@article{1555,
abstract = {We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations.},
author = {Knipl, Diána and Pilarczyk, Pawel and Röst, Gergely},
journal = {SIAM Journal on Applied Dynamical Systems},
number = {2},
pages = {980 -- 1017},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Rich bifurcation structure in a two patch vaccination model}},
doi = {10.1137/140993934},
volume = {14},
year = {2015},
}
@inproceedings{1567,
abstract = {My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations.},
author = {Edelsbrunner, Herbert},
location = {Los Angeles, CA, United States},
publisher = {Springer},
title = {{Shape, homology, persistence, and stability}},
volume = {9411},
year = {2015},
}
@article{1531,
abstract = {The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece.},
author = {Zobel, Valentin and Jan Reininghaus and Hotz, Ingrid},
journal = {Mathematics and Visualization},
pages = {257 -- 267},
publisher = {Springer},
title = {{Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature}},
doi = {10.1007/978-3-319-15090-1_13},
volume = {40},
year = {2015},
}
@article{1682,
abstract = {We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.},
author = {Franek, Peter and Krcál, Marek},
journal = {Journal of the ACM},
number = {4},
publisher = {ACM},
title = {{Robust satisfiability of systems of equations}},
doi = {10.1145/2751524},
volume = {62},
year = {2015},
}
@inproceedings{1424,
abstract = {We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data.},
author = {Kwitt, Roland and Huber, Stefan and Niethammer, Marc and Lin, Weili and Bauer, Ulrich},
location = {Montreal, Canada},
pages = {3070 -- 3078},
publisher = {Neural Information Processing Systems},
title = {{Statistical topological data analysis-A kernel perspective}},
volume = {28},
year = {2015},
}
@article{1563,
abstract = {For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}.},
author = {Graff, Grzegorz and Pilarczyk, Pawel},
journal = {Topological Methods in Nonlinear Analysis},
number = {1},
pages = {273 -- 286},
publisher = {Juliusz Schauder Center for Nonlinear Studies},
title = {{An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds}},
doi = {10.12775/TMNA.2015.014},
volume = {45},
year = {2015},
}
@inproceedings{1568,
abstract = {Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.},
author = {Dunaeva, Olga and Edelsbrunner, Herbert and Lukyanov, Anton and Machin, Michael and Malkova, Daria},
booktitle = {Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing},
location = {Timisoara, Romania},
pages = {7034731},
publisher = {IEEE},
title = {{The classification of endoscopy images with persistent homology}},
doi = {10.1109/SYNASC.2014.81},
year = {2015},
}
@article{1582,
abstract = {We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.},
author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter},
journal = {Computational Geometry: Theory and Applications},
number = {2},
pages = {120 -- 133},
publisher = {Elsevier},
title = {{Weighted straight skeletons in the plane}},
doi = {10.1016/j.comgeo.2014.08.006},
volume = {48},
year = {2015},
}
@article{1710,
abstract = {We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.},
author = {Akopyan, Arseniy and Plakhov, Alexander},
journal = {Society for Industrial and Applied Mathematics},
number = {4},
pages = {2754 -- 2769},
publisher = {SIAM},
title = {{Minimal resistance of curves under the single impact assumption}},
doi = {10.1137/140993843},
volume = {47},
year = {2015},
}
@article{1828,
abstract = {We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.},
author = {Akopyan, Arseniy and Pirogov, Sergey and Rybko, Aleksandr},
journal = {Journal of Statistical Physics},
number = {1},
pages = {163 -- 167},
publisher = {Springer},
title = {{ Invariant measures of genetic recombination process}},
doi = {10.1007/s10955-015-1238-5},
volume = {160},
year = {2015},
}
@article{2035,
abstract = {Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility.
