is partially supported by the Russian Government under the Mega Project 11.G34.31.0053, by the Toposys project FP7-ICT-318493-STREP, by ESF under the ACAT Research Network Programme, by RFBR grant 11-01-00735, and by NSF grants DMS-1101688, DMS-1400876. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Alexey full_name: Glazyrin, Alexey last_name: Glazyrin - first_name: Oleg full_name: Musin, Oleg last_name: Musin - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Edelsbrunner H, Glazyrin A, Musin O, Nikitenko A. The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. 2017;37(5):887-910. doi:10.1007/s00493-016-3308-y apa: Edelsbrunner, H., Glazyrin, A., Musin, O., & Nikitenko, A. (2017). The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. Springer. https://doi.org/10.1007/s00493-016-3308-y chicago: Edelsbrunner, Herbert, Alexey Glazyrin, Oleg Musin, and Anton Nikitenko. “The Voronoi Functional Is Maximized by the Delaunay Triangulation in the Plane.” Combinatorica. Springer, 2017. https://doi.org/10.1007/s00493-016-3308-y. ieee: H. Edelsbrunner, A. Glazyrin, O. Musin, and A. Nikitenko, “The Voronoi functional is maximized by the Delaunay triangulation in the plane,” Combinatorica, vol. 37, no. 5. Springer, pp. 887–910, 2017. ista: Edelsbrunner H, Glazyrin A, Musin O, Nikitenko A. 2017. The Voronoi functional is maximized by the Delaunay triangulation in the plane. Combinatorica. 37(5), 887–910. mla: Edelsbrunner, Herbert, et al. “The Voronoi Functional Is Maximized by the Delaunay Triangulation in the Plane.” Combinatorica, vol. 37, no. 5, Springer, 2017, pp. 887–910, doi:10.1007/s00493-016-3308-y. short: H. Edelsbrunner, A. Glazyrin, O. Musin, A. Nikitenko, Combinatorica 37 (2017) 887–910. date_created: 2018-12-11T11:50:32Z date_published: 2017-10-01T00:00:00Z date_updated: 2023-09-20T11:23:53Z day: '01' department: - _id: HeEd doi: 10.1007/s00493-016-3308-y ec_funded: 1 external_id: isi: - '000418056000005' intvolume: ' 37' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1411.6337 month: '10' oa: 1 oa_version: Submitted Version page: 887 - 910 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Combinatorica publication_identifier: issn: - '02099683' publication_status: published publisher: Springer publist_id: '6182' quality_controlled: '1' scopus_import: '1' status: public title: The Voronoi functional is maximized by the Delaunay triangulation in the plane type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2017' ... --- _id: '1072' abstract: - lang: eng text: Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field. acknowledgement: This research has been supported by the EU project Toposys(FP7-ICT-318493-STREP), by ESF under the ACAT Research Network Programme, by the Russian Government under mega project 11.G34.31.0053, and by the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”. article_processing_charge: No article_type: original author: - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 citation: ama: Bauer U, Edelsbrunner H. The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. 2017;369(5):3741-3762. doi:10.1090/tran/6991 apa: Bauer, U., & Edelsbrunner, H. (2017). The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/tran/6991 chicago: Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Complexes.” Transactions of the American Mathematical Society. American Mathematical Society, 2017. https://doi.org/10.1090/tran/6991. ieee: U. Bauer and H. Edelsbrunner, “The Morse theory of Čech and delaunay complexes,” Transactions of the American Mathematical Society, vol. 369, no. 5. American Mathematical Society, pp. 3741–3762, 2017. ista: Bauer U, Edelsbrunner H. 2017. The Morse theory of Čech and delaunay complexes. Transactions of the American Mathematical Society. 369(5), 3741–3762. mla: Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Complexes.” Transactions of the American Mathematical Society, vol. 369, no. 5, American Mathematical Society, 2017, pp. 3741–62, doi:10.1090/tran/6991. short: U. Bauer, H. Edelsbrunner, Transactions of the American Mathematical Society 369 (2017) 3741–3762. date_created: 2018-12-11T11:49:59Z date_published: 2017-05-01T00:00:00Z date_updated: 2023-09-20T12:05:56Z day: '01' department: - _id: HeEd doi: 10.1090/tran/6991 ec_funded: 1 external_id: arxiv: - '1312.1231' isi: - '000398030400024' intvolume: ' 369' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1312.1231 month: '05' oa: 1 oa_version: Preprint page: 3741 - 3762 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Transactions of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '6311' quality_controlled: '1' scopus_import: '1' status: public title: The Morse theory of Čech and delaunay complexes type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 369 year: '2017' ... --- _id: '1065' abstract: - lang: eng text: 'We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 citation: ama: Chatterjee K, Osang GF. Pushdown reachability with constant treewidth. Information Processing Letters. 2017;122:25-29. doi:10.1016/j.ipl.2017.02.003 apa: Chatterjee, K., & Osang, G. F. (2017). Pushdown reachability with constant treewidth. Information Processing Letters. Elsevier. https://doi.org/10.1016/j.ipl.2017.02.003 chicago: Chatterjee, Krishnendu, and Georg F Osang. “Pushdown Reachability with Constant Treewidth.” Information Processing Letters. Elsevier, 2017. https://doi.org/10.1016/j.ipl.2017.02.003. ieee: K. Chatterjee and G. F. Osang, “Pushdown reachability with constant treewidth,” Information Processing Letters, vol. 122. Elsevier, pp. 25–29, 2017. ista: Chatterjee K, Osang GF. 2017. Pushdown reachability with constant treewidth. Information Processing Letters. 122, 25–29. mla: Chatterjee, Krishnendu, and Georg F. Osang. “Pushdown Reachability with Constant Treewidth.” Information Processing Letters, vol. 122, Elsevier, 2017, pp. 25–29, doi:10.1016/j.ipl.2017.02.003. short: K. Chatterjee, G.F. Osang, Information Processing Letters 122 (2017) 25–29. date_created: 2018-12-11T11:49:57Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-09-20T12:08:18Z day: '01' ddc: - '000' department: - _id: KrCh - _id: HeEd doi: 10.1016/j.ipl.2017.02.003 ec_funded: 1 external_id: isi: - '000399506600005' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:13:17Z date_updated: 2019-10-15T07:44:51Z file_id: '4998' file_name: IST-2018-991-v1+2_2018_Chatterjee_Pushdown_PREPRINT.pdf file_size: 247657 relation: main_file file_date_updated: 2019-10-15T07:44:51Z has_accepted_license: '1' intvolume: ' 122' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 25 - 29 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Information Processing Letters publication_identifier: issn: - '00200190' publication_status: published publisher: Elsevier publist_id: '6323' pubrep_id: '991' quality_controlled: '1' scopus_import: '1' status: public title: Pushdown reachability with constant treewidth type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 122 year: '2017' ... --- _id: '1022' abstract: - lang: eng text: We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys. acknowledgement: Part of this work has been supported by the 7th Framework Programme for Research of the European Commission, under FETOpen grant number 255827 (CGL Computational Geometry Learning) and ERC advanced grant, URSAT (Understanding Random Systems via Algebraic Topology) number 320422. article_processing_charge: No author: - first_name: Pratyush full_name: Pranav, Pratyush last_name: Pranav - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Rien full_name: Van De Weygaert, Rien last_name: Van De Weygaert - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Michael full_name: Kerber, Michael last_name: Kerber - first_name: Bernard full_name: Jones, Bernard last_name: Jones - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Pranav P, Edelsbrunner H, Van De Weygaert R, et al. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. 2017;465(4):4281-4310. doi:10.1093/mnras/stw2862 apa: Pranav, P., Edelsbrunner, H., Van De Weygaert, R., Vegter, G., Kerber, M., Jones, B., & Wintraecken, M. (2017). The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stw2862 chicago: Pranav, Pratyush, Herbert Edelsbrunner, Rien Van De Weygaert, Gert Vegter, Michael Kerber, Bernard Jones, and Mathijs Wintraecken. “The Topology of the Cosmic Web in Terms of Persistent Betti Numbers.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2017. https://doi.org/10.1093/mnras/stw2862. ieee: P. Pranav et al., “The topology of the cosmic web in terms of persistent Betti numbers,” Monthly Notices of the Royal Astronomical Society, vol. 465, no. 4. Oxford University Press, pp. 4281–4310, 2017. ista: Pranav P, Edelsbrunner H, Van De Weygaert R, Vegter G, Kerber M, Jones B, Wintraecken M. 2017. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society. 465(4), 4281–4310. mla: Pranav, Pratyush, et al. “The Topology of the Cosmic Web in Terms of Persistent Betti Numbers.” Monthly Notices of the Royal Astronomical Society, vol. 465, no. 4, Oxford University Press, 2017, pp. 4281–310, doi:10.1093/mnras/stw2862. short: P. Pranav, H. Edelsbrunner, R. Van De Weygaert, G. Vegter, M. Kerber, B. Jones, M. Wintraecken, Monthly Notices of the Royal Astronomical Society 465 (2017) 4281–4310. date_created: 2018-12-11T11:49:44Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-22T09:40:55Z day: '01' department: - _id: HeEd doi: 10.1093/mnras/stw2862 external_id: isi: - '000395170200039' intvolume: ' 465' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1608.04519 month: '01' oa: 1 oa_version: Submitted Version page: 4281 - 4310 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: issn: - '00358711' publication_status: published publisher: Oxford University Press publist_id: '6373' quality_controlled: '1' scopus_import: '1' status: public title: The topology of the cosmic web in terms of persistent Betti numbers type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 465 year: '2017' ... --- _id: '737' abstract: - lang: eng text: We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action. article_processing_charge: No author: - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk - first_name: Andreas full_name: Zastrow, Andreas last_name: Zastrow citation: ama: Virk Z, Zastrow A. A new topology on the universal path space. Topology and its Applications. 