@inproceedings{7216, abstract = {We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.}, author = {Osang, Georg F and Cook, James and Fabrikant, Alex and Gruteser, Marco}, booktitle = {2019 IEEE Intelligent Transportation Systems Conference}, isbn = {9781538670248}, location = {Auckland, New Zealand}, publisher = {IEEE}, title = {{LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale}}, doi = {10.1109/ITSC.2019.8917514}, year = {2019}, } @article{5678, abstract = {The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton}, issn = {14320444}, journal = {Discrete and Computational Geometry}, number = {4}, pages = {865–878}, publisher = {Springer}, title = {{Poisson–Delaunay Mosaics of Order k}}, doi = {10.1007/s00454-018-0049-2}, volume = {62}, year = {2019}, } @article{6608, abstract = {We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha complex, and we use the persistence diagram of the distance function to guide the hole opening and closing operations. The dependences between the holes define a partial order on the cells in K that characterizes what can and what cannot be constructed using the operations. The relations in this partial order reveal structural information about the underlying filtration of complexes beyond what is expressed by the persistence diagram.}, author = {Edelsbrunner, Herbert and Ölsböck, Katharina}, journal = {Computer Aided Geometric Design}, pages = {1--15}, publisher = {Elsevier}, title = {{Holes and dependences in an ordered complex}}, doi = {10.1016/j.cagd.2019.06.003}, volume = {73}, year = {2019}, } @unpublished{7950, abstract = {The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results: 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.}, author = {Biniaz, Ahmad and Jain, Kshitij and Lubiw, Anna and Masárová, Zuzana and Miltzow, Tillmann and Mondal, Debajyoti and Naredla, Anurag Murty and Tkadlec, Josef and Turcotte, Alexi}, booktitle = {arXiv}, title = {{Token swapping on trees}}, year = {2019}, } @inproceedings{188, abstract = {Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.}, author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert}, location = {Budapest, Hungary}, pages = {35:1 -- 35:13}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Smallest enclosing spheres and Chernoff points in Bregman geometry}}, doi = {10.4230/LIPIcs.SoCG.2018.35}, volume = {99}, year = {2018}, } @phdthesis{201, abstract = {We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.}, author = {Iglesias Ham, Mabel}, issn = {2663-337X}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{Multiple covers with balls}}, doi = {10.15479/AT:ISTA:th_1026}, year = {2018}, } @inproceedings{187, abstract = {Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. }, author = {Edelsbrunner, Herbert and Osang, Georg F}, location = {Budapest, Hungary}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The multi-cover persistence of Euclidean balls}}, doi = {10.4230/LIPIcs.SoCG.2018.34}, volume = {99}, year = {2018}, } @article{692, abstract = {We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.}, author = {Akopyan, Arseniy}, journal = {Geometriae Dedicata}, number = {1}, pages = {55 -- 64}, publisher = {Springer}, title = {{3-Webs generated by confocal conics and circles}}, doi = {10.1007/s10711-017-0265-6}, volume = {194}, year = {2018}, } @article{58, abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.}, author = {Akopyan, Arseniy and Segal Halevi, Erel}, journal = {SIAM Journal on Discrete Mathematics}, number = {3}, pages = {2242 -- 2257}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Counting blanks in polygonal arrangements}}, doi = {10.1137/16M110407X}, volume = {32}, year = {2018}, } @article{458, abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.}, author = {Akopyan, Arseniy and Bobenko, Alexander}, journal = {Transactions of the American Mathematical Society}, number = {4}, pages = {2825 -- 2854}, publisher = {American Mathematical Society}, title = {{Incircular nets and confocal conics}}, doi = {10.1090/tran/7292}, volume = {370}, year = {2018}, } @article{106, abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.}, author = {Akopyan, Arseniy and Petrunin, Anton}, journal = {Mathematical Intelligencer}, number = {3}, pages = {26 -- 31}, publisher = {Springer}, title = {{Long geodesics on convex surfaces}}, doi = {10.1007/s00283-018-9795-5}, volume = {40}, year = {2018}, } @article{530, abstract = {Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, journal = {Computational Geometry: Theory and Applications}, pages = {119 -- 133}, publisher = {Elsevier}, title = {{Multiple covers with balls I: Inclusion–exclusion}}, doi = {10.1016/j.comgeo.2017.06.014}, volume = {68}, year = {2018}, } @inproceedings{193, abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.}, author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal}, booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security}, location = {Incheon, Republic of Korea}, pages = {51 -- 65}, publisher = {ACM}, title = {{On the memory hardness of data independent password hashing functions}}, doi = {10.1145/3196494.3196534}, year = {2018}, } @article{312, abstract = {Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, issn = {08954801}, journal = {SIAM J Discrete Math}, number = {1}, pages = {750 -- 782}, publisher = {Society for Industrial and Applied Mathematics }, title = {{On the optimality of the FCC lattice for soft sphere packing}}, doi = {10.1137/16M1097201}, volume = {32}, year = {2018}, } @article{409, abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.}, author = {Akopyan, Arseniy}, issn = {1631073X}, journal = {Comptes Rendus Mathematique}, number = {4}, pages = {412--414}, publisher = {Elsevier}, title = {{On the number of non-hexagons in a planar tiling}}, doi = {10.1016/j.crma.2018.03.005}, volume = {356}, year = {2018}, } @article{87, abstract = {Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton}, journal = {Annals of Applied Probability}, number = {5}, pages = {3215 -- 3238}, publisher = {Institute of Mathematical Statistics}, title = {{Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics}}, doi = {10.1214/18-AAP1389}, volume = {28}, year = {2018}, } @article{6355, abstract = {We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.