@article{718, abstract = {Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton and Reitzner, Matthias}, issn = {00018678}, journal = {Advances in Applied Probability}, number = {3}, pages = {745 -- 767}, publisher = {Cambridge University Press}, title = {{Expected sizes of poisson Delaunay mosaics and their discrete Morse functions}}, doi = {10.1017/apr.2017.20}, volume = {49}, year = {2017}, } @phdthesis{6287, abstract = {The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.}, author = {Nikitenko, Anton}, issn = {2663-337X}, pages = {86}, publisher = {Institute of Science and Technology Austria}, title = {{Discrete Morse theory for random complexes }}, doi = {10.15479/AT:ISTA:th_873}, year = {2017}, } @article{1433, abstract = {Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.}, author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan and Wagner, Hubert}, issn = { 07477171}, journal = {Journal of Symbolic Computation}, pages = {76 -- 90}, publisher = {Academic Press}, title = {{Phat - Persistent homology algorithms toolbox}}, doi = {10.1016/j.jsc.2016.03.008}, volume = {78}, year = {2017}, } @article{1180, abstract = {In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.}, author = {Akopyan, Arseniy and Bárány, Imre and Robins, Sinai}, issn = {00018708}, journal = {Advances in Mathematics}, pages = {627 -- 644}, publisher = {Academic Press}, title = {{Algebraic vertices of non-convex polyhedra}}, doi = {10.1016/j.aim.2016.12.026}, volume = {308}, year = {2017}, } @article{1173, abstract = {We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.}, author = {Edelsbrunner, Herbert and Glazyrin, Alexey and Musin, Oleg and Nikitenko, Anton}, issn = {02099683}, journal = {Combinatorica}, number = {5}, pages = {887 -- 910}, publisher = {Springer}, title = {{The Voronoi functional is maximized by the Delaunay triangulation in the plane}}, doi = {10.1007/s00493-016-3308-y}, volume = {37}, year = {2017}, } @article{1072, abstract = {Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.}, author = {Bauer, Ulrich and Edelsbrunner, Herbert}, journal = {Transactions of the American Mathematical Society}, number = {5}, pages = {3741 -- 3762}, publisher = {American Mathematical Society}, title = {{The Morse theory of Čech and delaunay complexes}}, doi = {10.1090/tran/6991}, volume = {369}, year = {2017}, } @article{1065, abstract = {We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.}, author = {Chatterjee, Krishnendu and Osang, Georg F}, issn = {00200190}, journal = {Information Processing Letters}, pages = {25 -- 29}, publisher = {Elsevier}, title = {{Pushdown reachability with constant treewidth}}, doi = {10.1016/j.ipl.2017.02.003}, volume = {122}, year = {2017}, } @article{1022, abstract = {We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.}, author = {Pranav, Pratyush and Edelsbrunner, Herbert and Van De Weygaert, Rien and Vegter, Gert and Kerber, Michael and Jones, Bernard and Wintraecken, Mathijs}, issn = {00358711}, journal = {Monthly Notices of the Royal Astronomical Society}, number = {4}, pages = {4281 -- 4310}, publisher = {Oxford University Press}, title = {{The topology of the cosmic web in terms of persistent Betti numbers}}, doi = {10.1093/mnras/stw2862}, volume = {465}, year = {2017}, } @article{737, abstract = {We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action.}, author = {Virk, Ziga and Zastrow, Andreas}, issn = {01668641}, journal = {Topology and its Applications}, pages = {186 -- 196}, publisher = {Elsevier}, title = {{A new topology on the universal path space}}, doi = {10.1016/j.topol.2017.09.015}, volume = {231}, year = {2017}, } @inproceedings{836, abstract = {Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces.}, author = {Ethier, Marc and Jablonski, Grzegorz and Mrozek, Marian}, booktitle = {Special Sessions in Applications of Computer Algebra}, isbn = {978-331956930-7}, location = {Kalamata, Greece}, pages = {119 -- 136}, publisher = {Springer}, title = {{Finding eigenvalues of self-maps with the Kronecker canonical form}}, doi = {10.1007/978-3-319-56932-1_8}, volume = {198}, year = {2017}, } @inproceedings{833, abstract = {We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams.