TY - JOUR
AB - We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.
AU - Akopyan, Arseniy
AU - Pirogov, Sergey
AU - Rybko, Aleksandr
ID - 1828
IS - 1
JF - Journal of Statistical Physics
TI - Invariant measures of genetic recombination process
VL - 160
ER -
TY - CONF
AB - Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.
AU - Dunaeva, Olga
AU - Edelsbrunner, Herbert
AU - Lukyanov, Anton
AU - Machin, Michael
AU - Malkova, Daria
ID - 1568
T2 - Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
TI - The classification of endoscopy images with persistent homology
ER -
TY - CHAP
AB - The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed.
AU - Aichholzer, Oswin
AU - Biedl, Therese
AU - Hackl, Thomas
AU - Held, Martin
AU - Huber, Stefan
AU - Palfrader, Peter
AU - Vogtenhuber, Birgit
ID - 1590
T2 - Graph Drawing and Network Visualization
TI - Representing directed trees as straight skeletons
VL - 9411
ER -
TY - JOUR
AB - We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon.
AU - Biedl, Therese
AU - Held, Martin
AU - Huber, Stefan
AU - Kaaser, Dominik
AU - Palfrader, Peter
ID - 1583
IS - 2
JF - Information Processing Letters
TI - A simple algorithm for computing positively weighted straight skeletons of monotone polygons
VL - 115
ER -
TY - JOUR
AB - Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology.
AU - Pausinger, Florian
AU - Svane, Anne
ID - 1792
IS - 6
JF - Journal of Complexity
TI - A Koksma-Hlawka inequality for general discrepancy systems
VL - 31
ER -