}, author = {Akopyan, Arseniy and Avvakumov, Sergey}, issn = {2050-5094}, journal = {Forum of Mathematics, Sigma}, publisher = {Cambridge University Press}, title = {{Any cyclic quadrilateral can be inscribed in any closed convex smooth curve}}, doi = {10.1017/fms.2018.7}, volume = {6}, year = {2018}, } @article{1064, abstract = {In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.}, author = {Akopyan, Arseniy and Balitskiy, Alexey and Grigorev, Mikhail}, issn = {14320444}, journal = {Discrete & Computational Geometry}, number = {4}, pages = {1001--1009}, publisher = {Springer}, title = {{On the circle covering theorem by A.W. Goodman and R.E. Goodman}}, doi = {10.1007/s00454-017-9883-x}, volume = {59}, year = {2018}, } @unpublished{75, abstract = {We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.}, author = {Akopyan, Arseniy and Avvakumov, Sergey and Karasev, Roman}, publisher = {arXiv}, title = {{Convex fair partitions into arbitrary number of pieces}}, doi = {10.48550/arXiv.1804.03057}, year = {2018}, } @article{481, abstract = {We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.}, author = {Biedl, Therese and Huber, Stefan and Palfrader, Peter}, journal = {International Journal of Computational Geometry and Applications}, number = {3-4}, pages = {211 -- 229}, publisher = {World Scientific Publishing}, title = {{Planar matchings for weighted straight skeletons}}, doi = {10.1142/S0218195916600050}, volume = {26}, year = {2017}, } @article{521, abstract = {Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.}, author = {Austin, Kyle and Virk, Ziga}, issn = {01668641}, journal = {Topology and its Applications}, pages = {45 -- 57}, publisher = {Elsevier}, title = {{Higson compactification and dimension raising}}, doi = {10.1016/j.topol.2016.10.005}, volume = {215}, year = {2017}, } @article{568, abstract = {We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).}, author = {Franek, Peter and Krcál, Marek}, issn = {15320073}, journal = {Homology, Homotopy and Applications}, number = {2}, pages = {313 -- 342}, publisher = {International Press}, title = {{Persistence of zero sets}}, doi = {10.4310/HHA.2017.v19.n2.a16}, volume = {19}, year = {2017}, } @inbook{5803, abstract = {Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept.}, author = {Biswas, Ranita and Bhowmick, Partha}, booktitle = {Combinatorial image analysis}, isbn = {978-3-319-59107-0}, issn = {0302-9743}, location = {Plovdiv, Bulgaria}, pages = {93--104}, publisher = {Springer Nature}, title = {{Construction of persistent Voronoi diagram on 3D digital plane}}, doi = {10.1007/978-3-319-59108-7_8}, volume = {10256}, year = {2017}, } @inproceedings{688, abstract = {We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory. }, author = {Edelsbrunner, Herbert and Wagner, Hubert}, issn = {18688969}, location = {Brisbane, Australia}, pages = {391--3916}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Topological data analysis with Bregman divergences}}, doi = {10.4230/LIPIcs.SoCG.2017.39}, volume = {77}, year = {2017}, } @article{707, abstract = {We answer a question of M. Gromov on the waist of the unit ball.}, author = {Akopyan, Arseniy and Karasev, Roman}, issn = {00246093}, journal = {Bulletin of the London Mathematical Society}, number = {4}, pages = {690 -- 693}, publisher = {Wiley-Blackwell}, title = {{A tight estimate for the waist of the ball }}, doi = {10.1112/blms.12062}, volume = {49}, year = {2017}, } @article{718, abstract = {Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton and Reitzner, Matthias}, issn = {00018678}, journal = {Advances in Applied Probability}, number = {3}, pages = {745 -- 767}, publisher = {Cambridge University Press}, title = {{Expected sizes of poisson Delaunay mosaics and their discrete Morse functions}}, doi = {10.1017/apr.2017.20}, volume = {49}, year = {2017}, } @phdthesis{6287, abstract = {The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.}, author = {Nikitenko, Anton}, issn = {2663-337X}, pages = {86}, publisher = {Institute of Science and Technology Austria}, title = {{Discrete Morse theory for random complexes }}, doi = {10.15479/AT:ISTA:th_873}, year = {2017}, } @article{1433, abstract = {Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.}, author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan and Wagner, Hubert}, issn = { 07477171}, journal = {Journal of Symbolic Computation}, pages = {76 -- 90}, publisher = {Academic Press}, title = {{Phat - Persistent homology algorithms toolbox}}, doi = {10.1016/j.jsc.2016.03.008}, volume = {78}, year = {2017}, } @article{1180, abstract = {In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.}, author = {Akopyan, Arseniy and Bárány, Imre and Robins, Sinai}, issn = {00018708}, journal = {Advances in Mathematics}, pages = {627 -- 644}, publisher = {Academic Press}, title = {{Algebraic vertices of non-convex polyhedra}}, doi = {10.1016/j.aim.2016.12.026}, volume = {308}, year = {2017}, } @article{1173, abstract = {We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.}, author = {Edelsbrunner, Herbert and Glazyrin, Alexey and Musin, Oleg and Nikitenko, Anton}, issn = {02099683}, journal = {Combinatorica}, number = {5}, pages = {887 -- 910}, publisher = {Springer}, title = {{The Voronoi functional is maximized by the Delaunay triangulation in the plane}}, doi = {10.1007/s00493-016-3308-y}, volume = {37}, year = {2017}, } @article{1072, abstract = {Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.}, author = {Bauer, Ulrich and Edelsbrunner, Herbert}, journal = {Transactions of the American Mathematical Society}, number = {5}, pages = {3741 -- 3762}, publisher = {American Mathematical Society}, title = {{The Morse theory of Čech and delaunay complexes}}, doi = {10.1090/tran/6991}, volume = {369}, year = {2017}, } @article{1065, abstract = {We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.}, author = {Chatterjee, Krishnendu and Osang, Georg F}, issn = {00200190}, journal = {Information Processing Letters}, pages = {25 -- 29}, publisher = {Elsevier}, title = {{Pushdown reachability with constant treewidth}}, doi = {10.1016/j.ipl.2017.02.003}, volume = {122}, year = {2017}, } @article{1022, abstract = {We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.