@inproceedings{9441, abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. }, author = {Boissonnat, Jean-Daniel and Kachanovich, Siargey and Wintraecken, Mathijs}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, isbn = {978-3-95977-184-9}, issn = {1868-8969}, location = {Virtual}, pages = {17:1--17:16}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations}}, doi = {10.4230/LIPIcs.SoCG.2021.17}, volume = {189}, year = {2021}, } @article{8338, abstract = {Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory.}, author = {Akopyan, Arseniy and Bobenko, Alexander I. and Schief, Wolfgang K. and Techter, Jan}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {938--976}, publisher = {Springer Nature}, title = {{On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs}}, doi = {10.1007/s00454-020-00240-w}, volume = {66}, year = {2021}, } @article{8248, abstract = {We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.}, author = {Boissonnat, Jean-Daniel and Dyer, Ramsay and Ghosh, Arijit and Lieutier, Andre and Wintraecken, Mathijs}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {666--686}, publisher = {Springer Nature}, title = {{Local conditions for triangulating submanifolds of Euclidean space}}, doi = {10.1007/s00454-020-00233-9}, volume = {66}, year = {2021}, } @article{7905, abstract = {We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.}, author = {Brown, Adam and Wang, Bei}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {1166--1198}, publisher = {Springer Nature}, title = {{Sheaf-theoretic stratification learning from geometric and topological perspectives}}, doi = {10.1007/s00454-020-00206-y}, volume = {65}, year = {2021}, } @article{7567, abstract = {Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space.}, author = {Choudhary, Aruni and Kachanovich, Siargey and Wintraecken, Mathijs}, issn = {1661-8289}, journal = {Mathematics in Computer Science}, pages = {141--176}, publisher = {Springer Nature}, title = {{Coxeter triangulations have good quality}}, doi = {10.1007/s11786-020-00461-5}, volume = {14}, year = {2020}, } @inproceedings{8135, abstract = {Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton and Ölsböck, Katharina and Synak, Peter}, booktitle = {Topological Data Analysis}, isbn = {9783030434076}, issn = {21978549}, pages = {181--218}, publisher = {Springer Nature}, title = {{Radius functions on Poisson–Delaunay mosaics and related complexes experimentally}}, doi = {10.1007/978-3-030-43408-3_8}, volume = {15}, year = {2020}, } @article{9249, abstract = {Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In this paper, we describe a new coordinate system where every 3-integer coordinates grid point corresponds to a rhombic dodecahedron centroid. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. We also present the characterization of 3D digital lines and study it as the intersection of multiple digital planes. Characterization of 3D digital sphere with relevant topological features is proposed as well along with the 48-symmetry appearing in the new coordinate system.}, author = {Biswas, Ranita and Largeteau-Skapin, Gaëlle and Zrour, Rita and Andres, Eric}, issn = {2353-3390}, journal = {Mathematical Morphology - Theory and Applications}, number = {1}, pages = {143--158}, publisher = {De Gruyter}, title = {{Digital objects in rhombic dodecahedron grid}}, doi = {10.1515/mathm-2020-0106}, volume = {4}, year = {2020}, } @inproceedings{9299, abstract = {We call a multigraph non-homotopic if it can be drawn in the plane in such a way that no two edges connecting the same pair of vertices can be continuously transformed into each other without passing through a vertex, and no loop can be shrunk to its end-vertex in the same way. It is easy to see that a non-homotopic multigraph on n>1 vertices can have arbitrarily many edges. We prove that the number of crossings between the edges of a non-homotopic multigraph with n vertices and m>4n edges is larger than cm2n for some constant c>0 , and that this bound is tight up to a polylogarithmic factor. We also show that the lower bound is not asymptotically sharp as n is fixed and m⟶∞ .}, author = {Pach, János and Tardos, Gábor and Tóth, Géza}, booktitle = {28th International Symposium on Graph Drawing and Network Visualization}, isbn = {9783030687656}, issn = {1611-3349}, location = {Virtual, Online}, pages = {359--371}, publisher = {Springer Nature}, title = {{Crossings between non-homotopic edges}}, doi = {10.1007/978-3-030-68766-3_28}, volume = {12590}, year = {2020}, } @article{9630, abstract = {Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.