@phdthesis{7460,
abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.
For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.},
author = {Ölsböck, Katharina},
issn = {2663-337X},
keywords = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry},
pages = {155},
publisher = {IST Austria},
title = {{The hole system of triangulated shapes}},
doi = {10.15479/AT:ISTA:7460},
year = {2020},
}
@article{7554,
abstract = {Slicing a Voronoi tessellation in ${R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in ${R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in ${R}^n$.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
issn = {10957219},
journal = {Theory of Probability and its Applications},
number = {4},
pages = {595--614},
publisher = {SIAM},
title = {{Weighted Poisson–Delaunay mosaics}},
doi = {10.1137/S0040585X97T989726},
volume = {64},
year = {2020},
}
@unpublished{7568,
abstract = {Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e.manifolds defined as the zero set of some multivariate multivalued functionf:Rd→Rd−n.A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear(PL) approximation based on a triangulationTof the ambient spaceRd. In this paper, we giveconditions under which the PL-approximation of an isomanifold is topologically equivalent to theisomanifold. The conditions can always be met by taking a sufficiently fine triangulationT.},
author = {Boissonnat, Jean-Daniel and Wintraecken, Mathijs},
booktitle = {EUROCG 2020},
pages = {8},
title = {{The topological correctness of the PL-approximation of isomanifolds}},
year = {2020},
}
@article{7962,
abstract = {A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.},
author = {Pach, János and Reed, Bruce and Yuditsky, Yelena},
issn = {14320444},
journal = {Discrete and Computational Geometry},
number = {4},
pages = {888--917},
publisher = {Springer Nature},
title = {{Almost all string graphs are intersection graphs of plane convex sets}},
doi = {10.1007/s00454-020-00213-z},
volume = {63},
year = {2020},
}
@article{8317,
abstract = {When can a polyomino piece of paper be folded into a unit cube? Prior work studied tree-like polyominoes, but polyominoes with holes remain an intriguing open problem. We present sufficient conditions for a polyomino with one or several holes to fold into a cube, and conditions under which cube folding is impossible. In particular, we show that all but five special “basic” holes guarantee foldability.},
author = {Aichholzer, Oswin and Akitaya, Hugo A. and Cheung, Kenneth C. and Demaine, Erik D. and Demaine, Martin L. and Fekete, Sándor P. and Kleist, Linda and Kostitsyna, Irina and Löffler, Maarten and Masárová, Zuzana and Mundilova, Klara and Schmidt, Christiane},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
publisher = {Elsevier},
title = {{Folding polyominoes with holes into a cube}},
doi = {10.1016/j.comgeo.2020.101700},
volume = {93},
year = {2020},
}