}, author = {Pranav, Pratyush and Edelsbrunner, Herbert and Van De Weygaert, Rien and Vegter, Gert and Kerber, Michael and Jones, Bernard and Wintraecken, Mathijs}, issn = {00358711}, journal = {Monthly Notices of the Royal Astronomical Society}, number = {4}, pages = {4281 -- 4310}, publisher = {Oxford University Press}, title = {{The topology of the cosmic web in terms of persistent Betti numbers}}, doi = {10.1093/mnras/stw2862}, volume = {465}, year = {2017}, } @article{737, abstract = {We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action.}, author = {Virk, Ziga and Zastrow, Andreas}, issn = {01668641}, journal = {Topology and its Applications}, pages = {186 -- 196}, publisher = {Elsevier}, title = {{A new topology on the universal path space}}, doi = {10.1016/j.topol.2017.09.015}, volume = {231}, year = {2017}, } @inproceedings{836, abstract = {Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces.}, author = {Ethier, Marc and Jablonski, Grzegorz and Mrozek, Marian}, booktitle = {Special Sessions in Applications of Computer Algebra}, isbn = {978-331956930-7}, location = {Kalamata, Greece}, pages = {119 -- 136}, publisher = {Springer}, title = {{Finding eigenvalues of self-maps with the Kronecker canonical form}}, doi = {10.1007/978-3-319-56932-1_8}, volume = {198}, year = {2017}, } @inproceedings{833, abstract = {We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams.}, author = {Heiss, Teresa and Wagner, Hubert}, editor = {Felsberg, Michael and Heyden, Anders and Krüger, Norbert}, issn = {03029743}, location = {Ystad, Sweden}, pages = {397 -- 409}, publisher = {Springer}, title = {{Streaming algorithm for Euler characteristic curves of multidimensional images}}, doi = {10.1007/978-3-319-64689-3_32}, volume = {10424}, year = {2017}, } @inbook{84, abstract = {The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind.}, author = {Edelsbrunner, Herbert and Koehl, Patrice}, booktitle = {Handbook of Discrete and Computational Geometry, Third Edition}, editor = {Toth, Csaba and O'Rourke, Joseph and Goodman, Jacob}, pages = {1709 -- 1735}, publisher = {Taylor & Francis}, title = {{Computational topology for structural molecular biology}}, doi = {10.1201/9781315119601}, year = {2017}, } @article{909, abstract = {We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor &#xbd; cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.}, author = {Akopyan, Arseniy and Vysotsky, Vladislav}, issn = {00029890}, journal = {The American Mathematical Monthly}, number = {7}, pages = {588 -- 596}, publisher = {Mathematical Association of America}, title = {{On the lengths of curves passing through boundary points of a planar convex shape}}, doi = {10.4169/amer.math.monthly.124.7.588}, volume = {124}, year = {2017}, } @article{1149, abstract = {We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved.}, author = {Miyaji, Tomoyuki and Pilarczyk, Pawel and Gameiro, Marcio and Kokubu, Hiroshi and Mischaikow, Konstantin}, journal = {Applied Numerical Mathematics}, pages = {34 -- 47}, publisher = {Elsevier}, title = {{A study of rigorous ODE integrators for multi scale set oriented computations}}, doi = {10.1016/j.apnum.2016.04.005}, volume = {107}, year = {2016}, } @article{1216, abstract = {A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.}, author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek}, journal = {Archives of Mechanics}, number = {1}, pages = {55 -- 80}, publisher = {Polish Academy of Sciences Publishing House}, title = {{Acceleration feature points of unsteady shear flows}}, volume = {68}, year = {2016}, } @article{1222, abstract = {We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.}, author = {Musin, Oleg and Nikitenko, Anton}, journal = {Discrete & Computational Geometry}, number = {1}, pages = {1 -- 20}, publisher = {Springer}, title = {{Optimal packings of congruent circles on a square flat torus}}, doi = {10.1007/s00454-015-9742-6}, volume = {55}, year = {2016}, } @inproceedings{1237, abstract = {Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.}, author = {Krcál, Marek and Pilarczyk, Pawel}, location = {Marseille, France}, pages = {140 -- 151}, publisher = {Springer}, title = {{Computation of cubical Steenrod squares}}, doi = {10.1007/978-3-319-39441-1_13}, volume = {9667}, year = {2016}, } @article{1252, abstract = {We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points.}, author = {Harker, Shaun and Kokubu, Hiroshi and Mischaikow, Konstantin and Pilarczyk, Pawel}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, number = {4}, pages = {1787 -- 1801}, publisher = {American Mathematical Society}, title = {{Inducing a map on homology from a correspondence}}, doi = {10.1090/proc/12812}, volume = {144}, year = {2016}, } @article{1254, abstract = {We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/.}, author = {Golmakani, Ali and Luzzatto, Stefano and Pilarczyk, Pawel}, journal = {Experimental Mathematics}, number = {2}, pages = {116 -- 124}, publisher = {Taylor and Francis}, title = {{Uniform expansivity outside a critical neighborhood in the quadratic family}}, doi = {10.1080/10586458.2015.1048011}, volume = {25}, year = {2016}, } @article{1272, abstract = {We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.}, author = {Held, Martin and Huber, Stefan and Palfrader, Peter}, journal = {Computer-Aided Design and Applications}, number = {5}, pages = {712 -- 721}, publisher = {Taylor and Francis}, title = {{Generalized offsetting of planar structures using skeletons}}, doi = {10.1080/16864360.2016.1150718}, volume = {13}, year = {2016}, } @article{1295, abstract = {Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, journal = {Electronic Notes in Discrete Mathematics}, pages = {169 -- 174}, publisher = {Elsevier}, title = {{Multiple covers with balls II: Weighted averages}}, doi = {10.1016/j.endm.2016.09.030}, volume = {54}, year = {2016}, } @article{1292, abstract = {We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.