}, author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert}, issn = {1920180X}, journal = {Journal of Computational Geometry}, number = {2}, pages = {162--182}, publisher = {Carleton University}, title = {{Topological data analysis in information space}}, doi = {10.20382/jocg.v11i2a7}, volume = {11}, year = {2020}, } @article{8538, abstract = {We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.}, author = {Akopyan, Arseniy and Schwartz, Richard and Tabachnikov, Serge}, issn = {2199-6768}, journal = {European Journal of Mathematics}, publisher = {Springer Nature}, title = {{Billiards in ellipses revisited}}, doi = {10.1007/s40879-020-00426-9}, year = {2020}, } @inproceedings{7952, abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation 𝒯. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary. }, author = {Boissonnat, Jean-Daniel and Wintraecken, Mathijs}, booktitle = {36th International Symposium on Computational Geometry}, isbn = {978-3-95977-143-6}, issn = {1868-8969}, location = {Zürich, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The topological correctness of PL-approximations of isomanifolds}}, doi = {10.4230/LIPIcs.SoCG.2020.20}, volume = {164}, year = {2020}, } @inbook{74, abstract = {We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2. We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian measures.}, author = {Akopyan, Arseniy and Karasev, Roman}, booktitle = {Geometric Aspects of Functional Analysis}, editor = {Klartag, Bo'az and Milman, Emanuel}, isbn = {9783030360191}, issn = {16179692}, pages = {1--27}, publisher = {Springer Nature}, title = {{Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures}}, doi = {10.1007/978-3-030-36020-7_1}, volume = {2256}, year = {2020}, } @article{7554, abstract = {Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton}, issn = {10957219}, journal = {Theory of Probability and its Applications}, number = {4}, pages = {595--614}, publisher = {SIAM}, title = {{Weighted Poisson–Delaunay mosaics}}, doi = {10.1137/S0040585X97T989726}, volume = {64}, year = {2020}, } @article{7666, abstract = {Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.}, author = {Edelsbrunner, Herbert and Ölsböck, Katharina}, issn = {14320444}, journal = {Discrete and Computational Geometry}, pages = {759--775}, publisher = {Springer Nature}, title = {{Tri-partitions and bases of an ordered complex}}, doi = {10.1007/s00454-020-00188-x}, volume = {64}, year = {2020}, } @article{7962, abstract = {A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.}, author = {Pach, János and Reed, Bruce and Yuditsky, Yelena}, issn = {14320444}, journal = {Discrete and Computational Geometry}, number = {4}, pages = {888--917}, publisher = {Springer Nature}, title = {{Almost all string graphs are intersection graphs of plane convex sets}}, doi = {10.1007/s00454-020-00213-z}, volume = {63}, year = {2020}, } @article{8323, author = {Pach, János}, issn = {14320444}, journal = {Discrete and Computational Geometry}, pages = {571--574}, publisher = {Springer Nature}, title = {{A farewell to Ricky Pollack}}, doi = {10.1007/s00454-020-00237-5}, volume = {64}, year = {2020}, } @inproceedings{8580, abstract = {We evaluate the usefulness of persistent homology in the analysis of heart rate variability. In our approach we extract several topological descriptors characterising datasets of RR-intervals, which are later used in classical machine learning algorithms. By this method we are able to differentiate the group of patients with the history of transient ischemic attack and the group of hypertensive patients.}, author = {Graff, Grzegorz and Graff, Beata and Jablonski, Grzegorz and Narkiewicz, Krzysztof}, booktitle = {11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, }, isbn = {9781728157511}, location = {Pisa, Italy}, publisher = {IEEE}, title = {{The application of persistent homology in the analysis of heart rate variability}}, doi = {10.1109/ESGCO49734.2020.9158054}, year = {2020}, } @article{10867, abstract = {In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces.}, author = {Akopyan, Arseniy and Karasev, Roman}, issn = {1687-0247}, journal = {International Mathematics Research Notices}, keywords = {General Mathematics}, number = {3}, pages = {669--697}, publisher = {Oxford University Press}, title = {{Waist of balls in hyperbolic and spherical spaces}}, doi = {10.1093/imrn/rny037}, volume = {2020}, year = {2020}, } @phdthesis{7460, abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications. For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.