@inproceedings{3782,
abstract = {In cortex surface segmentation, the extracted surface is required to have a particular topology, namely, a two-sphere. We present a new method for removing topology noise of a curve or surface within the level set framework, and thus produce a cortical surface with correct topology. We define a new energy term which quantifies topology noise. We then show how to minimize this term by computing its functional derivative with respect to the level set function. This method differs from existing methods in that it is inherently continuous and not digital; and in the way that our energy directly relates to the topology of the underlying curve or surface, versus existing knot-based measures which are related in a more indirect fashion. The proposed flow is validated empirically.},
author = {Chen, Chao and Freedman, Daniel},
booktitle = { Conference proceedings MCV 2010},
location = {Beijing, China},
pages = {31 -- 42},
publisher = {Springer},
title = {{Topology noise removal for curve and surface evolution}},
doi = {10.1007/978-3-642-18421-5_4},
volume = {6533},
year = {2010},
}
@inbook{3795,
abstract = {The (apparent) contour of a smooth mapping from a 2-manifold to the plane, f: M → R2 , is the set of critical values, that is, the image of the points at which the gradients of the two component functions are linearly dependent. Assuming M is compact and orientable and measuring difference with the erosion distance, we prove that the contour is stable.},
author = {Edelsbrunner, Herbert and Morozov, Dmitriy and Patel, Amit},
booktitle = {Topological Data Analysis and Visualization: Theory, Algorithms and Applications},
pages = {27 -- 42},
publisher = {Springer},
title = {{The stability of the apparent contour of an orientable 2-manifold}},
doi = {10.1007/978-3-642-15014-2_3},
year = {2010},
}
@inproceedings{3853,
abstract = {Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Edelsbrunner, Herbert and Henzinger, Thomas A and Rannou, Philippe},
location = {Paris, France},
pages = {269 -- 283},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Mean-payoff automaton expressions}},
doi = {10.1007/978-3-642-15375-4_19},
volume = {6269},
year = {2010},
}
@inproceedings{3848,
abstract = {We define the robustness of a level set homology class of a function f:XR as the magnitude of a perturbation necessary to kill the class. Casting this notion into a group theoretic framework, we compute the robustness for each class, using a connection to extended persistent homology. The special case X=R3 has ramifications in medical imaging and scientific visualization.},
author = {Bendich, Paul and Edelsbrunner, Herbert and Morozov, Dmitriy and Patel, Amit},
location = {Liverpool, UK},
pages = {1 -- 10},
publisher = {Springer},
title = {{The robustness of level sets}},
doi = {10.1007/978-3-642-15775-2_1},
volume = {6346},
year = {2010},
}
@inproceedings{3850,
abstract = {Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape with a disk of fixed radius? If it does, we also seek a preferably simple solution shape P;P’s offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give a decision algorithm for fixed radius in O(nlogn) time that handles any polygonal shape. For convex shapes, the complexity drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one.},
author = {Berberich, Eric and Halperin, Dan and Kerber, Michael and Pogalnikova, Roza},
location = {Dortmund, Germany},
pages = {12 -- 23},
publisher = {TU Dortmund},
title = {{Polygonal reconstruction from approximate offsets}},
year = {2010},
}