@phdthesis{7460,
abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.
For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.},
author = {Ölsböck, Katharina},
issn = {2663-337X},
keywords = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry},
pages = {155},
publisher = {IST Austria},
title = {{The hole system of triangulated shapes}},
doi = {10.15479/AT:ISTA:7460},
year = {2020},
}
@article{7554,
abstract = {Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
issn = {10957219},
journal = {Theory of Probability and its Applications},
number = {4},
pages = {595--614},
publisher = {SIAM},
title = {{Weighted Poisson–Delaunay mosaics}},
doi = {10.1137/S0040585X97T989726},
volume = {64},
year = {2020},
}
@unpublished{7568,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e.manifolds defined as the zero set of some multivariate multivalued functionf:Rd→Rd−n.A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear(PL) approximation based on a triangulationTof the ambient spaceRd. In this paper, we giveconditions under which the PL-approximation of an isomanifold is topologically equivalent to theisomanifold. The conditions can always be met by taking a sufficiently fine triangulationT.},
author = {Boissonnat, Jean-Daniel and Wintraecken, Mathijs},
booktitle = {EUROCG 2020},
pages = {8},
title = {{The topological correctness of the PL-approximation of isomanifolds}},
year = {2020},
}
@article{7962,
abstract = {A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.},
author = {Pach, János and Reed, Bruce and Yuditsky, Yelena},
issn = {14320444},
journal = {Discrete and Computational Geometry},
number = {4},
pages = {888--917},
publisher = {Springer Nature},
title = {{Almost all string graphs are intersection graphs of plane convex sets}},
doi = {10.1007/s00454-020-00213-z},
volume = {63},
year = {2020},
}
@article{8317,
abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special “basic” holes guarantee foldability.},
author = {Aichholzer, Oswin and Akitaya, Hugo A. and Cheung, Kenneth C. and Demaine, Erik D. and Demaine, Martin L. and Fekete, Sándor P. and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
publisher = {Elsevier},
title = {{Folding polyominoes with holes into a cube}},
doi = {10.1016/j.comgeo.2020.101700},
volume = {93},
year = {2020},
}
@article{8323,
author = {Pach, János},
issn = {14320444},
journal = {Discrete and Computational Geometry},
publisher = {Springer Nature},
title = {{A farewell to Ricky Pollack}},
doi = {10.1007/s00454-020-00237-5},
year = {2020},
}
@article{8338,
abstract = {Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory.},
author = {Akopyan, Arseniy and Bobenko, Alexander I. and Schief, Wolfgang K. and Techter, Jan},
issn = {14320444},
journal = {Discrete and Computational Geometry},
publisher = {Springer Nature},
title = {{On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs}},
doi = {10.1007/s00454-020-00240-w},
year = {2020},
}
@article{8538,
abstract = {We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.},
author = {Akopyan, Arseniy and Schwartz, Richard and Tabachnikov, Serge},
issn = {21996768},
journal = {European Journal of Mathematics},
publisher = {Springer Nature},
title = {{Billiards in ellipses revisited}},
doi = {10.1007/s40879-020-00426-9},
year = {2020},
}
@inproceedings{8580,
abstract = {We evaluate the usefulness of persistent homology in the analysis of heart rate variability. In our approach we extract several topological descriptors characterising datasets of RR-intervals, which are later used in classical machine learning algorithms. By this method we are able to differentiate the group of patients with the history of transient ischemic attack and the group of hypertensive patients.},
author = {Graff, Grzegorz and Graff, Beata and Jablonski, Grzegorz and Narkiewicz, Krzysztof},
booktitle = {11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, },
isbn = {9781728157511},
location = {Pisa, Italy},
publisher = {IEEE},
title = {{The application of persistent homology in the analysis of heart rate variability}},
doi = {10.1109/ESGCO49734.2020.9158054},
year = {2020},
}
@inproceedings{8135,
abstract = {Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton and Ölsböck, Katharina and Synak, Peter},
booktitle = {Topological Data Analysis},
isbn = {9783030434076},
issn = {21978549},
pages = {181--218},
publisher = {Springer Nature},
title = {{Radius functions on Poisson–Delaunay mosaics and related complexes experimentally}},
doi = {10.1007/978-3-030-43408-3_8},
volume = {15},
year = {2020},
}
@article{8163,
abstract = {Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces.},
author = {Vegter, Gert and Wintraecken, Mathijs},
issn = {1588-2896},
journal = {Studia Scientiarum Mathematicarum Hungarica},