}, author = {Ölsböck, Katharina}, issn = {2663-337X}, keywords = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry}, pages = {155}, publisher = {Institute of Science and Technology Austria}, title = {{The hole system of triangulated shapes}}, doi = {10.15479/AT:ISTA:7460}, year = {2020}, } @phdthesis{7944, abstract = {This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.}, author = {Masárová, Zuzana}, isbn = {978-3-99078-005-3}, issn = {2663-337X}, keywords = {reconfiguration, reconfiguration graph, triangulations, flip, constrained triangulations, shellability, piecewise-linear balls, token swapping, trees, coloured weighted token swapping}, pages = {160}, publisher = {Institute of Science and Technology Austria}, title = {{Reconfiguration problems}}, doi = {10.15479/AT:ISTA:7944}, year = {2020}, } @inproceedings{8703, abstract = {Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity. }, author = {Osang, Georg F and Rouxel-Labbé, Mael and Teillaud, Monique}, booktitle = {28th Annual European Symposium on Algorithms}, isbn = {9783959771627}, issn = {18688969}, location = {Virtual, Online; Pisa, Italy}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Generalizing CGAL periodic Delaunay triangulations}}, doi = {10.4230/LIPIcs.ESA.2020.75}, volume = {173}, year = {2020}, } @article{8163, abstract = {Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces.}, author = {Vegter, Gert and Wintraecken, Mathijs}, issn = {1588-2896}, journal = {Studia Scientiarum Mathematicarum Hungarica}, number = {2}, pages = {193--199}, publisher = {Akadémiai Kiadó}, title = {{Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes}}, doi = {10.1556/012.2020.57.2.1454}, volume = {57}, year = {2020}, } @article{9157, abstract = {Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.}, author = {Akopyan, Arseniy and Edelsbrunner, Herbert}, issn = {2544-7297}, journal = {Computational and Mathematical Biophysics}, number = {1}, pages = {51--67}, publisher = {De Gruyter}, title = {{The weighted mean curvature derivative of a space-filling diagram}}, doi = {10.1515/cmb-2020-0100}, volume = {8}, year = {2020}, } @article{9156, abstract = {The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.}, author = {Akopyan, Arseniy and Edelsbrunner, Herbert}, issn = {2544-7297}, journal = {Computational and Mathematical Biophysics}, number = {1}, pages = {74--88}, publisher = {De Gruyter}, title = {{The weighted Gaussian curvature derivative of a space-filling diagram}}, doi = {10.1515/cmb-2020-0101}, volume = {8}, year = {2020}, } @article{15064, abstract = {We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspaces of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for Čech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive Čech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.}, author = {Bauer, U. and Edelsbrunner, Herbert and Jablonski, Grzegorz and Mrozek, M.}, issn = {2367-1734}, journal = {Journal of Applied and Computational Topology}, number = {4}, pages = {455--480}, publisher = {Springer Nature}, title = {{Čech-Delaunay gradient flow and homology inference for self-maps}}, doi = {10.1007/s41468-020-00058-8}, volume = {4}, year = {2020}, } @article{6515, abstract = {We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature.}, author = {Dyer, Ramsay and Vegter, Gert and Wintraecken, Mathijs}, issn = {1920-180X}, journal = {Journal of Computational Geometry }, number = {1}, pages = {223–256}, publisher = {Carleton University}, title = {{Simplices modelled on spaces of constant curvature}}, doi = {10.20382/jocg.v10i1a9}, volume = {10}, year = {2019}, } @inproceedings{6628, abstract = {Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space.}, author = {Vegter, Gert and Wintraecken, Mathijs}, booktitle = {The 31st Canadian Conference in Computational Geometry}, location = {Edmonton, Canada}, pages = {275--279}, title = {{The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds}}, year = {2019}, } @inproceedings{6648, abstract = {Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.