2017;231:186-196. doi:10.1016/j.topol.2017.09.015 apa: Virk, Z., & Zastrow, A. (2017). A new topology on the universal path space. Topology and Its Applications. Elsevier. https://doi.org/10.1016/j.topol.2017.09.015 chicago: Virk, Ziga, and Andreas Zastrow. “A New Topology on the Universal Path Space.” Topology and Its Applications. Elsevier, 2017. https://doi.org/10.1016/j.topol.2017.09.015. ieee: Z. Virk and A. Zastrow, “A new topology on the universal path space,” Topology and its Applications, vol. 231. Elsevier, pp. 186–196, 2017. ista: Virk Z, Zastrow A. 2017. A new topology on the universal path space. Topology and its Applications. 231, 186–196. mla: Virk, Ziga, and Andreas Zastrow. “A New Topology on the Universal Path Space.” Topology and Its Applications, vol. 231, Elsevier, 2017, pp. 186–96, doi:10.1016/j.topol.2017.09.015. short: Z. Virk, A. Zastrow, Topology and Its Applications 231 (2017) 186–196. date_created: 2018-12-11T11:48:14Z date_published: 2017-11-01T00:00:00Z date_updated: 2023-09-27T12:53:01Z day: '01' department: - _id: HeEd doi: 10.1016/j.topol.2017.09.015 external_id: isi: - '000413889100012' intvolume: ' 231' isi: 1 language: - iso: eng month: '11' oa_version: None page: 186 - 196 publication: Topology and its Applications publication_identifier: issn: - '01668641' publication_status: published publisher: Elsevier publist_id: '6930' quality_controlled: '1' scopus_import: '1' status: public title: A new topology on the universal path space type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 231 year: '2017' ... --- _id: '836' abstract: - lang: eng text: Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces. alternative_title: - PROMS article_processing_charge: No author: - first_name: Marc full_name: Ethier, Marc last_name: Ethier - first_name: Grzegorz full_name: Jablonski, Grzegorz id: 4483EF78-F248-11E8-B48F-1D18A9856A87 last_name: Jablonski orcid: 0000-0002-3536-9866 - first_name: Marian full_name: Mrozek, Marian last_name: Mrozek citation: ama: 'Ethier M, Jablonski G, Mrozek M. Finding eigenvalues of self-maps with the Kronecker canonical form. In: Special Sessions in Applications of Computer Algebra. Vol 198. Springer; 2017:119-136. doi:10.1007/978-3-319-56932-1_8' apa: 'Ethier, M., Jablonski, G., & Mrozek, M. (2017). Finding eigenvalues of self-maps with the Kronecker canonical form. In Special Sessions in Applications of Computer Algebra (Vol. 198, pp. 119–136). Kalamata, Greece: Springer. https://doi.org/10.1007/978-3-319-56932-1_8' chicago: Ethier, Marc, Grzegorz Jablonski, and Marian Mrozek. “Finding Eigenvalues of Self-Maps with the Kronecker Canonical Form.” In Special Sessions in Applications of Computer Algebra, 198:119–36. Springer, 2017. https://doi.org/10.1007/978-3-319-56932-1_8. ieee: M. Ethier, G. Jablonski, and M. Mrozek, “Finding eigenvalues of self-maps with the Kronecker canonical form,” in Special Sessions in Applications of Computer Algebra, Kalamata, Greece, 2017, vol. 198, pp. 119–136. ista: 'Ethier M, Jablonski G, Mrozek M. 2017. Finding eigenvalues of self-maps with the Kronecker canonical form. Special Sessions in Applications of Computer Algebra. ACA: Applications of Computer Algebra, PROMS, vol. 198, 119–136.' mla: Ethier, Marc, et al. “Finding Eigenvalues of Self-Maps with the Kronecker Canonical Form.” Special Sessions in Applications of Computer Algebra, vol. 198, Springer, 2017, pp. 119–36, doi:10.1007/978-3-319-56932-1_8. short: M. Ethier, G. Jablonski, M. Mrozek, in:, Special Sessions in Applications of Computer Algebra, Springer, 2017, pp. 119–136. conference: end_date: 2015-07-23 location: Kalamata, Greece name: 'ACA: Applications of Computer Algebra' start_date: 2015-07-20 date_created: 2018-12-11T11:48:46Z date_published: 2017-07-27T00:00:00Z date_updated: 2023-09-26T15:50:52Z day: '27' department: - _id: HeEd doi: 10.1007/978-3-319-56932-1_8 ec_funded: 1 external_id: isi: - '000434088200008' intvolume: ' 198' isi: 1 language: - iso: eng month: '07' oa_version: None page: 119 - 136 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Special Sessions in Applications of Computer Algebra publication_identifier: isbn: - 978-331956930-7 publication_status: published publisher: Springer publist_id: '6812' quality_controlled: '1' scopus_import: '1' status: public title: Finding eigenvalues of self-maps with the Kronecker canonical form type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 198 year: '2017' ... --- _id: '833' abstract: - lang: eng text: We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams. alternative_title: - LNCS article_processing_charge: No author: - first_name: Teresa full_name: Heiss, Teresa id: 4879BB4E-F248-11E8-B48F-1D18A9856A87 last_name: Heiss orcid: 0000-0002-1780-2689 - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: 'Heiss T, Wagner H. Streaming algorithm for Euler characteristic curves of multidimensional images. In: Felsberg M, Heyden A, Krüger N, eds. Vol 10424. Springer; 2017:397-409. doi:10.1007/978-3-319-64689-3_32' apa: 'Heiss, T., & Wagner, H. (2017). Streaming algorithm for Euler characteristic curves of multidimensional images. In M. Felsberg, A. Heyden, & N. Krüger (Eds.) (Vol. 10424, pp. 397–409). Presented at the CAIP: Computer Analysis of Images and Patterns, Ystad, Sweden: Springer. https://doi.org/10.1007/978-3-319-64689-3_32' chicago: Heiss, Teresa, and Hubert Wagner. “Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images.” edited by Michael Felsberg, Anders Heyden, and Norbert Krüger, 10424:397–409. Springer, 2017. https://doi.org/10.1007/978-3-319-64689-3_32. ieee: 'T. Heiss and H. Wagner, “Streaming algorithm for Euler characteristic curves of multidimensional images,” presented at the CAIP: Computer Analysis of Images and Patterns, Ystad, Sweden, 2017, vol. 10424, pp. 397–409.' ista: 'Heiss T, Wagner H. 2017. Streaming algorithm for Euler characteristic curves of multidimensional images. CAIP: Computer Analysis of Images and Patterns, LNCS, vol. 10424, 397–409.' mla: Heiss, Teresa, and Hubert Wagner. Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images. Edited by Michael Felsberg et al., vol. 10424, Springer, 2017, pp. 397–409, doi:10.1007/978-3-319-64689-3_32. short: T. Heiss, H. Wagner, in:, M. Felsberg, A. Heyden, N. Krüger (Eds.), Springer, 2017, pp. 397–409. conference: end_date: 2017-08-24 location: Ystad, Sweden name: 'CAIP: Computer Analysis of Images and Patterns' start_date: 2017-08-22 date_created: 2018-12-11T11:48:45Z date_published: 2017-07-28T00:00:00Z date_updated: 2023-09-26T16:10:03Z day: '28' department: - _id: HeEd doi: 10.1007/978-3-319-64689-3_32 editor: - first_name: Michael full_name: Felsberg, Michael last_name: Felsberg - first_name: Anders full_name: Heyden, Anders last_name: Heyden - first_name: Norbert full_name: Krüger, Norbert last_name: Krüger external_id: isi: - '000432085900032' intvolume: ' 10424' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.02045 month: '07' oa: 1 oa_version: Submitted Version page: 397 - 409 publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '6815' quality_controlled: '1' scopus_import: '1' status: public title: Streaming algorithm for Euler characteristic curves of multidimensional images type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10424 year: '2017' ... --- _id: '84' abstract: - lang: eng text: The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind. article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Patrice full_name: Koehl, Patrice last_name: Koehl citation: ama: 'Edelsbrunner H, Koehl P. Computational topology for structural molecular biology. In: Toth C, O’Rourke J, Goodman J, eds. Handbook of Discrete and Computational Geometry, Third Edition. Handbook of Discrete and Computational Geometry. Taylor & Francis; 2017:1709-1735. doi:10.1201/9781315119601' apa: Edelsbrunner, H., & Koehl, P. (2017). Computational topology for structural molecular biology. In C. Toth, J. O’Rourke, & J. Goodman (Eds.), Handbook of Discrete and Computational Geometry, Third Edition (pp. 1709–1735). Taylor & Francis. https://doi.org/10.1201/9781315119601 chicago: Edelsbrunner, Herbert, and Patrice Koehl. “Computational Topology for Structural Molecular Biology.” In Handbook of Discrete and Computational Geometry, Third Edition, edited by Csaba Toth, Joseph O’Rourke, and Jacob Goodman, 1709–35. Handbook of Discrete and Computational Geometry. Taylor & Francis, 2017. https://doi.org/10.1201/9781315119601. ieee: H. Edelsbrunner and P. Koehl, “Computational topology for structural molecular biology,” in Handbook of Discrete and Computational Geometry, Third Edition, C. Toth, J. O’Rourke, and J. Goodman, Eds. Taylor & Francis, 2017, pp. 1709–1735. ista: 'Edelsbrunner H, Koehl P. 2017.Computational topology for structural molecular biology. In: Handbook of Discrete and Computational Geometry, Third Edition. , 1709–1735.' mla: Edelsbrunner, Herbert, and Patrice Koehl. “Computational Topology for Structural Molecular Biology.” Handbook of Discrete and Computational Geometry, Third Edition, edited by Csaba Toth et al., Taylor & Francis, 2017, pp. 1709–35, doi:10.1201/9781315119601. short: H. Edelsbrunner, P. Koehl, in:, C. Toth, J. O’Rourke, J. Goodman (Eds.), Handbook of Discrete and Computational Geometry, Third Edition, Taylor & Francis, 2017, pp. 1709–1735. date_created: 2018-12-11T11:44:32Z date_published: 2017-11-09T00:00:00Z date_updated: 2023-10-16T11:15:22Z day: '09' department: - _id: HeEd doi: 10.1201/9781315119601 editor: - first_name: Csaba full_name: Toth, Csaba last_name: Toth - first_name: Joseph full_name: O'Rourke, Joseph last_name: O'Rourke - first_name: Jacob full_name: Goodman, Jacob last_name: Goodman language: - iso: eng month: '11' oa_version: None page: 1709 - 1735 publication: Handbook of Discrete and Computational