},
author = {Edelsbrunner, Herbert and Jablonski, Grzegorz and Mrozek, Marian},
journal = {Foundations of Computational Mathematics},
number = {5},
pages = {1213 -- 1244},
publisher = {Springer},
title = {{The persistent homology of a self-map}},
doi = {10.1007/s10208-014-9223-y},
volume = {15},
year = {2015},
}
@inbook{1590,
abstract = {The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed.},
author = {Aichholzer, Oswin and Biedl, Therese and Hackl, Thomas and Held, Martin and Huber, Stefan and Palfrader, Peter and Vogtenhuber, Birgit},
booktitle = {Graph Drawing and Network Visualization},
location = {Los Angeles, CA, United States},
pages = {335 -- 347},
publisher = {Springer},
title = {{Representing directed trees as straight skeletons}},
doi = {10.1007/978-3-319-27261-0_28},
volume = {9411},
year = {2015},
}
@article{1583,
abstract = {We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon.},
author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter},
journal = {Information Processing Letters},
number = {2},
pages = {243 -- 247},
publisher = {Elsevier},
title = {{A simple algorithm for computing positively weighted straight skeletons of monotone polygons}},
doi = {10.1016/j.ipl.2014.09.021},
volume = {115},
year = {2015},
}
@article{1792,
abstract = {Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology.},
author = {Pausinger, Florian and Svane, Anne},
journal = {Journal of Complexity},
number = {6},
pages = {773 -- 797},
publisher = {Academic Press},
title = {{A Koksma-Hlawka inequality for general discrepancy systems}},
doi = {10.1016/j.jco.2015.06.002},
volume = {31},
year = {2015},
}
@article{1805,
abstract = {We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology H∗(X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in double-struck R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on double-struck S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.},
author = {Attali, Dominique and Bauer, Ulrich and Devillers, Olivier and Glisse, Marc and Lieutier, André},
journal = {Computational Geometry: Theory and Applications},
number = {8},
pages = {606 -- 621},
publisher = {Elsevier},
title = {{Homological reconstruction and simplification in R3}},
doi = {10.1016/j.comgeo.2014.08.010},
volume = {48},
year = {2015},
}
@inbook{2044,
abstract = {We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Günther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation.},
author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan},
booktitle = {Topological Methods in Data Analysis and Visualization III},
editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald},
pages = {103 -- 117},
publisher = {Springer},
title = {{Clear and Compress: Computing Persistent Homology in Chunks}},
doi = {10.1007/978-3-319-04099-8_7},
year = {2014},
}
@inproceedings{2905,
abstract = {Persistent homology is a recent grandchild of homology that has found use in
science and engineering as well as in mathematics. This paper surveys the method as well
as the applications, neglecting completeness in favor of highlighting ideas and directions.},
author = {Edelsbrunner, Herbert and Morozovy, Dmitriy},
location = {Kraków, Poland},
pages = {31 -- 50},
publisher = {European Mathematical Society Publishing House},
title = {{Persistent homology: Theory and practice}},
doi = {10.4171/120-1/3},
year = {2014},
}
@article{1876,
abstract = {We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.},
author = {Dolbilin, Nikolai and Edelsbrunner, Herbert and Glazyrin, Alexey and Musin, Oleg},
journal = {Moscow Mathematical Journal},
number = {3},
pages = {491 -- 504},
publisher = {Independent University of Moscow},
title = {{Functionals on triangulations of delaunay sets}},
volume = {14},
year = {2014},
}
@inproceedings{2177,
abstract = {We give evidence for the difficulty of computing Betti numbers of simplicial complexes over a finite field. We do this by reducing the rank computation for sparse matrices with to non-zero entries to computing Betti numbers of simplicial complexes consisting of at most a constant times to simplices. Together with the known reduction in the other direction, this implies that the two problems have the same computational complexity.},
author = {Edelsbrunner, Herbert and Parsa, Salman},
booktitle = {Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms},
location = {Portland, USA},
pages = {152 -- 160},
publisher = {SIAM},
title = {{On the computational complexity of betti numbers reductions from matrix rank}},
doi = {10.1137/1.9781611973402.11},
year = {2014},
}
@article{2184,
abstract = {Given topological spaces X,Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X→ Y. We consider a computational version, where X,Y are given as finite simplicial complexes, and the goal is to compute [X,Y], that is, all homotopy classes of suchmaps.We solve this problem in the stable range, where for some d ≥ 2, we have dim X ≤ 2d-2 and Y is (d-1)-connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A ⊂ X and a map A→ Y and ask whether it extends to a map X → Y, or computing the Z2-index-everything in the stable range. Outside the stable range, the extension problem is undecidable.},
author = {Čadek, Martin and Krcál, Marek and Matoušek, Jiří and Sergeraert, Francis and Vokřínek, Lukáš and Wagner, Uli},
journal = {Journal of the ACM},
number = {3},
publisher = {ACM},
title = {{Computing all maps into a sphere}},
doi = {10.1145/2597629},
volume = {61},
year = {2014},
}