TY - CONF
AB - matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.
AU - Aichholzer, Oswin
AU - Arroyo Guevara, Alan M
AU - Masárová, Zuzana
AU - Parada, Irene
AU - Perz, Daniel
AU - Pilz, Alexander
AU - Tkadlec, Josef
AU - Vogtenhuber, Birgit
ID - 9296
SN - 03029743
T2 - 15th International Conference on Algorithms and Computation
TI - On compatible matchings
VL - 12635
ER -
TY - CONF
AB - Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.
AU - Edelsbrunner, Herbert
AU - Heiss, Teresa
AU - Kurlin , Vitaliy
AU - Smith, Philip
AU - Wintraecken, Mathijs
ID - 9345
SN - 1868-8969
T2 - 37th International Symposium on Computational Geometry (SoCG 2021)
TI - The density fingerprint of a periodic point set
VL - 189
ER -
TY - CONF
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art.
AU - Boissonnat, Jean-Daniel
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 9441
SN - 1868-8969
T2 - 37th International Symposium on Computational Geometry (SoCG 2021)
TI - Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations
VL - 189
ER -
TY - JOUR
AB - Given a locally finite set 𝑋⊆ℝ𝑑 and an integer 𝑘≥0, we consider the function 𝐰𝑘:Del𝑘(𝑋)→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
AU - Osang, Georg F
ID - 9465
IS - 1
JF - Journal of Geometry
SN - 00472468
TI - A step in the Delaunay mosaic of order k
VL - 112
ER -
TY - CONF
AB - Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.
AU - Biswas, Ranita
AU - Cultrera di Montesano, Sebastiano
AU - Edelsbrunner, Herbert
AU - Saghafian, Morteza
ID - 9604
SN - 18688969
T2 - Leibniz International Proceedings in Informatics
TI - Counting cells of order-k voronoi tessellations in ℝ^{3} with morse theory
VL - 189
ER -
TY - CONF
AB - Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.
AU - Corbet, René
AU - Kerber, Michael
AU - Lesnick, Michael
AU - Osang, Georg F
ID - 9605
SN - 18688969
T2 - Leibniz International Proceedings in Informatics
TI - Computing the multicover bifiltration
VL - 189
ER -
TY - JOUR
AB - Heart rate variability (hrv) is a physiological phenomenon of the variation in the length of the time interval between consecutive heartbeats. In many cases it could be an indicator of the development of pathological states. The classical approach to the analysis of hrv includes time domain methods and frequency domain methods. However, attempts are still being made to define new and more effective hrv assessment tools. Persistent homology is a novel data analysis tool developed in the recent decades that is rooted at algebraic topology. The Topological Data Analysis (TDA) approach focuses on examining the shape of the data in terms of connectedness and holes, and has recently proved to be very effective in various fields of research. In this paper we propose the use of persistent homology to the hrv analysis. We recall selected topological descriptors used in the literature and we introduce some new topological descriptors that reflect the specificity of hrv, and we discuss their relation to the standard hrv measures. In particular, we show that this novel approach provides a collection of indices that might be at least as useful as the classical parameters in differentiating between series of beat-to-beat intervals (RR-intervals) in healthy subjects and patients suffering from a stroke episode.
AU - Graff, Grzegorz
AU - Graff, Beata
AU - Pilarczyk, Pawel
AU - Jablonski, Grzegorz
AU - Gąsecki, Dariusz
AU - Narkiewicz, Krzysztof
ID - 9821
IS - 7
JF - PLoS ONE
TI - Persistent homology as a new method of the assessment of heart rate variability
VL - 16
ER -
TY - CONF
AB - We define a new compact coordinate system in which each integer triplet addresses a voxel in the BCC grid, and we investigate some of its properties. We propose a characterization of 3D discrete analytical planes with their topological features (in the Cartesian and in the new coordinate system) such as the interrelation between the thickness of the plane and the separability constraint we aim to obtain.
AU - Čomić, Lidija
AU - Zrour, Rita
AU - Largeteau-Skapin, Gaëlle
AU - Biswas, Ranita
AU - Andres, Eric
ID - 9824
SN - 03029743
T2 - Discrete Geometry and Mathematical Morphology
TI - Body centered cubic grid - coordinate system and discrete analytical plane definition
VL - 12708
ER -
TY - JOUR
AB - Consider a random set of points on the unit sphere in ℝd, which can be either uniformly sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary approximates the sphere. We focus on the case d = 3, for which there are elementary proofs and fascinating formulas for metric properties. In particular, we study the fraction of acute facets, the expected intrinsic volumes, the total edge length, and the distance to a fixed point. Finally we generalize the results to the ellipsoid with homeoid density.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
AU - Nikitenko, Anton
ID - 10222
JF - Experimental Mathematics
SN - 10586458
TI - The beauty of random polytopes inscribed in the 2-sphere
ER -
TY - JOUR
AB - Two common representations of close packings of identical spheres consisting of hexagonal layers, called Barlow stackings, appear abundantly in minerals and metals. These motifs, however, occupy an identical portion of space and bear identical first-order topological signatures as measured by persistent homology. Here we present a novel method based on k-fold covers that unambiguously distinguishes between these patterns. Moreover, our approach provides topological evidence that the FCC motif is the more stable of the two in the context of evolving experimental sphere packings during the transition from disordered to an ordered state. We conclude that our approach can be generalised to distinguish between various Barlow stackings manifested in minerals and metals.
AU - Osang, Georg F
AU - Edelsbrunner, Herbert
AU - Saadatfar, Mohammad
ID - 10204
IS - 40
JF - Soft Matter
SN - 1744-683X
TI - Topological signatures and stability of hexagonal close packing and Barlow stackings
VL - 17
ER -