}, author = {Durst, Sebastian and Kegel, Marc and Klukas, Mirko D}, journal = {Acta Mathematica Hungarica}, number = {2}, pages = {441 -- 455}, publisher = {Springer}, title = {{Computing the Thurston–Bennequin invariant in open books}}, doi = {10.1007/s10474-016-0648-4}, volume = {150}, year = {2016}, } @article{1330, abstract = {In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K.}, author = {Akopyan, Arseniy and Balitskiy, Alexey}, journal = {Israel Journal of Mathematics}, number = {2}, pages = {833 -- 845}, publisher = {Springer}, title = {{Billiards in convex bodies with acute angles}}, doi = {10.1007/s11856-016-1429-z}, volume = {216}, year = {2016}, } @article{1360, abstract = {We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. }, author = {Akopyan, Arseniy and Balitskiy, Alexey and Karasev, Roman and Sharipova, Anastasia}, journal = {Proceedings of the American Mathematical Society}, number = {10}, pages = {4501 -- 4513}, publisher = {American Mathematical Society}, title = {{Elementary approach to closed billiard trajectories in asymmetric normed spaces}}, doi = {10.1090/proc/13062}, volume = {144}, year = {2016}, } @article{1408, abstract = {The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.}, author = {Franek, Peter and Krcál, Marek}, journal = {Discrete & Computational Geometry}, number = {1}, pages = {126 -- 164}, publisher = {Springer}, title = {{On computability and triviality of well groups}}, doi = {10.1007/s00454-016-9794-2}, volume = {56}, year = {2016}, } @article{1289, abstract = {Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.}, author = {Dunaeva, Olga and Edelsbrunner, Herbert and Lukyanov, Anton and Machin, Michael and Malkova, Daria and Kuvaev, Roman and Kashin, Sergey}, journal = {Pattern Recognition Letters}, number = {1}, pages = {13 -- 22}, publisher = {Elsevier}, title = {{The classification of endoscopy images with persistent homology}}, doi = {10.1016/j.patrec.2015.12.012}, volume = {83}, year = {2016}, } @article{1617, abstract = {We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points.}, author = {Pausinger, Florian and Steinerberger, Stefan}, journal = {Journal of Complexity}, pages = {199 -- 216}, publisher = {Academic Press}, title = {{On the discrepancy of jittered sampling}}, doi = {10.1016/j.jco.2015.11.003}, volume = {33}, year = {2016}, } @inproceedings{5806, abstract = {Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane.}, author = {Biswas, Ranita and Bhowmick, Partha}, booktitle = {Discrete Geometry for Computer Imagery}, isbn = {978-3-319-32359-6}, issn = {0302-9743}, location = {Nantes, France}, pages = {256--267}, publisher = {Springer Nature}, title = {{On functionality of quadraginta octants of naive sphere with application to circle drawing}}, doi = {10.1007/978-3-319-32360-2_20}, volume = {9647}, year = {2016}, } @inbook{5805, abstract = {Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy.}, author = {Sen, Nabhasmita and Biswas, Ranita and Bhowmick, Partha}, booktitle = {Computational Topology in Image Context}, isbn = {978-3-319-39440-4}, issn = {1611-3349}, location = {Marseille, France}, pages = {253--264}, publisher = {Springer Nature}, title = {{On some local topological properties of naive discrete sphere}}, doi = {10.1007/978-3-319-39441-1_23}, volume = {9667}, year = {2016}, } @inbook{5809, abstract = {A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness.}, author = {Biswas, Ranita and Bhowmick, Partha and Brimkov, Valentin E.}, booktitle = {Combinatorial image analysis}, isbn = {978-3-319-26144-7}, issn = {1611-3349}, location = {Kolkata, India}, pages = {86--100}, publisher = {Springer Nature}, title = {{On the connectivity and smoothness of discrete spherical circles}}, doi = {10.1007/978-3-319-26145-4_7}, volume = {9448}, year = {2016}, } @article{1662, abstract = {We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball.}, author = {Edelsbrunner, Herbert and Pausinger, Florian}, journal = {Advances in Mathematics}, pages = {674 -- 703}, publisher = {Academic Press}, title = {{Approximation and convergence of the intrinsic volume}}, doi = {10.1016/j.aim.2015.10.004}, volume = {287}, year = {2016}, } @inproceedings{1424, abstract = {We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data.}, author = {Kwitt, Roland and Huber, Stefan and Niethammer, Marc and Lin, Weili and Bauer, Ulrich}, location = {Montreal, Canada}, pages = {3070 -- 3078}, publisher = {Neural Information Processing Systems}, title = {{Statistical topological data analysis-A kernel perspective}}, volume = {28}, year = {2015}, } @inproceedings{1483, abstract = {Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.}, author = {Reininghaus, Jan and Huber, Stefan and Bauer, Ulrich and Kwitt, Roland}, location = {Boston, MA, USA}, pages = {4741 -- 4748}, publisher = {IEEE}, title = {{A stable multi-scale kernel for topological machine learning}}, doi = {10.1109/CVPR.2015.7299106}, year = {2015}, } @inproceedings{1495, abstract = {Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. }, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel and Kurlin, Vitaliy}, booktitle = {Proceedings of the 27th Canadian Conference on Computational Geometry}, location = {Ontario, Canada}, pages = {128--135}, publisher = {Queen's University}, title = {{Relaxed disk packing}}, volume = {2015-August}, year = {2015}, } @inproceedings{1510, abstract = {The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. }, author = {Franek, Peter and Krcál, Marek}, location = {Eindhoven, Netherlands}, pages = {842 -- 856}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{On computability and triviality of well groups}}, doi = {10.4230/LIPIcs.SOCG.2015.842}, volume = {34}, year = {2015}, } @inbook{1531, abstract = {The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece.}, author = {Zobel, Valentin and Reininghaus, Jan and Hotz, Ingrid}, booktitle = {Visualization and Processing of Higher Order Descriptors for Multi-Valued Data}, editor = {Hotz, Ingrid and Schultz, Thomas}, isbn = {978-3-319-15089-5}, pages = {257 -- 267}, publisher = {Springer}, title = {{Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature}}, doi = {10.1007/978-3-319-15090-1_13}, volume = {40}, year = {2015}, } @article{1555, abstract = {We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations.