@unpublished{75,
abstract = {We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.},
author = {Akopyan, Arseniy and Avvakumov, Sergey and Karasev, Roman},
booktitle = {ArXiv},
pages = {11},
publisher = {ArXiv},
title = {{Convex fair partitions into arbitrary number of pieces}},
year = {2018},
}
@inproceedings{188,
abstract = {Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.},
author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert},
location = {Budapest, Hungary},
pages = {35:1 -- 35:13},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Smallest enclosing spheres and Chernoff points in Bregman geometry}},
doi = {10.4230/LIPIcs.SoCG.2018.35},
volume = {99},
year = {2018},
}
@article{87,
abstract = {Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
journal = {Annals of Applied Probability},
number = {5},
pages = {3215 -- 3238},
publisher = {Institute of Mathematical Statistics},
title = {{Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics}},
doi = {10.1214/18-AAP1389},
volume = {28},
year = {2018},
}
@article{312,
abstract = {Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
issn = {08954801},
journal = {SIAM J Discrete Math},
number = {1},
pages = {750 -- 782},
publisher = {Society for Industrial and Applied Mathematics },
title = {{On the optimality of the FCC lattice for soft sphere packing}},
doi = {10.1137/16M1097201},
volume = {32},
year = {2018},
}
@article{1064,
abstract = {In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.},
author = {Akopyan, Arseniy and Balitskiy, Alexey and Grigorev, Mikhail},
issn = {14320444},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {1001--1009},
publisher = {Springer},
title = {{On the circle covering theorem by A.W. Goodman and R.E. Goodman}},
doi = {10.1007/s00454-017-9883-x},
volume = {59},
year = {2018},
}