}, author = {Heiss, Teresa and Wagner, Hubert}, editor = {Felsberg, Michael and Heyden, Anders and Krüger, Norbert}, issn = {03029743}, location = {Ystad, Sweden}, pages = {397 -- 409}, publisher = {Springer}, title = {{Streaming algorithm for Euler characteristic curves of multidimensional images}}, doi = {10.1007/978-3-319-64689-3_32}, volume = {10424}, year = {2017}, } @inbook{84, abstract = {The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind.}, author = {Edelsbrunner, Herbert and Koehl, Patrice}, booktitle = {Handbook of Discrete and Computational Geometry, Third Edition}, editor = {Toth, Csaba and O'Rourke, Joseph and Goodman, Jacob}, pages = {1709 -- 1735}, publisher = {Taylor & Francis}, title = {{Computational topology for structural molecular biology}}, doi = {10.1201/9781315119601}, year = {2017}, } @article{909, abstract = {We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor ½ cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.}, author = {Akopyan, Arseniy and Vysotsky, Vladislav}, issn = {00029890}, journal = {The American Mathematical Monthly}, number = {7}, pages = {588 -- 596}, publisher = {Mathematical Association of America}, title = {{On the lengths of curves passing through boundary points of a planar convex shape}}, doi = {10.4169/amer.math.monthly.124.7.588}, volume = {124}, year = {2017}, } @article{1149, abstract = {We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved.}, author = {Miyaji, Tomoyuki and Pilarczyk, Pawel and Gameiro, Marcio and Kokubu, Hiroshi and Mischaikow, Konstantin}, journal = {Applied Numerical Mathematics}, pages = {34 -- 47}, publisher = {Elsevier}, title = {{A study of rigorous ODE integrators for multi scale set oriented computations}}, doi = {10.1016/j.apnum.2016.04.005}, volume = {107}, year = {2016}, } @article{1216, abstract = {A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.}, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, journal = {Archives of Mechanics}, number = {1}, pages = {55 -- 80}, publisher = {Polish Academy of Sciences Publishing House}, title = {{Acceleration feature points of unsteady shear flows}}, volume = {68}, year = {2016}, } @article{1222, abstract = {We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.}, author = {Musin, Oleg and Nikitenko, Anton}, journal = {Discrete & Computational Geometry}, number = {1}, pages = {1 -- 20}, publisher = {Springer}, title = {{Optimal packings of congruent circles on a square flat torus}}, doi = {10.1007/s00454-015-9742-6}, volume = {55}, year = {2016}, } @inproceedings{1237, abstract = {Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.}, author = {Krcál, Marek and Pilarczyk, Pawel}, location = {Marseille, France}, pages = {140 -- 151}, publisher = {Springer}, title = {{Computation of cubical Steenrod squares}}, doi = {10.1007/978-3-319-39441-1_13}, volume = {9667}, year = {2016}, } @article{1252, abstract = {We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points.}, author = {Harker, Shaun and Kokubu, Hiroshi and Mischaikow, Konstantin and Pilarczyk, Pawel}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, number = {4}, pages = {1787 -- 1801}, publisher = {American Mathematical Society}, title = {{Inducing a map on homology from a correspondence}}, doi = {10.1090/proc/12812}, volume = {144}, year = {2016}, } @article{1254, abstract = {We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/.}, author = {Golmakani, Ali and Luzzatto, Stefano and Pilarczyk, Pawel}, journal = {Experimental Mathematics}, number = {2}, pages = {116 -- 124}, publisher = {Taylor and Francis}, title = {{Uniform expansivity outside a critical neighborhood in the quadratic family}}, doi = {10.1080/10586458.2015.1048011}, volume = {25}, year = {2016}, } @article{1272, abstract = {We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.}, author = {Held, Martin and Huber, Stefan and Palfrader, Peter}, journal = {Computer-Aided Design and Applications}, number = {5}, pages = {712 -- 721}, publisher = {Taylor and Francis}, title = {{Generalized offsetting of planar structures using skeletons}}, doi = {10.1080/16864360.2016.1150718}, volume = {13}, year = {2016}, }