TY - JOUR
AB - For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}.
AU - Graff, Grzegorz
AU - Pilarczyk, Pawel
ID - 1563
IS - 1
JF - Topological Methods in Nonlinear Analysis
TI - An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
VL - 45
ER -
TY - CONF
AB - My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations.
AU - Edelsbrunner, Herbert
ID - 1567
TI - Shape, homology, persistence, and stability
VL - 9411
ER -
TY - CONF
AB - Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.
AU - Dunaeva, Olga
AU - Edelsbrunner, Herbert
AU - Lukyanov, Anton
AU - Machin, Michael
AU - Malkova, Daria
ID - 1568
T2 - Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
TI - The classification of endoscopy images with persistent homology
ER -
TY - JOUR
AB - We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations.
AU - Cao, Thanhtung
AU - Edelsbrunner, Herbert
AU - Tan, Tiowseng
ID - 1578
IS - 7
JF - Computational Geometry
TI - Triangulations from topologically correct digital Voronoi diagrams
VL - 48
ER -
TY - JOUR
AB - We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.
AU - Biedl, Therese
AU - Held, Martin
AU - Huber, Stefan
AU - Kaaser, Dominik
AU - Palfrader, Peter
ID - 1582
IS - 2
JF - Computational Geometry: Theory and Applications
TI - Weighted straight skeletons in the plane
VL - 48
ER -