Geometry, Third Edition publication_identifier: eisbn: - '9781498711425' publication_status: published publisher: Taylor & Francis publist_id: '7970' quality_controlled: '1' scopus_import: '1' series_title: Handbook of Discrete and Computational Geometry status: public title: Computational topology for structural molecular biology type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '909' abstract: - lang: eng text: We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor &#xbd; cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Vladislav full_name: Vysotsky, Vladislav last_name: Vysotsky citation: ama: Akopyan A, Vysotsky V. On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly. 2017;124(7):588-596. doi:10.4169/amer.math.monthly.124.7.588 apa: Akopyan, A., & Vysotsky, V. (2017). On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly. Mathematical Association of America. https://doi.org/10.4169/amer.math.monthly.124.7.588 chicago: Akopyan, Arseniy, and Vladislav Vysotsky. “On the Lengths of Curves Passing through Boundary Points of a Planar Convex Shape.” The American Mathematical Monthly. Mathematical Association of America, 2017. https://doi.org/10.4169/amer.math.monthly.124.7.588. ieee: A. Akopyan and V. Vysotsky, “On the lengths of curves passing through boundary points of a planar convex shape,” The American Mathematical Monthly, vol. 124, no. 7. Mathematical Association of America, pp. 588–596, 2017. ista: Akopyan A, Vysotsky V. 2017. On the lengths of curves passing through boundary points of a planar convex shape. The American Mathematical Monthly. 124(7), 588–596. mla: Akopyan, Arseniy, and Vladislav Vysotsky. “On the Lengths of Curves Passing through Boundary Points of a Planar Convex Shape.” The American Mathematical Monthly, vol. 124, no. 7, Mathematical Association of America, 2017, pp. 588–96, doi:10.4169/amer.math.monthly.124.7.588. short: A. Akopyan, V. Vysotsky, The American Mathematical Monthly 124 (2017) 588–596. date_created: 2018-12-11T11:49:09Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-10-17T11:24:57Z day: '01' department: - _id: HeEd doi: 10.4169/amer.math.monthly.124.7.588 ec_funded: 1 external_id: arxiv: - '1605.07997' isi: - '000413947300002' intvolume: ' 124' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.07997 month: '01' oa: 1 oa_version: Submitted Version page: 588 - 596 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: The American Mathematical Monthly publication_identifier: issn: - '00029890' publication_status: published publisher: Mathematical Association of America publist_id: '6534' quality_controlled: '1' scopus_import: '1' status: public title: On the lengths of curves passing through boundary points of a planar convex shape type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 124 year: '2017' ... --- _id: '1149' abstract: - lang: eng text: 'We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved.' acknowledgement: "MG was partially supported by FAPESP grants 2013/07460-7 and 2010/00875-9, and by CNPq grants 305860/2013-5 and 306453/2009-6, Brazil. The work of HK was partially supported by Grant-in-Aid for Scientific Research (Nos.24654022, 25287029), Ministry of Education, Science, Technology, Culture and Sports, Japan. KM was supported by NSF grants NSF-DMS-0835621, 0915019, 1125174, 1248071, and contracts from AFOSR and DARPA. TM was supported by Grant-in-Aid for JSPS Fellows No. 245312. A part of the research of TM and HK was also supported by JST, CREST.\r\n\r\nResearch conducted by PP has received funding from Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE – Programa Operacional Factores de Competitividade (POFC) and from the Portuguese national funds through Fundação para a Ciência e a Tecnologia (FCT) in the framework of the research project FCOMP-01-0124-FEDER-010645 (Ref. FCT PTDC/MAT/098871/2008); from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No. 622033; and from the same sources as HK.\r\n\r\nThe authors express their gratitude to the Department of Mathematics of Kyoto University for making their server available for conducting the computations described in the paper, and to the reviewers for helpful comments that contributed towards increasing the quality of the paper." author: - first_name: Tomoyuki full_name: Miyaji, Tomoyuki last_name: Miyaji - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk - first_name: Marcio full_name: Gameiro, Marcio last_name: Gameiro - first_name: Hiroshi full_name: Kokubu, Hiroshi last_name: Kokubu - first_name: Konstantin full_name: Mischaikow, Konstantin last_name: Mischaikow citation: ama: Miyaji T, Pilarczyk P, Gameiro M, Kokubu H, Mischaikow K. A study of rigorous ODE integrators for multi scale set oriented computations. Applied Numerical Mathematics. 2016;107:34-47. doi:10.1016/j.apnum.2016.04.005 apa: Miyaji, T., Pilarczyk, P., Gameiro, M., Kokubu, H., & Mischaikow, K. (2016). A study of rigorous ODE integrators for multi scale set oriented computations. Applied Numerical Mathematics. Elsevier. https://doi.org/10.1016/j.apnum.2016.04.005 chicago: Miyaji, Tomoyuki, Pawel Pilarczyk, Marcio Gameiro, Hiroshi Kokubu, and Konstantin Mischaikow. “A Study of Rigorous ODE Integrators for Multi Scale Set Oriented Computations.” Applied Numerical Mathematics. Elsevier, 2016. https://doi.org/10.1016/j.apnum.2016.04.005. ieee: T. Miyaji, P. Pilarczyk, M. Gameiro, H. Kokubu, and K. Mischaikow, “A study of rigorous ODE integrators for multi scale set oriented computations,” Applied Numerical Mathematics, vol. 107. Elsevier, pp. 34–47, 2016. ista: Miyaji T, Pilarczyk P, Gameiro M, Kokubu H, Mischaikow K. 2016. A study of rigorous ODE integrators for multi scale set oriented computations. Applied Numerical Mathematics. 107, 34–47. mla: Miyaji, Tomoyuki, et al. “A Study of Rigorous ODE Integrators for Multi Scale Set Oriented Computations.” Applied Numerical Mathematics, vol. 107, Elsevier, 2016, pp. 34–47, doi:10.1016/j.apnum.2016.04.005. short: T. Miyaji, P. Pilarczyk, M. Gameiro, H. Kokubu, K. Mischaikow, Applied Numerical Mathematics 107 (2016) 34–47. date_created: 2018-12-11T11:50:25Z date_published: 2016-09-01T00:00:00Z date_updated: 2021-01-12T06:48:38Z day: '01' department: - _id: HeEd doi: 10.1016/j.apnum.2016.04.005 ec_funded: 1 intvolume: ' 107' language: - iso: eng month: '09' oa_version: None page: 34 - 47 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: Applied Numerical Mathematics publication_status: published publisher: Elsevier publist_id: '6209' quality_controlled: '1' scopus_import: 1 status: public title: A study of rigorous ODE integrators for multi scale set oriented computations type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 107 year: '2016' ... --- _id: '1216' abstract: - lang: eng text: 'A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.' acknowledgement: "The authors acknowledge funding of the German Re-\r\nsearch Foundation \ (DFG) via the Collaborative Re-\r\nsearch Center (SFB 557) \\Control of \ Complex Turbu-\r\nlent Shear Flows\" and the Emmy Noether Program.\r\nFurther \ funding was provided by the Zuse Institute\r\nBerlin (ZIB), the DFG-CNRS \ research group \\Noise\r\nGeneration in Turbulent Flows\" (2003{2010), the Chaire\r\nd'Excellence 'Closed-loop control of turbulent shear ows\r\nusing reduced-order models' (TUCOROM) of the French\r\nAgence Nationale de la Recherche (ANR), and the Eu-\r\nropean Social \ Fund (ESF App. No. 100098251). We\r\nthank the Ambrosys Ltd. Society \ for Complex Sys-\r\ntems Management and the Bernd R. Noack Cybernet-\r\nics \ Foundation for additional support. A part of this\r\nwork was performed using HPC resources from GENCI-[CCRT/CINES/IDRIS] supported by the Grant 2011-\r\n[x2011020912" author: - first_name: Jens full_name: Kasten, Jens last_name: Kasten - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Hans full_name: Hege, Hans last_name: Hege - first_name: Bernd full_name: Noack, Bernd last_name: Noack - first_name: Guillaume full_name: Daviller, Guillaume last_name: Daviller - first_name: Marek full_name: Morzyński, Marek last_name: Morzyński citation: ama: Kasten J, Reininghaus J, Hotz I, et al. Acceleration feature points of unsteady shear flows. Archives of Mechanics. 2016;68(1):55-80. apa: Kasten, J., Reininghaus, J., Hotz, I., Hege, H., Noack, B., Daviller, G., & Morzyński, M. (2016). Acceleration feature points of unsteady shear flows. Archives of Mechanics. Polish Academy of Sciences Publishing House. chicago: Kasten, Jens, Jan Reininghaus, Ingrid Hotz, Hans Hege, Bernd Noack, Guillaume Daviller, and Marek Morzyński. “Acceleration Feature Points of Unsteady Shear Flows.” Archives of Mechanics. Polish Academy of Sciences Publishing House, 2016. ieee: J. Kasten et al., “Acceleration feature points of unsteady shear flows,” Archives of Mechanics, vol. 68, no. 1. Polish Academy of Sciences Publishing House, pp. 55–80, 2016. ista: Kasten J, Reininghaus J, Hotz I, Hege H, Noack B, Daviller G, Morzyński M. 2016. Acceleration feature points of unsteady shear flows. Archives of Mechanics. 68(1), 55–80. mla: Kasten, Jens, et al. “Acceleration Feature Points of Unsteady Shear Flows.” Archives of Mechanics, vol. 68, no. 1, Polish Academy of Sciences Publishing House, 2016, pp. 55–80. short: J. Kasten, J. Reininghaus, I. Hotz, H. Hege, B. Noack, G. Daviller, M. Morzyński, Archives of Mechanics 68 (2016) 55–80. date_created: 2018-12-11T11:50:46Z date_published: 2016-01-01T00:00:00Z date_updated: 2021-01-12T06:49:09Z day: '01' department: - _id: HeEd intvolume: ' 68' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://am.ippt.pan.pl/am/article/viewFile/v68p55/pdf month: '01' oa: 1 oa_version: Published Version page: 55 - 80 publication: Archives of Mechanics publication_status: published publisher: Polish Academy of Sciences Publishing House publist_id: '6118' quality_controlled: '1' scopus_import: 1 status: public title: Acceleration feature points of unsteady shear flows type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 68 year: '2016' ... --- _id: '1222' abstract: - lang: eng text: We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs. acknowledgement: We wish to thank Alexey Tarasov, Vladislav Volkov and Brittany Fasy for some useful comments and remarks, and especially Thom Sulanke for modifying surftri to suit our purposes. Oleg R. Musin was partially supported by the NSF Grant DMS-1400876 and by the RFBR Grant 15-01-99563. Anton V. Nikitenko was supported by the Chebyshev Laboratory (Department of Mathematics and Mechanics, St. Petersburg State University) under RF Government Grant 11.G34.31.0026. author: - first_name: Oleg full_name: Musin, Oleg last_name: Musin - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko citation: ama: Musin O, Nikitenko A. Optimal packings of congruent circles on a square flat torus. Discrete & Computational Geometry. 