}, author = {Knipl, Diána and Pilarczyk, Pawel and Röst, Gergely}, issn = {1536-0040}, journal = {SIAM Journal on Applied Dynamical Systems}, number = {2}, pages = {980 -- 1017}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Rich bifurcation structure in a two patch vaccination model}}, doi = {10.1137/140993934}, volume = {14}, year = {2015}, } @inproceedings{1568, abstract = {Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.}, author = {Dunaeva, Olga and Edelsbrunner, Herbert and Lukyanov, Anton and Machin, Michael and Malkova, Daria}, booktitle = {Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing}, location = {Timisoara, Romania}, pages = {7034731}, publisher = {IEEE}, title = {{The classification of endoscopy images with persistent homology}}, doi = {10.1109/SYNASC.2014.81}, year = {2015}, } @inproceedings{1567, abstract = {My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations.}, author = {Edelsbrunner, Herbert}, booktitle = {23rd International Symposium}, location = {Los Angeles, CA, United States}, publisher = {Springer Nature}, title = {{Shape, homology, persistence, and stability}}, volume = {9411}, year = {2015}, } @article{1563, abstract = {For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}.}, author = {Graff, Grzegorz and Pilarczyk, Pawel}, journal = {Topological Methods in Nonlinear Analysis}, number = {1}, pages = {273 -- 286}, publisher = {Juliusz Schauder Center for Nonlinear Studies}, title = {{An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds}}, doi = {10.12775/TMNA.2015.014}, volume = {45}, year = {2015}, } @article{1578, abstract = {We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations.}, author = {Cao, Thanhtung and Edelsbrunner, Herbert and Tan, Tiowseng}, journal = {Computational Geometry}, number = {7}, pages = {507 -- 519}, publisher = {Elsevier}, title = {{Triangulations from topologically correct digital Voronoi diagrams}}, doi = {10.1016/j.comgeo.2015.04.001}, volume = {48}, year = {2015}, } @article{1584, abstract = {We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.}, author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter}, journal = {Computational Geometry: Theory and Applications}, number = {5}, pages = {429 -- 442}, publisher = {Elsevier}, title = {{Reprint of: Weighted straight skeletons in the plane}}, doi = {10.1016/j.comgeo.2015.01.004}, volume = {48}, year = {2015}, } @article{1582, abstract = {We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights.}, author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter}, journal = {Computational Geometry: Theory and Applications}, number = {2}, pages = {120 -- 133}, publisher = {Elsevier}, title = {{Weighted straight skeletons in the plane}}, doi = {10.1016/j.comgeo.2014.08.006}, volume = {48}, year = {2015}, } @article{1583, abstract = {We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon.}, author = {Biedl, Therese and Held, Martin and Huber, Stefan and Kaaser, Dominik and Palfrader, Peter}, journal = {Information Processing Letters}, number = {2}, pages = {243 -- 247}, publisher = {Elsevier}, title = {{A simple algorithm for computing positively weighted straight skeletons of monotone polygons}}, doi = {10.1016/j.ipl.2014.09.021}, volume = {115}, year = {2015}, } @inbook{1590, abstract = {The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed.}, author = {Aichholzer, Oswin and Biedl, Therese and Hackl, Thomas and Held, Martin and Huber, Stefan and Palfrader, Peter and Vogtenhuber, Birgit}, booktitle = {Graph Drawing and Network Visualization}, isbn = {978-3-319-27260-3}, location = {Los Angeles, CA, United States}, pages = {335 -- 347}, publisher = {Springer Nature}, title = {{Representing directed trees as straight skeletons}}, doi = {10.1007/978-3-319-27261-0_28}, volume = {9411}, year = {2015}, } @article{1682, abstract = {We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.}, author = {Franek, Peter and Krcál, Marek}, journal = {Journal of the ACM}, number = {4}, publisher = {ACM}, title = {{Robust satisfiability of systems of equations}}, doi = {10.1145/2751524}, volume = {62}, year = {2015}, } @article{1710, abstract = {We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.}, author = {Akopyan, Arseniy and Plakhov, Alexander}, journal = {Society for Industrial and Applied Mathematics}, number = {4}, pages = {2754 -- 2769}, publisher = {SIAM}, title = {{Minimal resistance of curves under the single impact assumption}}, doi = {10.1137/140993843}, volume = {47}, year = {2015}, } @article{1828, abstract = {We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.}, author = {Akopyan, Arseniy and Pirogov, Sergey and Rybko, Aleksandr}, journal = {Journal of Statistical Physics}, number = {1}, pages = {163 -- 167}, publisher = {Springer}, title = {{Invariant measures of genetic recombination process}}, doi = {10.1007/s10955-015-1238-5}, volume = {160}, year = {2015}, } @article{1938, abstract = {We numerically investigate the distribution of extrema of 'chaotic' Laplacian eigenfunctions on two-dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small number of randomly added edges and show the behavior to coincide with the 1957 prediction of Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in space than the grid Z2.}, author = {Pausinger, Florian and Steinerberger, Stefan}, journal = {Physics Letters, Section A}, number = {6}, pages = {535 -- 541}, publisher = {Elsevier}, title = {{On the distribution of local extrema in quantum chaos}}, doi = {10.1016/j.physleta.2014.12.010}, volume = {379}, year = {2015}, } @article{2035, abstract = {Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility. }, author = {Edelsbrunner, Herbert and Jablonski, Grzegorz and Mrozek, Marian}, journal = {Foundations of Computational Mathematics}, number = {5}, pages = {1213 -- 1244}, publisher = {Springer}, title = {{The persistent homology of a self-map}}, doi = {10.1007/s10208-014-9223-y}, volume = {15}, year = {2015}, } @article{1805, abstract = {We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology H∗(X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in double-struck R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on double-struck S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.