TY - JOUR
AB - In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.
AU - Akopyan, Arseniy
AU - Balitskiy, Alexey
AU - Grigorev, Mikhail
ID - 1064
IS - 4
JF - Discrete & Computational Geometry
SN - 01795376
TI - On the circle covering theorem by A.W. Goodman and R.E. Goodman
VL - 59
ER -
TY - JOUR
AB - We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.
AU - Akopyan, Arseniy
ID - 409
IS - 4
JF - Comptes Rendus Mathematique
SN - 1631073X
TI - On the number of non-hexagons in a planar tiling
VL - 356
ER -
TY - JOUR
AB - We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.
AU - Akopyan, Arseniy
AU - Bobenko, Alexander
ID - 458
IS - 4
JF - Transactions of the American Mathematical Society
TI - Incircular nets and confocal conics
VL - 370
ER -
TY - JOUR
AB - Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.
AU - Edelsbrunner, Herbert
AU - Iglesias Ham, Mabel
ID - 312
IS - 1
JF - SIAM J Discrete Math
SN - 08954801
TI - On the optimality of the FCC lattice for soft sphere packing
VL - 32
ER -
TY - CONF
AB - Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.
AU - Edelsbrunner, Herbert
AU - Osang, Georg F
ID - 187
TI - The multi-cover persistence of Euclidean balls
VL - 99
ER -