2016;55(1):1-20. doi:10.1007/s00454-015-9742-6 apa: Musin, O., & Nikitenko, A. (2016). Optimal packings of congruent circles on a square flat torus. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-015-9742-6 chicago: Musin, Oleg, and Anton Nikitenko. “Optimal Packings of Congruent Circles on a Square Flat Torus.” Discrete & Computational Geometry. Springer, 2016. https://doi.org/10.1007/s00454-015-9742-6. ieee: O. Musin and A. Nikitenko, “Optimal packings of congruent circles on a square flat torus,” Discrete & Computational Geometry, vol. 55, no. 1. Springer, pp. 1–20, 2016. ista: Musin O, Nikitenko A. 2016. Optimal packings of congruent circles on a square flat torus. Discrete & Computational Geometry. 55(1), 1–20. mla: Musin, Oleg, and Anton Nikitenko. “Optimal Packings of Congruent Circles on a Square Flat Torus.” Discrete & Computational Geometry, vol. 55, no. 1, Springer, 2016, pp. 1–20, doi:10.1007/s00454-015-9742-6. short: O. Musin, A. Nikitenko, Discrete & Computational Geometry 55 (2016) 1–20. date_created: 2018-12-11T11:50:48Z date_published: 2016-01-01T00:00:00Z date_updated: 2021-01-12T06:49:11Z day: '01' department: - _id: HeEd doi: 10.1007/s00454-015-9742-6 intvolume: ' 55' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1212.0649 month: '01' oa: 1 oa_version: Preprint page: 1 - 20 publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '6111' quality_controlled: '1' scopus_import: 1 status: public title: Optimal packings of congruent circles on a square flat torus type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 55 year: '2016' ... --- _id: '1237' abstract: - lang: eng text: 'Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.' acknowledgement: The research conducted by both authors has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreements no. 291734 (for M. K.) and no. 622033 (for P. P.). alternative_title: - LNCS author: - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: 'Krcál M, Pilarczyk P. Computation of cubical Steenrod squares. In: Vol 9667. Springer; 2016:140-151. doi:10.1007/978-3-319-39441-1_13' apa: 'Krcál, M., & Pilarczyk, P. (2016). Computation of cubical Steenrod squares (Vol. 9667, pp. 140–151). Presented at the CTIC: Computational Topology in Image Context, Marseille, France: Springer. https://doi.org/10.1007/978-3-319-39441-1_13' chicago: Krcál, Marek, and Pawel Pilarczyk. “Computation of Cubical Steenrod Squares,” 9667:140–51. Springer, 2016. https://doi.org/10.1007/978-3-319-39441-1_13. ieee: 'M. Krcál and P. Pilarczyk, “Computation of cubical Steenrod squares,” presented at the CTIC: Computational Topology in Image Context, Marseille, France, 2016, vol. 9667, pp. 140–151.' ista: 'Krcál M, Pilarczyk P. 2016. Computation of cubical Steenrod squares. CTIC: Computational Topology in Image Context, LNCS, vol. 9667, 140–151.' mla: Krcál, Marek, and Pawel Pilarczyk. Computation of Cubical Steenrod Squares. Vol. 9667, Springer, 2016, pp. 140–51, doi:10.1007/978-3-319-39441-1_13. short: M. Krcál, P. Pilarczyk, in:, Springer, 2016, pp. 140–151. conference: end_date: 2016-06-17 location: Marseille, France name: 'CTIC: Computational Topology in Image Context' start_date: 2016-06-15 date_created: 2018-12-11T11:50:52Z date_published: 2016-06-02T00:00:00Z date_updated: 2021-01-12T06:49:18Z day: '02' department: - _id: UlWa - _id: HeEd doi: 10.1007/978-3-319-39441-1_13 ec_funded: 1 intvolume: ' 9667' language: - iso: eng month: '06' oa_version: None page: 140 - 151 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication_status: published publisher: Springer publist_id: '6096' quality_controlled: '1' scopus_import: 1 status: public title: Computation of cubical Steenrod squares type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 9667 year: '2016' ... --- _id: '1252' abstract: - lang: eng text: We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points. acknowledgement: "The authors gratefully acknowledge the support of the Lorenz Center which\r\nprovided an opportunity for us to discuss in depth the work of this paper. Research leading to these results has received funding from Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE—Programa Operacional Factores de Competitividade (POFC) and from the Portuguese national funds through Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) in the framework of the research\r\nproject FCOMP-01-0124-FEDER-010645 (ref. FCT PTDC/MAT/098871/2008),\r\nas well as from the People Programme (Marie Curie Actions) of the European\r\nUnion’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 622033 (supporting PP). The work of the first and third author has\r\nbeen partially supported by NSF grants NSF-DMS-0835621, 0915019, 1125174,\r\n1248071, and contracts from AFOSR and DARPA. The work of the second author\r\nwas supported by Grant-in-Aid for Scientific Research (No. 25287029), Ministry of\r\nEducation, Science, Technology, Culture and Sports, Japan." article_processing_charge: No article_type: original author: - first_name: Shaun full_name: Harker, Shaun last_name: Harker - first_name: Hiroshi full_name: Kokubu, Hiroshi last_name: Kokubu - first_name: Konstantin full_name: Mischaikow, Konstantin last_name: Mischaikow - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Harker S, Kokubu H, Mischaikow K, Pilarczyk P. Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society. 2016;144(4):1787-1801. doi:10.1090/proc/12812 apa: Harker, S., Kokubu, H., Mischaikow, K., & Pilarczyk, P. (2016). Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/12812 chicago: Harker, Shaun, Hiroshi Kokubu, Konstantin Mischaikow, and Pawel Pilarczyk. “Inducing a Map on Homology from a Correspondence.” Proceedings of the American Mathematical Society. American Mathematical Society, 2016. https://doi.org/10.1090/proc/12812. ieee: S. Harker, H. Kokubu, K. Mischaikow, and P. Pilarczyk, “Inducing a map on homology from a correspondence,” Proceedings of the American Mathematical Society, vol. 144, no. 4. American Mathematical Society, pp. 1787–1801, 2016. ista: Harker S, Kokubu H, Mischaikow K, Pilarczyk P. 2016. Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society. 144(4), 1787–1801. mla: Harker, Shaun, et al. “Inducing a Map on Homology from a Correspondence.” Proceedings of the American Mathematical Society, vol. 144, no. 4, American Mathematical Society, 2016, pp. 1787–801, doi:10.1090/proc/12812. short: S. Harker, H. Kokubu, K. Mischaikow, P. Pilarczyk, Proceedings of the American Mathematical Society 144 (2016) 1787–1801. date_created: 2018-12-11T11:50:57Z date_published: 2016-04-01T00:00:00Z date_updated: 2022-05-24T09:35:58Z day: '01' department: - _id: HeEd doi: 10.1090/proc/12812 ec_funded: 1 external_id: arxiv: - '1411.7563' intvolume: ' 144' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1411.7563 month: '04' oa: 1 oa_version: Preprint page: 1787 - 1801 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: Proceedings of the American Mathematical Society publication_identifier: issn: - 1088-6826 publication_status: published publisher: American Mathematical Society publist_id: '6075' quality_controlled: '1' scopus_import: '1' status: public title: Inducing a map on homology from a correspondence type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2016' ... --- _id: '1254' abstract: - lang: eng text: We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/. acknowledgement: "AG and PP were partially supported by Abdus Salam International Centre for Theoretical Physics (ICTP). Additionally, AG was supported by BREUDS, and research conducted by PP has received funding from Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE—Programa Operacional Factores de Competitividade (POFC) and from the Portuguese national funds through Fundação para a Ciência e a Tecnologia (FCT) in the framework of the research project FCOMP-01-0124-FEDER-010645 (ref. FCT PTDC/MAT/098871/2008); and from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 622033. The authors gratefully acknowledge the Department of\r\nMathematics \ of Kyoto University for providing access\r\nto their server for conducting \ computations for this\r\nproject." author: - first_name: Ali full_name: Golmakani, Ali last_name: Golmakani - first_name: Stefano full_name: Luzzatto, Stefano last_name: Luzzatto - first_name: Pawel full_name: Pilarczyk, Pawel id: 3768D56A-F248-11E8-B48F-1D18A9856A87 last_name: Pilarczyk citation: ama: Golmakani A, Luzzatto S, Pilarczyk P. Uniform expansivity outside a critical neighborhood in the quadratic family. Experimental Mathematics. 2016;25(2):116-124. doi:10.1080/10586458.2015.1048011 apa: Golmakani, A., Luzzatto, S., & Pilarczyk, P. (2016). Uniform expansivity outside a critical neighborhood in the quadratic family. Experimental Mathematics. Taylor and Francis. https://doi.org/10.1080/10586458.2015.1048011 chicago: Golmakani, Ali, Stefano Luzzatto, and Pawel Pilarczyk. “Uniform Expansivity Outside a Critical Neighborhood in the Quadratic Family.” Experimental Mathematics. Taylor and Francis, 2016. https://doi.org/10.1080/10586458.2015.1048011. ieee: A. Golmakani, S. Luzzatto, and P. Pilarczyk, “Uniform expansivity outside a critical neighborhood in the quadratic family,” Experimental Mathematics, vol. 25, no. 2. Taylor and Francis, pp. 116–124, 2016. ista: Golmakani A, Luzzatto S, Pilarczyk P. 2016. Uniform expansivity outside a critical neighborhood in the quadratic family. Experimental Mathematics. 