}, author = {Attali, Dominique and Bauer, Ulrich and Devillers, Olivier and Glisse, Marc and Lieutier, André}, journal = {Computational Geometry: Theory and Applications}, number = {8}, pages = {606 -- 621}, publisher = {Elsevier}, title = {{Homological reconstruction and simplification in R3}}, doi = {10.1016/j.comgeo.2014.08.010}, volume = {48}, year = {2015}, } @article{1793, abstract = {We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.}, author = {Symonova, Olga and Topp, Christopher and Edelsbrunner, Herbert}, journal = {PLoS One}, number = {6}, publisher = {Public Library of Science}, title = {{DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots}}, doi = {10.1371/journal.pone.0127657}, volume = {10}, year = {2015}, } @misc{9737, author = {Symonova, Olga and Topp, Christopher and Edelsbrunner, Herbert}, publisher = {Public Library of Science}, title = {{Root traits computed by DynamicRoots for the maize root shown in fig 2}}, doi = {10.1371/journal.pone.0127657.s001}, year = {2015}, } @article{1792, abstract = {Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology.}, author = {Pausinger, Florian and Svane, Anne}, journal = {Journal of Complexity}, number = {6}, pages = {773 -- 797}, publisher = {Academic Press}, title = {{A Koksma-Hlawka inequality for general discrepancy systems}}, doi = {10.1016/j.jco.2015.06.002}, volume = {31}, year = {2015}, } @phdthesis{1399, abstract = {This thesis is concerned with the computation and approximation of intrinsic volumes. Given a smooth body M and a certain digital approximation of it, we develop algorithms to approximate various intrinsic volumes of M using only measurements taken from its digital approximations. The crucial idea behind our novel algorithms is to link the recent theory of persistent homology to the theory of intrinsic volumes via the Crofton formula from integral geometry and, in particular, via Euler characteristic computations. Our main contributions are a multigrid convergent digital algorithm to compute the first intrinsic volume of a solid body in R^n as well as an appropriate integration pipeline to approximate integral-geometric integrals defined over the Grassmannian manifold.}, author = {Pausinger, Florian}, issn = {2663-337X}, pages = {144}, publisher = {Institute of Science and Technology Austria}, title = {{On the approximation of intrinsic volumes}}, year = {2015}, } @inbook{10893, abstract = {Saddle periodic orbits are an essential and stable part of the topological skeleton of a 3D vector field. Nevertheless, there is currently no efficient algorithm to robustly extract these features. In this chapter, we present a novel technique to extract saddle periodic orbits. Exploiting the analytic properties of such an orbit, we propose a scalar measure based on the finite-time Lyapunov exponent (FTLE) that indicates its presence. Using persistent homology, we can then extract the robust cycles of this field. These cycles thereby represent the saddle periodic orbits of the given vector field. We discuss the different existing FTLE approximation schemes regarding their applicability to this specific problem and propose an adapted version of FTLE called Normalized Velocity Separation. Finally, we evaluate our method using simple analytic vector field data.}, author = {Kasten, Jens and Reininghaus, Jan and Reich, Wieland and Scheuermann, Gerik}, booktitle = {Topological Methods in Data Analysis and Visualization III }, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, isbn = {9783319040981}, issn = {2197-666X}, pages = {55--69}, publisher = {Springer}, title = {{Toward the extraction of saddle periodic orbits}}, doi = {10.1007/978-3-319-04099-8_4}, volume = {1}, year = {2014}, } @article{1816, abstract = {Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques.}, author = {Huber, Stefan and Held, Martin and Meerwald, Peter and Kwitt, Roland}, journal = {International Journal of Computational Geometry and Applications}, number = {1}, pages = {61 -- 86}, publisher = {World Scientific Publishing}, title = {{Topology-preserving watermarking of vector graphics}}, doi = {10.1142/S0218195914500034}, volume = {24}, year = {2014}, } @article{1842, abstract = {We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices.}, author = {Cibulka, Josef and Gao, Pu and Krcál, Marek and Valla, Tomáš and Valtr, Pavel}, journal = {Discrete & Computational Geometry}, number = {1}, pages = {64 -- 79}, publisher = {Springer}, title = {{On the geometric ramsey number of outerplanar graphs}}, doi = {10.1007/s00454-014-9646-x}, volume = {53}, year = {2014}, } @article{1876, abstract = {We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.}, author = {Dolbilin, Nikolai and Edelsbrunner, Herbert and Glazyrin, Alexey and Musin, Oleg}, issn = {16093321}, journal = {Moscow Mathematical Journal}, number = {3}, pages = {491 -- 504}, publisher = {Independent University of Moscow}, title = {{Functionals on triangulations of delaunay sets}}, doi = {10.17323/1609-4514-2014-14-3-491-504}, volume = {14}, year = {2014}, } @article{1929, abstract = {We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales.}, author = {Alexeev, V V and Bogaevskaya, V G and Preobrazhenskaya, M M and Ukhalov, A Y and Edelsbrunner, Herbert and Yakimova, Olga}, issn = {1573-8795}, journal = {Journal of Mathematical Sciences}, number = {6}, pages = {754 -- 760}, publisher = {Springer}, title = {{An algorithm for cartographic generalization that preserves global topology}}, doi = {10.1007/s10958-014-2165-8}, volume = {203}, year = {2014}, } @article{1930, abstract = {(Figure Presented) Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.}, author = {Günther, David and Jacobson, Alec and Reininghaus, Jan and Seidel, Hans and Sorkine Hornung, Olga and Weinkauf, Tino}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, pages = {2585 -- 2594}, publisher = {IEEE}, title = {{Fast and memory-efficient topological denoising of 2D and 3D scalar fields}}, doi = {10.1109/TVCG.2014.2346432}, volume = {20}, year = {2014}, } @inproceedings{2043, abstract = {Persistent homology is a popular and powerful tool for capturing topological features of data. Advances in algorithms for computing persistent homology have reduced the computation time drastically – as long as the algorithm does not exhaust the available memory. Following up on a recently presented parallel method for persistence computation on shared memory systems [1], we demonstrate that a simple adaption of the standard reduction algorithm leads to a variant for distributed systems. Our algorithmic design ensures that the data is distributed over the nodes without redundancy; this permits the computation of much larger instances than on a single machine. Moreover, we observe that the parallelism at least compensates for the overhead caused by communication between nodes, and often even speeds up the computation compared to sequential and even parallel shared memory algorithms. In our experiments, we were able to compute the persistent homology of filtrations with more than a billion (109) elements within seconds on a cluster with 32 nodes using less than 6GB of memory per node.}, author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan}, booktitle = {Proceedings of the Workshop on Algorithm Engineering and Experiments}, editor = { McGeoch, Catherine and Meyer, Ulrich}, location = {Portland, USA}, pages = {31 -- 38}, publisher = {Society of Industrial and Applied Mathematics}, title = {{Distributed computation of persistent homology}}, doi = {10.1137/1.9781611973198.4}, year = {2014}, } @inbook{2044, abstract = {We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Günther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation.}, author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan}, booktitle = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, pages = {103 -- 117}, publisher = {Springer}, title = {{Clear and Compress: Computing Persistent Homology in Chunks}}, doi = {10.1007/978-3-319-04099-8_7}, year = {2014}, } @inproceedings{2153, abstract = {We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N. Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of ker f and coker f . As an immediate corollary, we obtain a new proof of the algebraic stability theorem for persistence barcodes [5, 9], a fundamental result in the theory of persistent homology. In contrast to previous proofs, ours shows explicitly how a δ-interleaving morphism between two persistence modules induces a δ-matching between the barcodes of the two modules. Our main result also specializes to a structure theorem for submodules and quotients of persistence modules. Copyright is held by the owner/author(s).}, author = {Bauer, Ulrich and Lesnick, Michael}, booktitle = {Proceedings of the Annual Symposium on Computational Geometry}, location = {Kyoto, Japan}, pages = {355 -- 364}, publisher = {ACM}, title = {{Induced matchings of barcodes and the algebraic stability of persistence}}, doi = {10.1145/2582112.2582168}, year = {2014}, } @inproceedings{2156, abstract = {We propose a metric for Reeb graphs, called the functional distortion distance. Under this distance, the Reeb graph is stable against small changes of input functions. At the same time, it remains discriminative at differentiating input functions. In particular, the main result is that the functional distortion distance between two Reeb graphs is bounded from below by the bottleneck distance between both the ordinary and extended persistence diagrams for appropriate dimensions. As an application of our results, we analyze a natural simplification scheme for Reeb graphs, and show that persistent features in Reeb graph remains persistent under simplification. Understanding the stability of important features of the Reeb graph under simplification is an interesting problem on its own right, and critical to the practical usage of Reeb graphs. Copyright is held by the owner/author(s).}, author = {Bauer, Ulrich and Ge, Xiaoyin and Wang, Yusu}, booktitle = {Proceedings of the Annual Symposium on Computational Geometry}, location = {Kyoto, Japan}, pages = {464 -- 473}, publisher = {ACM}, title = {{Measuring distance between Reeb graphs}}, doi = {10.1145/2582112.2582169}, year = {2014}, } @inproceedings{2155, abstract = {Given a finite set of points in Rn and a positive radius, we study the Čech, Delaunay-Čech, alpha, and wrap complexes as instances of a generalized discrete Morse theory. We prove that the latter three complexes are simple-homotopy equivalent. Our results have applications in topological data analysis and in the reconstruction of shapes from sampled data. Copyright is held by the owner/author(s).}, author = {Bauer, Ulrich and Edelsbrunner, Herbert}, booktitle = {Proceedings of the Annual Symposium on Computational Geometry}, location = {Kyoto, Japan}, pages = {484 -- 490}, publisher = {ACM}, title = {{The morse theory of Čech and Delaunay filtrations}}, doi = {10.1145/2582112.2582167}, year = {2014}, } @inproceedings{2177, abstract = {We give evidence for the difficulty of computing Betti numbers of simplicial complexes over a finite field. We do this by reducing the rank computation for sparse matrices with to non-zero entries to computing Betti numbers of simplicial complexes consisting of at most a constant times to simplices. Together with the known reduction in the other direction, this implies that the two problems have the same computational complexity.}, author = {Edelsbrunner, Herbert and Parsa, Salman}, booktitle = {Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms}, location = {Portland, USA}, pages = {152 -- 160}, publisher = {SIAM}, title = {{On the computational complexity of betti numbers reductions from matrix rank}}, doi = {10.1137/1.9781611973402.11}, year = {2014}, } @article{2184, abstract = {Given topological spaces X,Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X→ Y. We consider a computational version, where X,Y are given as finite simplicial complexes, and the goal is to compute [X,Y], that is, all homotopy classes of suchmaps.We solve this problem in the stable range, where for some d ≥ 2, we have dim X ≤ 2d-2 and Y is (d-1)-connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A ⊂ X and a map A→ Y and ask whether it extends to a map X → Y, or computing the Z2-index-everything in the stable range. Outside the stable range, the extension problem is undecidable.