TY - CONF
AB - In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0,1), the running time is O(C(1-δ)ΓR(n)log n), where C(1-δ)Γ is the number of homology classes with persistence at least (1-δ)Γ, n is the total number of simplices, and R(n) is the complexity of computing the rank of an n x n matrix with O(n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O(C(1-δ)Γn2.376) algorithm, a O(C(1-δ)Γn2.28) Las-Vegas algorithm, or a O(C(1-δ)Γn2+ε) Monte-Carlo algorithm for an arbitrary ε>0.
AU - Chen, Chao
AU - Kerber, Michael
ID - 3367
TI - An output sensitive algorithm for persistent homology
ER -
TY - JOUR
AB - By definition, transverse intersections are stable under in- finitesimal perturbations. Using persistent homology, we ex- tend this notion to sizeable perturbations. Specifically, we assign to each homology class of the intersection its robust- ness, the magnitude of a perturbation necessary to kill it, and prove that robustness is stable. Among the applications of this result is a stable notion of robustness for fixed points of continuous mappings and a statement of stability for con- tours of smooth mappings.
AU - Edelsbrunner, Herbert
AU - Morozov, Dmitriy
AU - Patel, Amit
ID - 3377
IS - 3
JF - Foundations of Computational Mathematics
TI - Quantifying transversality by measuring the robustness of intersections
VL - 11
ER -
TY - JOUR
AB - The theory of intersection homology was developed to study the singularities of a topologically stratified space. This paper in- corporates this theory into the already developed framework of persistent homology. We demonstrate that persistent intersec- tion homology gives useful information about the relationship between an embedded stratified space and its singularities. We give, and prove the correctness of, an algorithm for the computa- tion of the persistent intersection homology groups of a filtered simplicial complex equipped with a stratification by subcom- plexes. We also derive, from Poincare ́ Duality, some structural results about persistent intersection homology.
AU - Bendich, Paul
AU - Harer, John
ID - 3378
IS - 3
JF - Foundations of Computational Mathematics
TI - Persistent intersection homology
VL - 11
ER -
TY - CONF
AB - In cortex surface segmentation, the extracted surface is required to have a particular topology, namely, a two-sphere. We present a new method for removing topology noise of a curve or surface within the level set framework, and thus produce a cortical surface with correct topology. We define a new energy term which quantifies topology noise. We then show how to minimize this term by computing its functional derivative with respect to the level set function. This method differs from existing methods in that it is inherently continuous and not digital; and in the way that our energy directly relates to the topology of the underlying curve or surface, versus existing knot-based measures which are related in a more indirect fashion. The proposed flow is validated empirically.
AU - Chen, Chao
AU - Freedman, Daniel
ID - 3782
T2 - Conference proceedings MCV 2010
TI - Topology noise removal for curve and surface evolution
VL - 6533
ER -
TY - CHAP
AB - The (apparent) contour of a smooth mapping from a 2-manifold to the plane, f: M → R2 , is the set of critical values, that is, the image of the points at which the gradients of the two component functions are linearly dependent. Assuming M is compact and orientable and measuring difference with the erosion distance, we prove that the contour is stable.
AU - Edelsbrunner, Herbert
AU - Morozov, Dmitriy
AU - Patel, Amit
ID - 3795
T2 - Topological Data Analysis and Visualization: Theory, Algorithms and Applications
TI - The stability of the apparent contour of an orientable 2-manifold
ER -