@article{6634,
abstract = {In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.},
author = {Akopyan, Arseniy and Hubard, Alfredo and Karasev, Roman},
journal = {Topological Methods in Nonlinear Analysis},
number = {2},
pages = {457--490},
publisher = {Akademicka Platforma Czasopism},
title = {{Lower and upper bounds for the waists of different spaces}},
doi = {10.12775/TMNA.2019.008},
volume = {53},
year = {2019},
}
@inproceedings{193,
abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.},
author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal},
booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security},
location = {Incheon, Republic of Korea},
pages = {51 -- 65},
publisher = {ACM},
title = {{On the memory hardness of data independent password hashing functions}},
doi = {10.1145/3196494.3196534},
year = {2018},
}
@phdthesis{201,
abstract = {We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.},
author = {Iglesias Ham, Mabel},
pages = {171},
publisher = {IST Austria},
title = {{Multiple covers with balls}},
doi = {10.15479/AT:ISTA:th_1026},
year = {2018},
}
@article{458,
abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.},
author = {Akopyan, Arseniy and Bobenko, Alexander},
journal = {Transactions of the American Mathematical Society},
number = {4},
pages = {2825 -- 2854},
publisher = {American Mathematical Society},
title = {{Incircular nets and confocal conics}},
doi = {10.1090/tran/7292},
volume = {370},
year = {2018},
}
@article{530,
abstract = {Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
journal = {Computational Geometry: Theory and Applications},
pages = {119 -- 133},
publisher = {Elsevier},
title = {{Multiple covers with balls I: Inclusion–exclusion}},
doi = {10.1016/j.comgeo.2017.06.014},
volume = {68},
year = {2018},
}
@article{106,
abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.},
author = {Akopyan, Arseniy and Petrunin, Anton},
journal = {Mathematical Intelligencer},
number = {3},
pages = {26 -- 31},
publisher = {Springer},
title = {{Long geodesics on convex surfaces}},
doi = {10.1007/s00283-018-9795-5},
volume = {40},
year = {2018},
}
@inproceedings{187,
abstract = {Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. },
author = {Edelsbrunner, Herbert and Osang, Georg F},
location = {Budapest, Hungary},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The multi-cover persistence of Euclidean balls}},
doi = {10.4230/LIPIcs.SoCG.2018.34},
volume = {99},
year = {2018},
}
@article{409,
abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.},
author = {Akopyan, Arseniy},
issn = {1631073X},
journal = {Comptes Rendus Mathematique},
number = {4},
pages = {412--414},
publisher = {Elsevier},
title = {{On the number of non-hexagons in a planar tiling}},
doi = {10.1016/j.crma.2018.03.005},
volume = {356},
year = {2018},
}
@unpublished{74,
abstract = {We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.},
author = {Akopyan, Arseniy and Karasev, Roman},
booktitle = {ArXiv},
pages = {15},
publisher = {ArXiv},
title = {{Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures}},
year = {2018},
}
@inproceedings{188,
abstract = {Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.},
author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert},
location = {Budapest, Hungary},
pages = {35:1 -- 35:13},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Smallest enclosing spheres and Chernoff points in Bregman geometry}},
doi = {10.4230/LIPIcs.SoCG.2018.35},
volume = {99},
year = {2018},
}
@unpublished{75,
abstract = {We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.},
author = {Akopyan, Arseniy and Avvakumov, Sergey and Karasev, Roman},
booktitle = {ArXiv},
pages = {11},
publisher = {ArXiv},
title = {{Convex fair partitions into arbitrary number of pieces}},
year = {2018},
}
@article{87,
abstract = {Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
journal = {Annals of Applied Probability},
number = {5},
pages = {3215 -- 3238},
publisher = {Institute of Mathematical Statistics},
title = {{Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics}},
doi = {10.1214/18-AAP1389},
volume = {28},
year = {2018},
}
@article{312,
abstract = {Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
issn = {08954801},
journal = {SIAM J Discrete Math},
number = {1},
pages = {750 -- 782},
publisher = {Society for Industrial and Applied Mathematics },
title = {{On the optimality of the FCC lattice for soft sphere packing}},
doi = {10.1137/16M1097201},
volume = {32},
year = {2018},
}
@article{5678,
abstract = {The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
issn = {14320444},
journal = {Discrete and Computational Geometry},
publisher = {Springer},
title = {{Poisson–Delaunay Mosaics of Order k}},
doi = {10.1007/s00454-018-0049-2},
year = {2018},
}
@article{1064,
abstract = {In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.},
author = {Akopyan, Arseniy and Balitskiy, Alexey and Grigorev, Mikhail},
issn = {01795376},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {1001--1009},
publisher = {Springer},
title = {{On the circle covering theorem by A.W. Goodman and R.E. Goodman}},
doi = {10.1007/s00454-017-9883-x},
volume = {59},
year = {2018},
}
@article{58,
abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.},
author = {Akopyan, Arseniy and Segal Halevi, Erel},
journal = {SIAM Journal on Discrete Mathematics},
number = {3},
pages = {2242 -- 2257},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Counting blanks in polygonal arrangements}},
doi = {10.1137/16M110407X},
volume = {32},
year = {2018},
}
@article{6355,
abstract = {We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.},
author = {Akopyan, Arseniy and Avvakumov, Sergey},
issn = {2050-5094},
journal = {Forum of Mathematics, Sigma},
publisher = {Cambridge University Press},
title = {{Any cyclic quadrilateral can be inscribed in any closed convex smooth curve}},
doi = {10.1017/fms.2018.7},
volume = {6},
year = {2018},
}
@article{692,
abstract = {We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.},
author = {Akopyan, Arseniy},
journal = {Geometriae Dedicata},
number = {1},
pages = {55 -- 64},
publisher = {Springer},
title = {{3-Webs generated by confocal conics and circles}},
doi = {10.1007/s10711-017-0265-6},
volume = {194},
year = {2018},
}
@article{1065,
abstract = {We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.},
author = {Chatterjee, Krishnendu and Osang, Georg F},
issn = {00200190},
journal = {Information Processing Letters},
pages = {25 -- 29},
publisher = {Elsevier},
title = {{Pushdown reachability with constant treewidth}},
doi = {10.1016/j.ipl.2017.02.003},
volume = {122},
year = {2017},
}
@article{1022,
abstract = {We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.},
author = {Pranav, Pratyush and Edelsbrunner, Herbert and Van De Weygaert, Rien and Vegter, Gert and Kerber, Michael and Jones, Bernard and Wintraecken, Mathijs},
issn = {00358711},
journal = {Monthly Notices of the Royal Astronomical Society},
number = {4},
pages = {4281 -- 4310},
publisher = {Oxford University Press},
title = {{The topology of the cosmic web in terms of persistent Betti numbers}},
doi = {10.1093/mnras/stw2862},
volume = {465},
year = {2017},
}