25(2), 116–124. mla: Golmakani, Ali, et al. “Uniform Expansivity Outside a Critical Neighborhood in the Quadratic Family.” Experimental Mathematics, vol. 25, no. 2, Taylor and Francis, 2016, pp. 116–24, doi:10.1080/10586458.2015.1048011. short: A. Golmakani, S. Luzzatto, P. Pilarczyk, Experimental Mathematics 25 (2016) 116–124. date_created: 2018-12-11T11:50:58Z date_published: 2016-04-02T00:00:00Z date_updated: 2021-01-12T06:49:25Z day: '02' department: - _id: HeEd doi: 10.1080/10586458.2015.1048011 ec_funded: 1 intvolume: ' 25' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1504.00116 month: '04' oa: 1 oa_version: Preprint page: 116 - 124 project: - _id: 255F06BE-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '622033' name: Persistent Homology - Images, Data and Maps publication: Experimental Mathematics publication_status: published publisher: Taylor and Francis publist_id: '6071' quality_controlled: '1' scopus_import: 1 status: public title: Uniform expansivity outside a critical neighborhood in the quadratic family type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2016' ... --- _id: '1272' abstract: - lang: eng text: We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams. acknowledgement: 'This work was supported by Austrian Science Fund (FWF): P25816-N15.' author: - first_name: Martin full_name: Held, Martin last_name: Held - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Peter full_name: Palfrader, Peter last_name: Palfrader citation: ama: Held M, Huber S, Palfrader P. Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. 2016;13(5):712-721. doi:10.1080/16864360.2016.1150718 apa: Held, M., Huber, S., & Palfrader, P. (2016). Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. Taylor and Francis. https://doi.org/10.1080/16864360.2016.1150718 chicago: Held, Martin, Stefan Huber, and Peter Palfrader. “Generalized Offsetting of Planar Structures Using Skeletons.” Computer-Aided Design and Applications. Taylor and Francis, 2016. https://doi.org/10.1080/16864360.2016.1150718. ieee: M. Held, S. Huber, and P. Palfrader, “Generalized offsetting of planar structures using skeletons,” Computer-Aided Design and Applications, vol. 13, no. 5. Taylor and Francis, pp. 712–721, 2016. ista: Held M, Huber S, Palfrader P. 2016. Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications. 13(5), 712–721. mla: Held, Martin, et al. “Generalized Offsetting of Planar Structures Using Skeletons.” Computer-Aided Design and Applications, vol. 13, no. 5, Taylor and Francis, 2016, pp. 712–21, doi:10.1080/16864360.2016.1150718. short: M. Held, S. Huber, P. Palfrader, Computer-Aided Design and Applications 13 (2016) 712–721. date_created: 2018-12-11T11:51:04Z date_published: 2016-09-02T00:00:00Z date_updated: 2021-01-12T06:49:32Z day: '02' ddc: - '004' - '516' department: - _id: HeEd doi: 10.1080/16864360.2016.1150718 file: - access_level: open_access checksum: c746f3a48edb62b588d92ea5d0fd2c0e content_type: application/pdf creator: system date_created: 2018-12-12T10:16:20Z date_updated: 2020-07-14T12:44:42Z file_id: '5206' file_name: IST-2016-694-v1+1_Generalized_offsetting_of_planar_structures_using_skeletons.pdf file_size: 1678369 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 13' issue: '5' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 712 - 721 publication: Computer-Aided Design and Applications publication_status: published publisher: Taylor and Francis publist_id: '6048' pubrep_id: '694' quality_controlled: '1' scopus_import: 1 status: public title: Generalized offsetting of planar structures using skeletons tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2016' ... --- _id: '1295' abstract: - lang: eng text: Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls. acknowledgement: This work is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme. author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: 'Edelsbrunner H, Iglesias Ham M. Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. 2016;54:169-174. doi:10.1016/j.endm.2016.09.030' apa: 'Edelsbrunner, H., & Iglesias Ham, M. (2016). Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. Elsevier. https://doi.org/10.1016/j.endm.2016.09.030' chicago: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls II: Weighted Averages.” Electronic Notes in Discrete Mathematics. Elsevier, 2016. https://doi.org/10.1016/j.endm.2016.09.030.' ieee: 'H. Edelsbrunner and M. Iglesias Ham, “Multiple covers with balls II: Weighted averages,” Electronic Notes in Discrete Mathematics, vol. 54. Elsevier, pp. 169–174, 2016.' ista: 'Edelsbrunner H, Iglesias Ham M. 2016. Multiple covers with balls II: Weighted averages. Electronic Notes in Discrete Mathematics. 54, 169–174.' mla: 'Edelsbrunner, Herbert, and Mabel Iglesias Ham. “Multiple Covers with Balls II: Weighted Averages.” Electronic Notes in Discrete Mathematics, vol. 54, Elsevier, 2016, pp. 169–74, doi:10.1016/j.endm.2016.09.030.' short: H. Edelsbrunner, M. Iglesias Ham, Electronic Notes in Discrete Mathematics 54 (2016) 169–174. date_created: 2018-12-11T11:51:12Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:49:41Z day: '01' department: - _id: HeEd doi: 10.1016/j.endm.2016.09.030 ec_funded: 1 intvolume: ' 54' language: - iso: eng month: '10' oa_version: None page: 169 - 174 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Electronic Notes in Discrete Mathematics publication_status: published publisher: Elsevier publist_id: '5976' quality_controlled: '1' scopus_import: 1 status: public title: 'Multiple covers with balls II: Weighted averages' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 54 year: '2016' ... --- _id: '1292' abstract: - lang: eng text: We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds. acknowledgement: "The authors are veryg rateful to Hansj ̈org Geiges \r\nfor fruitful discussions and advice and Christian Evers for helpful remarks on a draft version." author: - first_name: Sebastian full_name: Durst, Sebastian last_name: Durst - first_name: Marc full_name: Kegel, Marc last_name: Kegel - first_name: Mirko D full_name: Klukas, Mirko D id: 34927512-F248-11E8-B48F-1D18A9856A87 last_name: Klukas citation: ama: Durst S, Kegel M, Klukas MD. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 2016;150(2):441-455. doi:10.1007/s10474-016-0648-4 apa: Durst, S., Kegel, M., & Klukas, M. D. (2016). Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. Springer. https://doi.org/10.1007/s10474-016-0648-4 chicago: Durst, Sebastian, Marc Kegel, and Mirko D Klukas. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica. Springer, 2016. https://doi.org/10.1007/s10474-016-0648-4. ieee: S. Durst, M. Kegel, and M. D. Klukas, “Computing the Thurston–Bennequin invariant in open books,” Acta Mathematica Hungarica, vol. 150, no. 2. Springer, pp. 441–455, 2016. ista: Durst S, Kegel M, Klukas MD. 2016. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 150(2), 441–455. mla: Durst, Sebastian, et al. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica, vol. 150, no. 2, Springer, 2016, pp. 441–55, doi:10.1007/s10474-016-0648-4. short: S. Durst, M. Kegel, M.D. Klukas, Acta Mathematica Hungarica 150 (2016) 441–455. date_created: 2018-12-11T11:51:11Z date_published: 2016-12-01T00:00:00Z date_updated: 2021-01-12T06:49:40Z day: '01' department: - _id: HeEd doi: 10.1007/s10474-016-0648-4 intvolume: ' 150' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.00794 month: '12' oa: 1 oa_version: Preprint page: 441 - 455 publication: Acta Mathematica Hungarica publication_status: published publisher: Springer publist_id: '6023' quality_controlled: '1' scopus_import: 1 status: public title: Computing the Thurston–Bennequin invariant in open books type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 150 year: '2016' ... --- _id: '1330' abstract: - lang: eng text: In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K. acknowledgement: Supported by People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n°[291734]. Supported by the Russian Foundation for Basic Research grant 15-31-20403 (mol a ved), by the Russian Foundation for Basic Research grant 15-01-99563 A, in part by the Moebius Contest Foundation for Young Scientists, and in part by the Simons Foundation. author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy citation: ama: Akopyan A, Balitskiy A. Billiards in convex bodies with acute angles. Israel Journal of Mathematics. 2016;216(2):833-845. doi:10.1007/s11856-016-1429-z apa: Akopyan, A., & Balitskiy, A. (2016). Billiards in convex bodies with acute angles. Israel Journal of Mathematics. Springer. https://doi.org/10.1007/s11856-016-1429-z chicago: Akopyan, Arseniy, and Alexey Balitskiy. “Billiards in Convex Bodies with Acute Angles.” Israel Journal of Mathematics. Springer, 2016. https://doi.org/10.1007/s11856-016-1429-z. ieee: A. Akopyan and A. Balitskiy, “Billiards in convex bodies with acute angles,” Israel Journal of Mathematics, vol. 216, no. 2. Springer, pp. 833–845, 2016. ista: Akopyan A, Balitskiy A. 2016. Billiards in convex bodies with acute angles. Israel Journal of Mathematics. 216(2), 833–845. mla: Akopyan, Arseniy, and Alexey Balitskiy. “Billiards in Convex Bodies with Acute Angles.” Israel Journal of Mathematics, vol. 216, no. 2, Springer, 2016, pp. 833–45, doi:10.1007/s11856-016-1429-z. short: A. Akopyan, A. Balitskiy, Israel Journal of Mathematics 216 (2016) 833–845. date_created: 2018-12-11T11:51:24Z date_published: 2016-10-15T00:00:00Z date_updated: 2021-01-12T06:49:56Z day: '15' department: - _id: HeEd doi: 10.1007/s11856-016-1429-z ec_funded: 1 intvolume: ' 216' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1506.06014 month: '10' oa: 1 oa_version: Preprint page: 833 - 845 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Israel Journal of Mathematics publication_status: published publisher: Springer publist_id: '5938' quality_controlled: '1' scopus_import: 1 status: public title: Billiards in convex bodies with acute angles type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 216 year: '2016' ... --- _id: '1360' abstract: - lang: eng text: 'We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. ' acknowledgement: The first and third authors were supported by the Dynasty Foundation. The first, second and third authors were supported by the Russian Foundation for Basic Re- search grant 15-31-20403 (mol a ved). article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Alexey full_name: Balitskiy, Alexey last_name: Balitskiy - first_name: Roman full_name: Karasev, Roman last_name: Karasev - first_name: Anastasia full_name: Sharipova, Anastasia last_name: Sharipova citation: ama: Akopyan A, Balitskiy A, Karasev R, Sharipova A. Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. 2016;144(10):4501-4513. doi:10.1090/proc/13062 apa: Akopyan, A., Balitskiy, A., Karasev, R., & Sharipova, A. (2016). Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/13062 chicago: Akopyan, Arseniy, Alexey Balitskiy, Roman Karasev, and Anastasia Sharipova. “Elementary Approach to Closed Billiard Trajectories in Asymmetric Normed Spaces.” Proceedings of the American Mathematical Society. American Mathematical Society, 2016. https://doi.org/10.1090/proc/13062. ieee: A. Akopyan, A. Balitskiy, R. Karasev, and A. Sharipova, “Elementary approach to closed billiard trajectories in asymmetric normed spaces,” Proceedings of the American Mathematical Society, vol. 144, no. 10. American Mathematical Society, pp. 4501–4513, 2016. ista: Akopyan A, Balitskiy A, Karasev R, Sharipova A. 2016. Elementary approach to closed billiard trajectories in asymmetric normed spaces. Proceedings of the American Mathematical Society. 144(10), 4501–4513. mla: Akopyan, Arseniy, et al. “Elementary Approach to Closed Billiard Trajectories in Asymmetric Normed Spaces.” Proceedings of the American Mathematical Society, vol. 144, no. 10, American Mathematical Society, 2016, pp. 4501–13, doi:10.1090/proc/13062. short: A. Akopyan, A. Balitskiy, R. Karasev, A. Sharipova, Proceedings of the American Mathematical Society 144 (2016) 4501–4513. date_created: 2018-12-11T11:51:34Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:50:09Z day: '01' department: - _id: HeEd doi: 10.1090/proc/13062 ec_funded: 1 intvolume: ' 144' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1401.0442 month: '10' oa: 1 oa_version: Preprint page: 4501 - 4513 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Proceedings of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '5885' quality_controlled: '1' scopus_import: 1 status: public title: Elementary approach to closed billiard trajectories in asymmetric normed spaces type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2016' ... --- _id: '1408' abstract: - lang: eng text: 'The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.' acknowledgement: 'Open access funding provided by Institute of Science and Technology (IST Austria). ' article_processing_charge: Yes (via OA deal) author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: Franek P, Krcál M. On computability and triviality of well groups. Discrete & Computational Geometry. 2016;56(1):126-164. doi:10.1007/s00454-016-9794-2 apa: Franek, P., & Krcál, M. (2016). On computability and triviality of well groups. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-016-9794-2 chicago: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups.” Discrete & Computational Geometry. Springer, 2016. https://doi.org/10.1007/s00454-016-9794-2. ieee: P. Franek and M. Krcál, “On computability and triviality of well groups,” Discrete & Computational Geometry, vol. 56, no. 1. Springer, pp. 126–164, 2016. ista: Franek P, Krcál M. 2016. On computability and triviality of well groups. Discrete & Computational Geometry. 56(1), 126–164. mla: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups.” Discrete & Computational Geometry, vol. 56, no. 1, Springer, 2016, pp. 126–64, doi:10.1007/s00454-016-9794-2. short: P. Franek, M. Krcál, Discrete & Computational Geometry 56 (2016) 126–164. date_created: 2018-12-11T11:51:51Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-02-23T10:02:11Z day: '01' ddc: - '510' department: - _id: UlWa - _id: HeEd doi: 10.1007/s00454-016-9794-2 ec_funded: 1 file: - access_level: open_access checksum: e0da023abf6b72abd8c6a8c76740d53c content_type: application/pdf creator: system date_created: 2018-12-12T10:10:55Z date_updated: 2020-07-14T12:44:53Z file_id: '4846' file_name: IST-2016-614-v1+1_s00454-016-9794-2.pdf file_size: 905303 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 56' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 126 - 164 project: - _id: 25F8B9BC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M01980 name: Robust invariants of Nonlinear Systems - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Discrete & Computational Geometry publication_status: published publisher: Springer publist_id: '5799' pubrep_id: '614' quality_controlled: '1' related_material: record: - id: '1510' relation: earlier_version status: public scopus_import: 1 status: public title: On computability and triviality of well groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 56 year: '2016' ... --- _id: '1289' abstract: - lang: eng text: 'Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.' article_processing_charge: No author: - first_name: Olga full_name: Dunaeva, Olga last_name: Dunaeva - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Lukyanov, Anton last_name: Lukyanov - first_name: Michael full_name: Machin, Michael last_name: Machin - first_name: Daria full_name: Malkova, Daria last_name: Malkova - first_name: Roman full_name: Kuvaev, Roman last_name: Kuvaev - first_name: Sergey full_name: Kashin, Sergey last_name: Kashin citation: ama: Dunaeva O, Edelsbrunner H, Lukyanov A, et al. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 2016;83(1):13-22. doi:10.1016/j.patrec.2015.12.012 apa: Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., Malkova, D., Kuvaev, R., & Kashin, S. (2016). The classification of endoscopy images with persistent homology. Pattern Recognition Letters. Elsevier. https://doi.org/10.1016/j.patrec.2015.12.012 chicago: Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria Malkova, Roman Kuvaev, and Sergey Kashin. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters. Elsevier, 2016. https://doi.org/10.1016/j.patrec.2015.12.012. ieee: O. Dunaeva et al., “The classification of endoscopy images with persistent homology,” Pattern Recognition Letters, vol. 83, no. 1. Elsevier, pp. 13–22, 2016. ista: Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R, Kashin S. 2016. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 83(1), 13–22. mla: Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters, vol. 83, no. 1, Elsevier, 2016, pp. 13–22, doi:10.1016/j.patrec.2015.12.012. short: O. Dunaeva, H. Edelsbrunner, A. Lukyanov, M. Machin, D. Malkova, R. Kuvaev, S. Kashin, Pattern Recognition Letters 83 (2016) 13–22. date_created: 2018-12-11T11:51:10Z date_published: 2016-11-01T00:00:00Z date_updated: 2023-02-23T10:04:40Z day: '01' ddc: - '004' - '514' department: - _id: HeEd doi: 10.1016/j.patrec.2015.12.012 file: - access_level: open_access checksum: 33458bbb8c32a339e1adeca6d5a1112d content_type: application/pdf creator: dernst date_created: 2019-04-17T07:55:51Z date_updated: 2020-07-14T12:44:42Z file_id: '6334' file_name: 2016-Edelsbrunner_The_classification.pdf file_size: 1921113 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 83' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 13 - 22 publication: Pattern Recognition Letters publication_status: published publisher: Elsevier publist_id: '6027' pubrep_id: '975' quality_controlled: '1' related_material: record: - id: '1568' relation: earlier_version status: public scopus_import: 1 status: public title: The classification of endoscopy images with persistent homology tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 83 year: '2016' ... --- _id: '1617' abstract: - lang: eng text: 'We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points.' acknowledgement: We are grateful to the referee whose suggestions greatly improved the quality and clarity of the exposition. author: - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 - first_name: Stefan full_name: Steinerberger, Stefan last_name: Steinerberger citation: ama: Pausinger F, Steinerberger S. On the discrepancy of jittered sampling. Journal of Complexity. 2016;33:199-216. doi:10.1016/j.jco.2015.11.003 apa: Pausinger, F., & Steinerberger, S. (2016). On the discrepancy of jittered sampling. Journal of Complexity. Academic Press. https://doi.org/10.1016/j.jco.2015.11.003 chicago: Pausinger, Florian, and Stefan Steinerberger. “On the Discrepancy of Jittered Sampling.” Journal of Complexity. Academic Press, 2016. https://doi.org/10.1016/j.jco.2015.11.003. ieee: F. Pausinger and S. Steinerberger, “On the discrepancy of jittered sampling,” Journal of Complexity, vol. 33. Academic Press, pp. 199–216, 2016. ista: Pausinger F, Steinerberger S. 2016. On the discrepancy of jittered sampling. Journal of Complexity. 33, 199–216. mla: Pausinger, Florian, and Stefan Steinerberger. “On the Discrepancy of Jittered Sampling.” Journal of Complexity, vol. 33, Academic Press, 2016, pp. 199–216, doi:10.1016/j.jco.2015.11.003. short: F. Pausinger, S. Steinerberger, Journal of Complexity 33 (2016) 199–216. date_created: 2018-12-11T11:53:03Z date_published: 2016-04-01T00:00:00Z date_updated: 2021-01-12T06:52:02Z day: '01' department: - _id: HeEd doi: 10.1016/j.jco.2015.11.003 intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1510.00251 month: '04' oa: 1 oa_version: Submitted Version page: 199 - 216 publication: Journal of Complexity publication_status: published publisher: Academic Press publist_id: '5549' quality_controlled: '1' scopus_import: 1 status: public title: On the discrepancy of jittered sampling type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2016' ... --- _id: '5806' abstract: - lang: eng text: Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Biswas R, Bhowmick P. On functionality of quadraginta octants of naive sphere with application to circle drawing. In: Discrete Geometry for Computer Imagery. Vol 9647. Cham: Springer Nature; 2016:256-267. doi:10.1007/978-3-319-32360-2_20' apa: 'Biswas, R., & Bhowmick, P. (2016). On functionality of quadraginta octants of naive sphere with application to circle drawing. In Discrete Geometry for Computer Imagery (Vol. 9647, pp. 256–267). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-32360-2_20' chicago: 'Biswas, Ranita, and Partha Bhowmick. “On Functionality of Quadraginta Octants of Naive Sphere with Application to Circle Drawing.” In Discrete Geometry for Computer Imagery, 9647:256–67. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-32360-2_20.' ieee: R. Biswas and P. Bhowmick, “On functionality of quadraginta octants of naive sphere with application to circle drawing,” in Discrete Geometry for Computer Imagery, Nantes, France, 2016, vol. 9647, pp. 256–267. ista: 'Biswas R, Bhowmick P. 2016. On functionality of quadraginta octants of naive sphere with application to circle drawing. Discrete Geometry for Computer Imagery. DGCI: International Conference on Discrete Geometry for Computer Imagery, LNCS, vol. 9647, 256–267.' mla: Biswas, Ranita, and Partha Bhowmick. “On Functionality of Quadraginta Octants of Naive Sphere with Application to Circle Drawing.” Discrete Geometry for Computer Imagery, vol. 9647, Springer Nature, 2016, pp. 256–67, doi:10.1007/978-3-319-32360-2_20. short: R. Biswas, P. Bhowmick, in:, Discrete Geometry for Computer Imagery, Springer Nature, Cham, 2016, pp. 256–267. conference: end_date: 2016-04-20 location: Nantes, France name: 'DGCI: International Conference on Discrete Geometry for Computer Imagery' start_date: 2016-04-18 date_created: 2019-01-08T20:44:37Z date_published: 2016-04-09T00:00:00Z date_updated: 2022-01-28T08:10:11Z day: '09' department: - _id: HeEd doi: 10.1007/978-3-319-32360-2_20 extern: '1' intvolume: ' 9647' language: - iso: eng month: '04' oa_version: None page: 256-267 place: Cham publication: Discrete Geometry for Computer Imagery publication_identifier: eisbn: - 978-3-319-32360-2 isbn: - 978-3-319-32359-6 issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On functionality of quadraginta octants of naive sphere with application to circle drawing type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9647 year: '2016' ... --- _id: '5805' abstract: - lang: eng text: Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy. alternative_title: - LNCS article_processing_charge: No author: - first_name: Nabhasmita full_name: Sen, Nabhasmita last_name: Sen - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick citation: ama: 'Sen N, Biswas R, Bhowmick P. On some local topological properties of naive discrete sphere. In: Computational Topology in Image Context. Vol 9667. Cham: Springer Nature; 2016:253-264. doi:10.1007/978-3-319-39441-1_23' apa: 'Sen, N., Biswas, R., & Bhowmick, P. (2016). On some local topological properties of naive discrete sphere. In Computational Topology in Image Context (Vol. 9667, pp. 253–264). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-39441-1_23' chicago: 'Sen, Nabhasmita, Ranita Biswas, and Partha Bhowmick. “On Some Local Topological Properties of Naive Discrete Sphere.” In Computational Topology in Image Context, 9667:253–64. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-39441-1_23.' ieee: 'N. Sen, R. Biswas, and P. Bhowmick, “On some local topological properties of naive discrete sphere,” in Computational Topology in Image Context, vol. 9667, Cham: Springer Nature, 2016, pp. 253–264.' ista: 'Sen N, Biswas R, Bhowmick P. 2016.On some local topological properties of naive discrete sphere. In: Computational Topology in Image Context. LNCS, vol. 9667, 253–264.' mla: Sen, Nabhasmita, et al. “On Some Local Topological Properties of Naive Discrete Sphere.” Computational Topology in Image Context, vol. 9667, Springer Nature, 2016, pp. 253–64, doi:10.1007/978-3-319-39441-1_23. short: N. Sen, R. Biswas, P. Bhowmick, in:, Computational Topology in Image Context, Springer Nature, Cham, 2016, pp. 253–264. conference: end_date: 2016-06-17 location: Marseille, France name: 'CTIC: Computational Topology in Image Context' start_date: 2016-06-15 date_created: 2019-01-08T20:44:24Z date_published: 2016-06-02T00:00:00Z date_updated: 2022-01-28T08:01:22Z day: '02' department: - _id: HeEd doi: 10.1007/978-3-319-39441-1_23 extern: '1' intvolume: ' 9667' language: - iso: eng month: '06' oa_version: None page: 253-264 place: Cham publication: Computational Topology in Image Context publication_identifier: eisbn: - 978-3-319-39441-1 eissn: - 1611-3349 isbn: - 978-3-319-39440-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On some local topological properties of naive discrete sphere type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9667 year: '2016' ... --- _id: '5809' abstract: - lang: eng text: A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness. article_processing_charge: No author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Partha full_name: Bhowmick, Partha last_name: Bhowmick - first_name: Valentin E. full_name: Brimkov, Valentin E. last_name: Brimkov citation: ama: 'Biswas R, Bhowmick P, Brimkov VE. On the connectivity and smoothness of discrete spherical circles. In: Combinatorial Image Analysis. Vol 9448. Cham: Springer Nature; 2016:86-100. doi:10.1007/978-3-319-26145-4_7' apa: 'Biswas, R., Bhowmick, P., & Brimkov, V. E. (2016). On the connectivity and smoothness of discrete spherical circles. In Combinatorial image analysis (Vol. 9448, pp. 86–100). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-26145-4_7' chicago: 'Biswas, Ranita, Partha Bhowmick, and Valentin E. Brimkov. “On the Connectivity and Smoothness of Discrete Spherical Circles.” In Combinatorial Image Analysis, 9448:86–100. Cham: Springer Nature, 2016. https://doi.org/10.1007/978-3-319-26145-4_7.' ieee: 'R. Biswas, P. Bhowmick, and V. E. Brimkov, “On the connectivity and smoothness of discrete spherical circles,” in Combinatorial image analysis, vol. 9448, Cham: Springer Nature, 2016, pp. 86–100.' ista: 'Biswas R, Bhowmick P, Brimkov VE. 2016.On the connectivity and smoothness of discrete spherical circles. In: Combinatorial image analysis. vol. 9448, 86–100.' mla: Biswas, Ranita, et al. “On the Connectivity and Smoothness of Discrete Spherical Circles.” Combinatorial Image Analysis, vol. 9448, Springer Nature, 2016, pp. 86–100, doi:10.1007/978-3-319-26145-4_7. short: R. Biswas, P. Bhowmick, V.E. Brimkov, in:, Combinatorial Image Analysis, Springer Nature, Cham, 2016, pp. 86–100. conference: end_date: 2015-11-27 location: Kolkata, India name: 'IWCIA: International Workshop on Combinatorial Image Analysis' start_date: 2015-11-24 date_created: 2019-01-08T20:45:19Z date_published: 2016-01-06T00:00:00Z date_updated: 2022-01-28T08:13:03Z day: '06' department: - _id: HeEd doi: 10.1007/978-3-319-26145-4_7 extern: '1' intvolume: ' 9448' language: - iso: eng month: '01' oa_version: None page: 86-100 place: Cham publication: Combinatorial image analysis publication_identifier: eisbn: - 978-3-319-26145-4 eissn: - 1611-3349 isbn: - 978-3-319-26144-7 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: On the connectivity and smoothness of discrete spherical circles type: book_chapter user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9448 year: '2016' ... --- _id: '1662' abstract: - lang: eng text: We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball. acknowledgement: "This research is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme.\r\nBoth authors thank Anne Marie Svane for her comments on an early version of this paper. The second author wishes to thank Eva B. Vedel Jensen and Markus Kiderlen from Aarhus University for enlightening discussions and their kind hospitality during a visit of their department in 2014." author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Florian full_name: Pausinger, Florian id: 2A77D7A2-F248-11E8-B48F-1D18A9856A87 last_name: Pausinger orcid: 0000-0002-8379-3768 citation: ama: Edelsbrunner H, Pausinger F. Approximation and convergence of the intrinsic volume. Advances in Mathematics. 2016;287:674-703. doi:10.1016/j.aim.2015.10.004 apa: Edelsbrunner, H., & Pausinger, F. (2016). Approximation and convergence of the intrinsic volume. Advances in Mathematics. Academic Press. https://doi.org/10.1016/j.aim.2015.10.004 chicago: Edelsbrunner, Herbert, and Florian Pausinger. “Approximation and Convergence of the Intrinsic Volume.” Advances in Mathematics. Academic Press, 2016. https://doi.org/10.1016/j.aim.2015.10.004. ieee: H. Edelsbrunner and F. Pausinger, “Approximation and convergence of the intrinsic volume,” Advances in Mathematics, vol. 287. Academic Press, pp. 674–703, 2016. ista: Edelsbrunner H, Pausinger F. 2016. Approximation and convergence of the intrinsic volume. Advances in Mathematics. 287, 674–703. mla: Edelsbrunner, Herbert, and Florian Pausinger. “Approximation and Convergence of the Intrinsic Volume.” Advances in Mathematics, vol. 287, Academic Press, 2016, pp. 674–703, doi:10.1016/j.aim.2015.10.004. short: H. Edelsbrunner, F. Pausinger, Advances in Mathematics 287 (2016) 674–703. date_created: 2018-12-11T11:53:20Z date_published: 2016-01-10T00:00:00Z date_updated: 2023-09-07T11:41:25Z day: '10' ddc: - '004' department: - _id: HeEd doi: 10.1016/j.aim.2015.10.004 ec_funded: 1 file: - access_level: open_access checksum: f8869ec110c35c852ef6a37425374af7 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:10Z date_updated: 2020-07-14T12:45:10Z file_id: '4928' file_name: IST-2017-774-v1+1_2016-J-03-FirstIntVolume.pdf file_size: 248985 relation: main_file file_date_updated: 2020-07-14T12:45:10Z has_accepted_license: '1' intvolume: ' 287' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 674 - 703 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Advances in Mathematics publication_status: published publisher: Academic Press publist_id: '5488' pubrep_id: '774' quality_controlled: '1' related_material: record: - id: '1399' relation: dissertation_contains status: public scopus_import: 1 status: public title: Approximation and convergence of the intrinsic volume tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 287 year: '2016' ... --- _id: '1424' abstract: - lang: eng text: We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data. acknowledgement: This work was partially supported by the Austrian Science FUnd, project no. KLI 00012. alternative_title: - Advances in Neural Information Processing Systems author: - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Marc full_name: Niethammer, Marc last_name: Niethammer - first_name: Weili full_name: Lin, Weili last_name: Lin - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 citation: ama: 'Kwitt R, Huber S, Niethammer M, Lin W, Bauer U. Statistical topological data analysis-A kernel perspective. In: Vol 28. Neural Information Processing Systems; 2015:3070-3078.' apa: 'Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis-A kernel perspective (Vol. 28, pp. 3070–3078). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.' chicago: Kwitt, Roland, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. “Statistical Topological Data Analysis-A Kernel Perspective,” 28:3070–78. Neural Information Processing Systems, 2015. ieee: 'R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-A kernel perspective,” presented at the NIPS: Neural Information Processing Systems, Montreal, Canada, 2015, vol. 28, pp. 3070–3078.' ista: 'Kwitt R, Huber S, Niethammer M, Lin W, Bauer U. 2015. Statistical topological data analysis-A kernel perspective. NIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, vol. 28, 3070–3078.' mla: Kwitt, Roland, et al. Statistical Topological Data Analysis-A Kernel Perspective. Vol. 28, Neural Information Processing Systems, 2015, pp. 3070–78. short: R. Kwitt, S. Huber, M. Niethammer, W. Lin, U. Bauer, in:, Neural Information Processing Systems, 2015, pp. 3070–3078. conference: end_date: 2015-12-12 location: Montreal, Canada name: 'NIPS: Neural Information Processing Systems' start_date: 2015-12-07 date_created: 2018-12-11T11:51:56Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:50:38Z day: '01' department: - _id: HeEd intvolume: ' 28' language: - iso: eng main_file_link: - open_access: '1' url: https://papers.nips.cc/paper/5887-statistical-topological-data-analysis-a-kernel-perspective month: '12' oa: 1 oa_version: Submitted Version page: 3070 - 3078 publication_status: published publisher: Neural Information Processing Systems publist_id: '5782' quality_controlled: '1' status: public title: Statistical topological data analysis-A kernel perspective type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2015' ... --- _id: '1483' abstract: - lang: eng text: Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes. author: - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Stefan full_name: Huber, Stefan id: 4700A070-F248-11E8-B48F-1D18A9856A87 last_name: Huber orcid: 0000-0002-8871-5814 - first_name: Ulrich full_name: Bauer, Ulrich id: 2ADD483A-F248-11E8-B48F-1D18A9856A87 last_name: Bauer orcid: 0000-0002-9683-0724 - first_name: Roland full_name: Kwitt, Roland last_name: Kwitt citation: ama: 'Reininghaus J, Huber S, Bauer U, Kwitt R. A stable multi-scale kernel for topological machine learning. In: IEEE; 2015:4741-4748. doi:10.1109/CVPR.2015.7299106' apa: 'Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning (pp. 4741–4748). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7299106' chicago: Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106. ieee: 'J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale kernel for topological machine learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 4741–4748.' ista: 'Reininghaus J, Huber S, Bauer U, Kwitt R. 2015. A stable multi-scale kernel for topological machine learning. CVPR: Computer Vision and Pattern Recognition, 4741–4748.' mla: Reininghaus, Jan, et al. A Stable Multi-Scale Kernel for Topological Machine Learning. IEEE, 2015, pp. 4741–48, doi:10.1109/CVPR.2015.7299106. short: J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, in:, IEEE, 2015, pp. 4741–4748. conference: end_date: 2015-06-12 location: Boston, MA, USA name: 'CVPR: Computer Vision and Pattern Recognition' start_date: 2015-06-07 date_created: 2018-12-11T11:52:17Z date_published: 2015-10-14T00:00:00Z date_updated: 2021-01-12T06:51:03Z day: '14' department: - _id: HeEd doi: 10.1109/CVPR.2015.7299106 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1412.6821 month: '10' oa: 1 oa_version: Preprint page: 4741 - 4748 publication_identifier: eisbn: - '978-1-4673-6964-0 ' publication_status: published publisher: IEEE publist_id: '5709' scopus_import: 1 status: public title: A stable multi-scale kernel for topological machine learning type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1495' abstract: - lang: eng text: 'Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. ' author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham - first_name: Vitaliy full_name: Kurlin, Vitaliy last_name: Kurlin citation: ama: 'Edelsbrunner H, Iglesias Ham M, Kurlin V. Relaxed disk packing. In: Proceedings of the 27th Canadian Conference on Computational Geometry. Vol 2015-August. Queen’s University; 2015:128-135.' apa: 'Edelsbrunner, H., Iglesias Ham, M., & Kurlin, V. (2015). Relaxed disk packing. In Proceedings of the 27th Canadian Conference on Computational Geometry (Vol. 2015–August, pp. 128–135). Ontario, Canada: Queen’s University.' chicago: Edelsbrunner, Herbert, Mabel Iglesias Ham, and Vitaliy Kurlin. “Relaxed Disk Packing.” In Proceedings of the 27th Canadian Conference on Computational Geometry, 2015–August:128–35. Queen’s University, 2015. ieee: H. Edelsbrunner, M. Iglesias Ham, and V. Kurlin, “Relaxed disk packing,” in Proceedings of the 27th Canadian Conference on Computational Geometry, Ontario, Canada, 2015, vol. 2015–August, pp. 128–135. ista: 'Edelsbrunner H, Iglesias Ham M, Kurlin V. 2015. Relaxed disk packing. Proceedings of the 27th Canadian Conference on Computational Geometry. CCCG: Canadian Conference on Computational Geometry vol. 2015–August, 128–135.' mla: Edelsbrunner, Herbert, et al. “Relaxed Disk Packing.” Proceedings of the 27th Canadian Conference on Computational Geometry, vol. 2015–August, Queen’s University, 2015, pp. 128–35. short: H. Edelsbrunner, M. Iglesias Ham, V. Kurlin, in:, Proceedings of the 27th Canadian Conference on Computational Geometry, Queen’s University, 2015, pp. 128–135. conference: end_date: 2015-08-12 location: Ontario, Canada name: 'CCCG: Canadian Conference on Computational Geometry' start_date: 2015-08-10 date_created: 2018-12-11T11:52:21Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:09Z day: '01' department: - _id: HeEd ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1505.03402 month: '08' oa: 1 oa_version: Submitted Version page: 128-135 project: - _id: 255D761E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '318493' name: Topological Complex Systems publication: Proceedings of the 27th Canadian Conference on Computational Geometry publication_status: published publisher: Queen's University publist_id: '5684' quality_controlled: '1' scopus_import: 1 status: public title: Relaxed disk packing type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2015-August year: '2015' ... --- _id: '1510' abstract: - lang: eng text: 'The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f'' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. ' alternative_title: - LIPIcs author: - first_name: Peter full_name: Franek, Peter id: 473294AE-F248-11E8-B48F-1D18A9856A87 last_name: Franek - first_name: Marek full_name: Krcál, Marek id: 33E21118-F248-11E8-B48F-1D18A9856A87 last_name: Krcál citation: ama: 'Franek P, Krcál M. On computability and triviality of well groups. In: Vol 34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2015:842-856. doi:10.4230/LIPIcs.SOCG.2015.842' apa: 'Franek, P., & Krcál, M. (2015). On computability and triviality of well groups (Vol. 34, pp. 842–856). Presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SOCG.2015.842' chicago: Franek, Peter, and Marek Krcál. “On Computability and Triviality of Well Groups,” 34:842–56. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. https://doi.org/10.4230/LIPIcs.SOCG.2015.842. ieee: 'P. Franek and M. Krcál, “On computability and triviality of well groups,” presented at the SoCG: Symposium on Computational Geometry, Eindhoven, Netherlands, 2015, vol. 34, pp. 842–856.' ista: 'Franek P, Krcál M. 2015. On computability and triviality of well groups. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 34, 842–856.' mla: Franek, Peter, and Marek Krcál. On Computability and Triviality of Well Groups. Vol. 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 842–56, doi:10.4230/LIPIcs.SOCG.2015.842. short: P. Franek, M. Krcál, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 842–856. conference: end_date: 2015-06-25 location: Eindhoven, Netherlands name: 'SoCG: Symposium on Computational Geometry' start_date: 2015-06-22 date_created: 2018-12-11T11:52:26Z date_published: 2015-06-11T00:00:00Z date_updated: 2023-02-21T17:02:57Z day: '11' ddc: - '510' department: - _id: UlWa - _id: HeEd doi: 10.4230/LIPIcs.SOCG.2015.842 ec_funded: 1 file: - access_level: open_access checksum: 49eb5021caafaabe5356c65b9c5f8c9c content_type: application/pdf creator: system date_created: 2018-12-12T10:13:19Z date_updated: 2020-07-14T12:44:59Z file_id: '5001' file_name: IST-2016-503-v1+1_32.pdf file_size: 623563 relation: main_file file_date_updated: 2020-07-14T12:44:59Z has_accepted_license: '1' intvolume: ' 34' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 842 - 856 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '5667' pubrep_id: '503' quality_controlled: '1' related_material: record: - id: '1408' relation: later_version status: public scopus_import: 1 status: public title: On computability and triviality of well groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ...