TY - THES
AB - This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.
For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.
In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.
AU - Masárová, Zuzana
ID - 7944
KW - reconfiguration
KW - reconfiguration graph
KW - triangulations
KW - flip
KW - constrained triangulations
KW - shellability
KW - piecewise-linear balls
KW - token swapping
KW - trees
KW - coloured weighted token swapping
SN - 978-3-99078-005-3
TI - Reconfiguration problems
ER -
TY - CONF
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation 𝒯. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.
AU - Boissonnat, Jean-Daniel
AU - Wintraecken, Mathijs
ID - 7952
SN - 1868-8969
T2 - 36th International Symposium on Computational Geometry
TI - The topological correctness of PL-approximations of isomanifolds
VL - 164
ER -
TY - JOUR
AB - We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.
AU - Boissonnat, Jean-Daniel
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 8940
JF - Discrete & Computational Geometry
KW - Theoretical Computer Science
KW - Computational Theory and Mathematics
KW - Geometry and Topology
KW - Discrete Mathematics and Combinatorics
SN - 0179-5376
TI - Triangulating submanifolds: An elementary and quantified version of Whitney’s method
ER -
TY - JOUR
AB - We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.
AU - Brown, Adam
AU - Bobrowski, Omer
AU - Munch, Elizabeth
AU - Wang, Bei
ID - 9111
JF - Journal of Applied and Computational Topology
SN - 2367-1726
TI - Probabilistic convergence and stability of random mapper graphs
ER -
TY - JOUR
AB - The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
ID - 9156
IS - 1
JF - Computational and Mathematical Biophysics
SN - 2544-7297
TI - The weighted Gaussian curvature derivative of a space-filling diagram
VL - 8
ER -
TY - JOUR
AB - Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
ID - 9157
IS - 1
JF - Computational and Mathematical Biophysics
SN - 2544-7297
TI - The weighted mean curvature derivative of a space-filling diagram
VL - 8
ER -
TY - CONF
AB - We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.
AU - Osang, Georg F
AU - Cook, James
AU - Fabrikant, Alex
AU - Gruteser, Marco
ID - 7216
SN - 9781538670248
T2 - 2019 IEEE Intelligent Transportation Systems Conference
TI - LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale
ER -
TY - GEN
AB - The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:
1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.
2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.
3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
AU - Biniaz, Ahmad
AU - Jain, Kshitij
AU - Lubiw, Anna
AU - Masárová, Zuzana
AU - Miltzow, Tillmann
AU - Mondal, Debajyoti
AU - Naredla, Anurag Murty
AU - Tkadlec, Josef
AU - Turcotte, Alexi
ID - 7950
T2 - arXiv
TI - Token swapping on trees
ER -
TY - JOUR
AB - The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 5678
IS - 4
JF - Discrete and Computational Geometry
SN - 01795376
TI - Poisson–Delaunay Mosaics of Order k
VL - 62
ER -
TY - JOUR
AB - We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible.
AU - Akopyan, Arseniy
AU - Fedorov, Roman
ID - 6050
JF - Proceedings of the American Mathematical Society
TI - Two circles and only a straightedge
VL - 147
ER -
TY - JOUR
AB - We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature.
AU - Dyer, Ramsay
AU - Vegter, Gert
AU - Wintraecken, Mathijs
ID - 6515
IS - 1
JF - Journal of Computational Geometry
SN - 1920-180X
TI - Simplices modelled on spaces of constant curvature
VL - 10
ER -
TY - JOUR
AB - We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.
AU - Edelsbrunner, Herbert
AU - Ölsböck, Katharina
ID - 6608
JF - Computer Aided Geometric Design
TI - Holes and dependences in an ordered complex
VL - 73
ER -
TY - CONF
AB - Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space.
AU - Vegter, Gert
AU - Wintraecken, Mathijs
ID - 6628
T2 - The 31st Canadian Conference in Computational Geometry
TI - The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds
ER -
TY - JOUR
AB - In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.
AU - Akopyan, Arseniy
AU - Hubard, Alfredo
AU - Karasev, Roman
ID - 6634
IS - 2
JF - Topological Methods in Nonlinear Analysis
TI - Lower and upper bounds for the waists of different spaces
VL - 53
ER -
TY - CONF
AB - Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory
needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.
AU - Edelsbrunner, Herbert
AU - Virk, Ziga
AU - Wagner, Hubert
ID - 6648
SN - 9783959771047
T2 - 35th International Symposium on Computational Geometry
TI - Topological data analysis in information space
VL - 129
ER -
TY - JOUR
AB - In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.
AU - Boissonnat, Jean-Daniel
AU - Lieutier, André
AU - Wintraecken, Mathijs
ID - 6671
IS - 1-2
JF - Journal of Applied and Computational Topology
SN - 2367-1726
TI - The reach, metric distortion, geodesic convexity and the variation of tangent spaces
VL - 3
ER -
TY - JOUR
AB - We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.
AU - Pranav, Pratyush
AU - Adler, Robert J.
AU - Buchert, Thomas
AU - Edelsbrunner, Herbert
AU - Jones, Bernard J.T.
AU - Schwartzman, Armin
AU - Wagner, Hubert
AU - Van De Weygaert, Rien
ID - 6756
JF - Astronomy and Astrophysics
SN - 00046361
TI - Unexpected topology of the temperature fluctuations in the cosmic microwave background
VL - 627
ER -
TY - JOUR
AB - The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry.
AU - Akopyan, Arseniy
AU - Izmestiev, Ivan
ID - 6793
IS - 5
JF - Bulletin of the London Mathematical Society
SN - 00246093
TI - The Regge symmetry, confocal conics, and the Schläfli formula
VL - 51
ER -
TY - JOUR
AB - In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group .
AU - Brown, Adam
ID - 6828
JF - Journal of Algebra
SN - 0021-8693
TI - Arakawa-Suzuki functors for Whittaker modules
VL - 538
ER -
TY - CONF
AB - When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with hole(s) to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special simple holes guarantee foldability.
AU - Aichholzer, Oswin
AU - Akitaya, Hugo A
AU - Cheung, Kenneth C
AU - Demaine, Erik D
AU - Demaine, Martin L
AU - Fekete, Sandor P
AU - Kleist, Linda
AU - Kostitsyna, Irina
AU - Löffler, Maarten
AU - Masárová, Zuzana
AU - Mundilova, Klara
AU - Schmidt, Christiane
ID - 6989
T2 - Proceedings of the 31st Canadian Conference on Computational Geometry
TI - Folding polyominoes with holes into a cube
ER -