}, author = {Čadek, Martin and Krcál, Marek and Matoušek, Jiří and Sergeraert, Francis and Vokřínek, Lukáš and Wagner, Uli}, journal = {Journal of the ACM}, number = {3}, publisher = {ACM}, title = {{Computing all maps into a sphere}}, doi = {10.1145/2597629}, volume = {61}, year = {2014}, } @inproceedings{2905, abstract = {Persistent homology is a recent grandchild of homology that has found use in science and engineering as well as in mathematics. This paper surveys the method as well as the applications, neglecting completeness in favor of highlighting ideas and directions.}, author = {Edelsbrunner, Herbert and Morozovy, Dmitriy}, location = {Kraków, Poland}, pages = {31 -- 50}, publisher = {European Mathematical Society Publishing House}, title = {{Persistent homology: Theory and practice}}, doi = {10.4171/120-1/3}, year = {2014}, } @inproceedings{10892, abstract = {In this paper, we introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.}, author = {Biedl, Therese and Huber, Stefan and Palfrader, Peter}, booktitle = {25th International Symposium, ISAAC 2014}, isbn = {9783319130743}, issn = {1611-3349}, location = {Jeonju, Korea}, pages = {117--127}, publisher = {Springer Nature}, title = {{Planar matchings for weighted straight skeletons}}, doi = {10.1007/978-3-319-13075-0_10}, volume = {8889}, year = {2014}, } @book{6853, abstract = {This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields.}, author = {Edelsbrunner, Herbert}, isbn = {9-783-3190-5956-3}, issn = {2191-5318}, pages = {IX, 110}, publisher = {Springer Nature}, title = {{A Short Course in Computational Geometry and Topology}}, doi = {10.1007/978-3-319-05957-0}, year = {2014}, } @inproceedings{10886, abstract = {We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we can apply the definition of the HKS. The resulting scalar quantity is used for the visualization of tensor fields. The HKS is closely related to the Gaussian curvature of the Riemannian manifold and the time parameter of the heat kernel allows a multiscale analysis in a natural way. In this way, the HKS represents field related scale space properties, enabling a level of detail analysis of tensor fields. This makes the HKS an interesting new scalar quantity for tensor fields, which differs significantly from usual tensor invariants like the trace or the determinant. A method for visualization and a numerical realization of the HKS for tensor fields is proposed in this chapter. To validate the approach we apply it to some illustrating simple examples as isolated critical points and to a medical diffusion tensor data set.}, author = {Zobel, Valentin and Reininghaus, Jan and Hotz, Ingrid}, booktitle = {Topological Methods in Data Analysis and Visualization III }, isbn = {9783319040981}, issn = {2197-666X}, pages = {249--262}, publisher = {Springer}, title = {{Visualization of two-dimensional symmetric positive definite tensor fields using the heat kernel signature}}, doi = {10.1007/978-3-319-04099-8_16}, year = {2014}, } @inbook{10817, abstract = {The Morse-Smale complex can be either explicitly or implicitly represented. Depending on the type of representation, the simplification of the Morse-Smale complex works differently. In the explicit representation, the Morse-Smale complex is directly simplified by explicitly reconnecting the critical points during the simplification. In the implicit representation, on the other hand, the Morse-Smale complex is given by a combinatorial gradient field. In this setting, the simplification changes the combinatorial flow, which yields an indirect simplification of the Morse-Smale complex. The topological complexity of the Morse-Smale complex is reduced in both representations. However, the simplifications generally yield different results. In this chapter, we emphasize properties of the two representations that cause these differences. We also provide a complexity analysis of the two schemes with respect to running time and memory consumption.}, author = {Günther, David and Reininghaus, Jan and Seidel, Hans-Peter and Weinkauf, Tino}, booktitle = {Topological Methods in Data Analysis and Visualization III.}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, isbn = {9783319040981}, issn = {2197-666X}, pages = {135--150}, publisher = {Springer Nature}, title = {{Notes on the simplification of the Morse-Smale complex}}, doi = {10.1007/978-3-319-04099-8_9}, year = {2014}, } @article{2255, abstract = {Motivated by applications in biology, we present an algorithm for estimating the length of tube-like shapes in 3-dimensional Euclidean space. In a first step, we combine the tube formula of Weyl with integral geometric methods to obtain an integral representation of the length, which we approximate using a variant of the Koksma-Hlawka Theorem. In a second step, we use tools from computational topology to decrease the dependence on small perturbations of the shape. We present computational experiments that shed light on the stability and the convergence rate of our algorithm.}, author = {Edelsbrunner, Herbert and Pausinger, Florian}, issn = {09249907}, journal = {Journal of Mathematical Imaging and Vision}, number = {1}, pages = {164 -- 177}, publisher = {Springer}, title = {{Stable length estimates of tube-like shapes}}, doi = {10.1007/s10851-013-0468-x}, volume = {50}, year = {2014}, } @inproceedings{10894, abstract = {PHAT is a C++ library for the computation of persistent homology by matrix reduction. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. This makes PHAT a versatile platform for experimenting with algorithmic ideas and comparing them to state of the art implementations.}, author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan and Wagner, Hubert}, booktitle = {ICMS 2014: International Congress on Mathematical Software}, isbn = {9783662441985}, issn = {1611-3349}, location = {Seoul, South Korea}, pages = {137--143}, publisher = {Springer Berlin Heidelberg}, title = {{PHAT – Persistent Homology Algorithms Toolbox}}, doi = {10.1007/978-3-662-44199-2_24}, volume = {8592}, year = {2014}, }