}, author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert}, booktitle = {35th International Symposium on Computational Geometry}, isbn = {9783959771047}, location = {Portland, OR, United States}, pages = {31:1--31:14}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Topological data analysis in information space}}, doi = {10.4230/LIPICS.SOCG.2019.31}, volume = {129}, year = {2019}, } @inproceedings{6989, abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with hole(s) to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special simple holes guarantee foldability. }, author = {Aichholzer, Oswin and Akitaya, Hugo A and Cheung, Kenneth C and Demaine, Erik D and Demaine, Martin L and Fekete, Sandor P and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane}, booktitle = {Proceedings of the 31st Canadian Conference on Computational Geometry}, location = {Edmonton, Canada}, pages = {164--170}, publisher = {Canadian Conference on Computational Geometry}, title = {{Folding polyominoes with holes into a cube}}, year = {2019}, } @article{6671, abstract = {In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.}, author = {Boissonnat, Jean-Daniel and Lieutier, André and Wintraecken, Mathijs}, issn = {2367-1734}, journal = {Journal of Applied and Computational Topology}, number = {1-2}, pages = {29–58}, publisher = {Springer Nature}, title = {{The reach, metric distortion, geodesic convexity and the variation of tangent spaces}}, doi = {10.1007/s41468-019-00029-8}, volume = {3}, year = {2019}, } @article{6050, abstract = {We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. }, author = {Akopyan, Arseniy and Fedorov, Roman}, journal = {Proceedings of the American Mathematical Society}, pages = {91--102}, publisher = {AMS}, title = {{Two circles and only a straightedge}}, doi = {10.1090/proc/14240}, volume = {147}, year = {2019}, } @article{6634, abstract = {In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.}, author = {Akopyan, Arseniy and Hubard, Alfredo and Karasev, Roman}, journal = {Topological Methods in Nonlinear Analysis}, number = {2}, pages = {457--490}, publisher = {Akademicka Platforma Czasopism}, title = {{Lower and upper bounds for the waists of different spaces}}, doi = {10.12775/TMNA.2019.008}, volume = {53}, year = {2019}, } @article{6756, abstract = {We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊2 is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric χ2-test shows differences between observations and simulations, yielding p-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3σ sporadically at these scales. The highest observed deviation between the observations and simulations for b0 and b1 is approximately between 3σ and 4σ at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck’s predecessor, the Wilkinson Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of Planck and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.}, author = {Pranav, Pratyush and Adler, Robert J. and Buchert, Thomas and Edelsbrunner, Herbert and Jones, Bernard J.T. and Schwartzman, Armin and Wagner, Hubert and Van De Weygaert, Rien}, issn = {14320746}, journal = {Astronomy and Astrophysics}, publisher = {EDP Sciences}, title = {{Unexpected topology of the temperature fluctuations in the cosmic microwave background}}, doi = {10.1051/0004-6361/201834916}, volume = {627}, year = {2019}, } @article{6793, abstract = {The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry.}, author = {Akopyan, Arseniy and Izmestiev, Ivan}, issn = {14692120}, journal = {Bulletin of the London Mathematical Society}, number = {5}, pages = {765--775}, publisher = {London Mathematical Society}, title = {{The Regge symmetry, confocal conics, and the Schläfli formula}}, doi = {10.1112/blms.12276}, volume = {51}, year = {2019}, } @article{6828, abstract = {In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group .}, author = {Brown, Adam}, issn = {0021-8693}, journal = {Journal of Algebra}, pages = {261--289}, publisher = {Elsevier}, title = {{Arakawa-Suzuki functors for Whittaker modules}}, doi = {10.1016/j.jalgebra.2019.07.027}, volume = {538}, year = {2019}, } @inproceedings{7216, abstract = {We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.}, author = {Osang, Georg F and Cook, James and Fabrikant, Alex and Gruteser, Marco}, booktitle = {2019 IEEE Intelligent Transportation Systems Conference}, isbn = {9781538670248}, location = {Auckland, New Zealand}, publisher = {IEEE}, title = {{LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale}}, doi = {10.1109/ITSC.2019.8917514}, year = {2019}, } @article{5678, abstract = {The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton}, issn = {14320444}, journal = {Discrete and Computational Geometry}, number = {4}, pages = {865–878}, publisher = {Springer}, title = {{Poisson–Delaunay Mosaics of Order k}}, doi = {10.1007/s00454-018-0049-2}, volume = {62}, year = {2019}, } @article{6608, abstract = {We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.