number = {2},
pages = {193--199},
publisher = {AKJournals},
title = {{Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes}},
doi = {10.1556/012.2020.57.2.1454},
volume = {57},
year = {2020},
}
@inproceedings{8703,
abstract = {Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity. },
author = {Osang, Georg F and Rouxel-Labbé, Mael and Teillaud, Monique},
booktitle = {28th Annual European Symposium on Algorithms},
isbn = {9783959771627},
issn = {18688969},
location = {Virtual, Online; Pisa, Italy},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Generalizing CGAL periodic Delaunay triangulations}},
doi = {10.4230/LIPIcs.ESA.2020.75},
volume = {173},
year = {2020},
}
@article{8248,
abstract = {We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.},
author = {Boissonnat, Jean-Daniel and Dyer, Ramsay and Ghosh, Arijit and Lieutier, Andre and Wintraecken, Mathijs},
issn = {0179-5376},
journal = {Discrete and Computational Geometry},
publisher = {Springer Nature},
title = {{Local conditions for triangulating submanifolds of Euclidean space}},
doi = {10.1007/s00454-020-00233-9},
year = {2020},
}
@inproceedings{7952,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation 𝒯. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary. },
author = {Boissonnat, Jean-Daniel and Wintraecken, Mathijs},
booktitle = {36th International Symposium on Computational Geometry},
isbn = {978-3-95977-143-6},
issn = {1868-8969},
location = {Zürich, Switzerland},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The topological correctness of PL-approximations of isomanifolds}},
doi = {10.4230/LIPIcs.SoCG.2020.20},
volume = {164},
year = {2020},
}
@inbook{74,
abstract = {We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.},
author = {Akopyan, Arseniy and Karasev, Roman},
booktitle = {Geometric Aspects of Functional Analysis},
editor = {Klartag, Bo'az and Milman, Emanuel},
isbn = {9783030360191},
issn = {16179692},
pages = {1--27},
publisher = {Springer Nature},
title = {{Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures}},
doi = {10.1007/978-3-030-36020-7_1},
volume = {2256},
year = {2020},
}
@article{8773,
abstract = {Let g be a complex semisimple Lie algebra. We give a classification of contravariant forms on the nondegenerate Whittaker g-modules Y(χ,η) introduced by Kostant. We prove that the set of all contravariant forms on Y(χ,η) forms a vector space whose dimension is given by the cardinality of the Weyl group of g. We also describe a procedure for parabolically inducing contravariant forms. As a corollary, we deduce the existence of the Shapovalov form on a Verma module, and provide a formula for the dimension of the space of contravariant forms on the degenerate Whittaker modules M(χ,η) introduced by McDowell.},
author = {Brown, Adam and Romanov, Anna},
issn = {1088-6826},
journal = {Proceedings of the American Mathematical Society},
keywords = {Applied Mathematics, General Mathematics},
pages = {37--52},
publisher = {American Mathematical Society},
title = {{Contravariant forms on Whittaker modules}},
doi = {10.1090/proc/15205},
volume = {149},
year = {2020},
}
@article{7567,
abstract = {Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space.},
author = {Choudhary, Aruni and Kachanovich, Siargey and Wintraecken, Mathijs},
issn = {1661-8289},
journal = {Mathematics in Computer Science},
pages = {141--176},
publisher = {Springer Nature},
title = {{Coxeter triangulations have good quality}},
doi = {10.1007/s11786-020-00461-5},
volume = {14},
year = {2020},
}
@article{7666,
abstract = {Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.},
author = {Edelsbrunner, Herbert and Ölsböck, Katharina},
issn = {14320444},
journal = {Discrete and Computational Geometry},
pages = {759--775},
publisher = {Springer Nature},
title = {{Tri-partitions and bases of an ordered complex}},
doi = {10.1007/s00454-020-00188-x},
volume = {64},
year = {2020},
}
@article{7791,
abstract = {Extending a result of Milena Radnovic and Serge Tabachnikov, we establish conditionsfor two different non-symmetric norms to define the same billiard reflection law.},
author = {Akopyan, Arseniy and Karasev, Roman},
issn = {21996768},
journal = {European Journal of Mathematics},
publisher = {Springer Nature},
title = {{When different norms lead to same billiard trajectories?}},
doi = {10.1007/s40879-020-00405-0},
year = {2020},
}
@article{7905,
abstract = {We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.},
author = {Brown, Adam and Wang, Bei},
issn = {0179-5376},
journal = {Discrete and Computational Geometry},
publisher = {Springer Nature},
title = {{Sheaf-theoretic stratification learning from geometric and topological perspectives}},
doi = {10.1007/s00454-020-00206-y},
year = {2020},
}