TY - GEN
AB - The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results:
1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.
2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2.
3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
AU - Biniaz, Ahmad
AU - Jain, Kshitij
AU - Lubiw, Anna
AU - Masárová, Zuzana
AU - Miltzow, Tillmann
AU - Mondal, Debajyoti
AU - Naredla, Anurag Murty
AU - Tkadlec, Josef
AU - Turcotte, Alexi
ID - 7950
T2 - arXiv
TI - Token swapping on trees
ER -
TY - JOUR
AB - The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 5678
IS - 4
JF - Discrete and Computational Geometry
SN - 01795376
TI - Poisson–Delaunay Mosaics of Order k
VL - 62
ER -
TY - JOUR
AB - We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible.
AU - Akopyan, Arseniy
AU - Fedorov, Roman
ID - 6050
JF - Proceedings of the American Mathematical Society
TI - Two circles and only a straightedge
VL - 147
ER -
TY - JOUR
AB - We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature.
AU - Dyer, Ramsay
AU - Vegter, Gert
AU - Wintraecken, Mathijs
ID - 6515
IS - 1
JF - Journal of Computational Geometry
SN - 1920-180X
TI - Simplices modelled on spaces of constant curvature
VL - 10
ER -
TY - JOUR
AB - We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.
AU - Edelsbrunner, Herbert
AU - Ölsböck, Katharina
ID - 6608
JF - Computer Aided Geometric Design
TI - Holes and dependences in an ordered complex
VL - 73
ER -