}, author = {Edelsbrunner, Herbert and Ölsböck, Katharina}, journal = {Computer Aided Geometric Design}, pages = {1--15}, publisher = {Elsevier}, title = {{Holes and dependences in an ordered complex}}, doi = {10.1016/j.cagd.2019.06.003}, volume = {73}, year = {2019}, } @unpublished{7950, abstract = {The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results: 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.}, author = {Biniaz, Ahmad and Jain, Kshitij and Lubiw, Anna and Masárová, Zuzana and Miltzow, Tillmann and Mondal, Debajyoti and Naredla, Anurag Murty and Tkadlec, Josef and Turcotte, Alexi}, booktitle = {arXiv}, title = {{Token swapping on trees}}, year = {2019}, } @inproceedings{188, abstract = {Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.}, author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert}, location = {Budapest, Hungary}, pages = {35:1 -- 35:13}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Smallest enclosing spheres and Chernoff points in Bregman geometry}}, doi = {10.4230/LIPIcs.SoCG.2018.35}, volume = {99}, year = {2018}, } @phdthesis{201, abstract = {We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.}, author = {Iglesias Ham, Mabel}, issn = {2663-337X}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{Multiple covers with balls}}, doi = {10.15479/AT:ISTA:th_1026}, year = {2018}, } @inproceedings{187, abstract = {Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. }, author = {Edelsbrunner, Herbert and Osang, Georg F}, location = {Budapest, Hungary}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The multi-cover persistence of Euclidean balls}}, doi = {10.4230/LIPIcs.SoCG.2018.34}, volume = {99}, year = {2018}, } @article{692, abstract = {We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.}, author = {Akopyan, Arseniy}, journal = {Geometriae Dedicata}, number = {1}, pages = {55 -- 64}, publisher = {Springer}, title = {{3-Webs generated by confocal conics and circles}}, doi = {10.1007/s10711-017-0265-6}, volume = {194}, year = {2018}, } @article{58, abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.}, author = {Akopyan, Arseniy and Segal Halevi, Erel}, journal = {SIAM Journal on Discrete Mathematics}, number = {3}, pages = {2242 -- 2257}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Counting blanks in polygonal arrangements}}, doi = {10.1137/16M110407X}, volume = {32}, year = {2018}, } @article{458, abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.}, author = {Akopyan, Arseniy and Bobenko, Alexander}, journal = {Transactions of the American Mathematical Society}, number = {4}, pages = {2825 -- 2854}, publisher = {American Mathematical Society}, title = {{Incircular nets and confocal conics}}, doi = {10.1090/tran/7292}, volume = {370}, year = {2018}, } @article{106, abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.}, author = {Akopyan, Arseniy and Petrunin, Anton}, journal = {Mathematical Intelligencer}, number = {3}, pages = {26 -- 31}, publisher = {Springer}, title = {{Long geodesics on convex surfaces}}, doi = {10.1007/s00283-018-9795-5}, volume = {40}, year = {2018}, } @article{530, abstract = {Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, journal = {Computational Geometry: Theory and Applications}, pages = {119 -- 133}, publisher = {Elsevier}, title = {{Multiple covers with balls I: Inclusion–exclusion}}, doi = {10.1016/j.comgeo.2017.06.014}, volume = {68}, year = {2018}, } @inproceedings{193, abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.}, author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal}, booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security}, location = {Incheon, Republic of Korea}, pages = {51 -- 65}, publisher = {ACM}, title = {{On the memory hardness of data independent password hashing functions}}, doi = {10.1145/3196494.3196534}, year = {2018}, } @article{312, abstract = {Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, issn = {08954801}, journal = {SIAM J Discrete Math}, number = {1}, pages = {750 -- 782}, publisher = {Society for Industrial and Applied Mathematics }, title = {{On the optimality of the FCC lattice for soft sphere packing}}, doi = {10.1137/16M1097201}, volume = {32}, year = {2018}, } @article{409, abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.}, author = {Akopyan, Arseniy}, issn = {1631073X}, journal = {Comptes Rendus Mathematique}, number = {4}, pages = {412--414}, publisher = {Elsevier}, title = {{On the number of non-hexagons in a planar tiling}}, doi = {10.1016/j.crma.2018.03.005}, volume = {356}, year = {2018}, }