@article{1254,
abstract = {We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/.},
author = {Golmakani, Ali and Luzzatto, Stefano and Pilarczyk, Pawel},
journal = {Experimental Mathematics},
number = {2},
pages = {116 -- 124},
publisher = {Taylor and Francis},
title = {{Uniform expansivity outside a critical neighborhood in the quadratic family}},
doi = {10.1080/10586458.2015.1048011},
volume = {25},
year = {2016},
}
@article{1292,
abstract = {We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.},
author = {Durst, Sebastian and Kegel, Marc and Klukas, Mirko D},
journal = {Acta Mathematica Hungarica},
number = {2},
pages = {441 -- 455},
publisher = {Springer},
title = {{Computing the Thurston–Bennequin invariant in open books}},
doi = {10.1007/s10474-016-0648-4},
volume = {150},
year = {2016},
}
@inproceedings{1483,
abstract = {Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.},
author = {Reininghaus, Jan and Huber, Stefan and Bauer, Ulrich and Kwitt, Roland},
location = {Boston, MA, USA},
pages = {4741 -- 4748},
publisher = {IEEE},
title = {{A stable multi-scale kernel for topological machine learning}},
doi = {10.1109/CVPR.2015.7299106},
year = {2015},
}
@inproceedings{1495,
abstract = {Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. },
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel and Kurlin, Vitaliy},
booktitle = {Proceedings of the 27th Canadian Conference on Computational Geometry},
location = {Ontario, Canada},
pages = {128--135},
publisher = {Queen's University},
title = {{Relaxed disk packing}},
volume = {2015-August},
year = {2015},
}
@article{1584,
abstract = {We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.},
author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter},
journal = {Computational Geometry: Theory and Applications},
number = {5},
pages = {429 -- 442},
publisher = {Elsevier},
title = {{Reprint of: Weighted straight skeletons in the plane}},
doi = {10.1016/j.comgeo.2015.01.004},
volume = {48},
year = {2015},
}
@article{1793,
abstract = {We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.},
author = {Symonova, Olga and Topp, Christopher and Edelsbrunner, Herbert},
journal = {PLoS One},
number = {6},
publisher = {Public Library of Science},
title = {{DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots}},
doi = {10.1371/journal.pone.0127657},
volume = {10},
year = {2015},
}
@article{1938,
abstract = {We numerically investigate the distribution of extrema of 'chaotic' Laplacian eigenfunctions on two-dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small number of randomly added edges and show the behavior to coincide with the 1957 prediction of Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in space than the grid Z2.},
author = {Pausinger, Florian and Steinerberger, Stefan},
journal = {Physics Letters, Section A},
number = {6},
pages = {535 -- 541},
publisher = {Elsevier},
title = {{On the distribution of local extrema in quantum chaos}},
doi = {10.1016/j.physleta.2014.12.010},
volume = {379},
year = {2015},
}
@phdthesis{1399,
abstract = {This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold.},
author = {Pausinger, Florian},
pages = {144},
publisher = {IST Austria},
title = {{On the approximation of intrinsic volumes}},
year = {2015},
}
@article{3585,
abstract = {We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for
recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional
Delaunay triangulations.},
author = {Cao, Thanh and Edelsbrunner, Herbert and Tan, Tiow},
journal = {Computational Geometry: Theory and Applications},
number = {7},
pages = {507 -- 519},
publisher = {Elsevier},
title = {{Proof of correctness of the digital Delaunay triangulation algorithm}},
doi = {10.1016/j.comgeo.2015.04.001},
volume = {48},
year = {2015},
}
@inproceedings{1510,
abstract = {The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. },
author = {Franek, Peter and Krcál, Marek},
location = {Eindhoven, Netherlands},
pages = {842 -- 856},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{On computability and triviality of well groups}},
doi = {10.4230/LIPIcs.SOCG.2015.842},
volume = {34},
year = {2015},
}
@article{1578,
abstract = {We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations.},
author = {Cao, Thanhtung and Edelsbrunner, Herbert and Tan, Tiowseng},
journal = {Computational Geometry},
number = {7},
pages = {507 -- 519},
publisher = {Elsevier},
title = {{Triangulations from topologically correct digital Voronoi diagrams}},
doi = {10.1016/j.comgeo.2015.04.001},
volume = {48},
year = {2015},
}
@article{1531,
abstract = {The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece.},
author = {Zobel, Valentin and Jan Reininghaus and Hotz, Ingrid},
journal = {Mathematics and Visualization},
pages = {257 -- 267},
publisher = {Springer},
title = {{Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature}},
doi = {10.1007/978-3-319-15090-1_13},
volume = {40},
year = {2015},
}
@article{1555,
abstract = {We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations.},
author = {Knipl, Diána and Pilarczyk, Pawel and Röst, Gergely},
journal = {SIAM Journal on Applied Dynamical Systems},
number = {2},
pages = {980 -- 1017},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Rich bifurcation structure in a two patch vaccination model}},
doi = {10.1137/140993934},
volume = {14},
year = {2015},
}
@inproceedings{1567,
abstract = {My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations.},
author = {Edelsbrunner, Herbert},
location = {Los Angeles, CA, United States},
publisher = {Springer},
title = {{Shape, homology, persistence, and stability}},
volume = {9411},
year = {2015},
}
@article{1682,
abstract = {We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.},
author = {Franek, Peter and Krcál, Marek},
journal = {Journal of the ACM},
number = {4},
publisher = {ACM},
title = {{Robust satisfiability of systems of equations}},
doi = {10.1145/2751524},
volume = {62},
year = {2015},
}
@inproceedings{1424,
abstract = {We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data.},
author = {Kwitt, Roland and Huber, Stefan and Niethammer, Marc and Lin, Weili and Bauer, Ulrich},
location = {Montreal, Canada},
pages = {3070 -- 3078},
publisher = {Neural Information Processing Systems},
title = {{Statistical topological data analysis-A kernel perspective}},
volume = {28},
year = {2015},
}
@article{1563,
abstract = {For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}.},
author = {Graff, Grzegorz and Pilarczyk, Pawel},
journal = {Topological Methods in Nonlinear Analysis},
number = {1},
pages = {273 -- 286},
publisher = {Juliusz Schauder Center for Nonlinear Studies},
title = {{An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds}},
doi = {10.12775/TMNA.2015.014},
volume = {45},
year = {2015},
}
@inproceedings{1568,
abstract = {Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.},
author = {Dunaeva, Olga and Edelsbrunner, Herbert and Lukyanov, Anton and Machin, Michael and Malkova, Daria},
booktitle = {Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing},
location = {Timisoara, Romania},
pages = {7034731},
publisher = {IEEE},
title = {{The classification of endoscopy images with persistent homology}},
doi = {10.1109/SYNASC.2014.81},
year = {2015},
}
@article{1582,
abstract = {We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.},
author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter},
journal = {Computational Geometry: Theory and Applications},
number = {2},
pages = {120 -- 133},
publisher = {Elsevier},
title = {{Weighted straight skeletons in the plane}},
doi = {10.1016/j.comgeo.2014.08.006},
volume = {48},
year = {2015},
}
@article{1828,
abstract = {We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.},
author = {Akopyan, Arseniy and Pirogov, Sergey and Rybko, Aleksandr},
journal = {Journal of Statistical Physics},
number = {1},
pages = {163 -- 167},
publisher = {Springer},
title = {{ Invariant measures of genetic recombination process}},
doi = {10.1007/s10955-015-1238-5},
volume = {160},
year = {2015},
}