@article{1149,
abstract = {We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved.},
author = {Miyaji, Tomoyuki and Pilarczyk, Pawel and Gameiro, Marcio and Kokubu, Hiroshi and Mischaikow, Konstantin},
journal = {Applied Numerical Mathematics},
pages = {34 -- 47},
publisher = {Elsevier},
title = {{A study of rigorous ODE integrators for multi scale set oriented computations}},
doi = {10.1016/j.apnum.2016.04.005},
volume = {107},
year = {2016},
}
@article{1216,
abstract = {A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2.},
author = {Kasten, Jens and Reininghaus, Jan and Hotz, Ingrid and Hege, Hans and Noack, Bernd and Daviller, Guillaume and Morzyński, Marek},
journal = {Archives of Mechanics},
number = {1},
pages = {55 -- 80},
publisher = {Polish Academy of Sciences Publishing House},
title = {{Acceleration feature points of unsteady shear flows}},
volume = {68},
year = {2016},
}
@article{1222,
abstract = {We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.},
author = {Musin, Oleg and Nikitenko, Anton},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {1 -- 20},
publisher = {Springer},
title = {{Optimal packings of congruent circles on a square flat torus}},
doi = {10.1007/s00454-015-9742-6},
volume = {55},
year = {2016},
}
@inproceedings{1237,
abstract = {Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.},
author = {Krcál, Marek and Pilarczyk, Pawel},
location = {Marseille, France},
pages = {140 -- 151},
publisher = {Springer},
title = {{Computation of cubical Steenrod squares}},
doi = {10.1007/978-3-319-39441-1_13},
volume = {9667},
year = {2016},
}
@article{1252,
abstract = {We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points.},
author = {Harker, Shaun and Kokubu, Hiroshi and Mischaikow, Konstantin and Pilarczyk, Pawel},
journal = {Proceedings of the American Mathematical Society},
number = {4},
pages = {1787 -- 1801},
publisher = {American Mathematical Society},
title = {{Inducing a map on homology from a correspondence}},
doi = {10.1090/proc/12812},
volume = {144},
year = {2016},
}
@article{1254,
abstract = {We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/.},
author = {Golmakani, Ali and Luzzatto, Stefano and Pilarczyk, Pawel},
journal = {Experimental Mathematics},
number = {2},
pages = {116 -- 124},
publisher = {Taylor and Francis},
title = {{Uniform expansivity outside a critical neighborhood in the quadratic family}},
doi = {10.1080/10586458.2015.1048011},
volume = {25},
year = {2016},
}
@article{1710,
abstract = {We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.},
author = {Akopyan, Arseniy and Plakhov, Alexander},
journal = {Society for Industrial and Applied Mathematics},
number = {4},
pages = {2754 -- 2769},
publisher = {SIAM},
title = {{Minimal resistance of curves under the single impact assumption}},
doi = {10.1137/140993843},
volume = {47},
year = {2015},
}
@article{1792,
abstract = {Motivated by recent ideas of Harman (Unif. Distrib. Theory, 2010) we develop a new concept of variation of multivariate functions on a compact Hausdorff space with respect to a collection D of subsets. We prove a general version of the Koksma-Hlawka theorem that holds for this notion of variation and discrepancy with respect to D. As special cases, we obtain Koksma-Hlawka inequalities for classical notions, such as extreme or isotropic discrepancy. For extreme discrepancy, our result coincides with the usual Koksma-Hlawka theorem. We show that the space of functions of bounded D-variation contains important discontinuous functions and is closed under natural algebraic operations. Finally, we illustrate the results on concrete integration problems from integral geometry and stereology.},
author = {Pausinger, Florian and Svane, Anne},
journal = {Journal of Complexity},
number = {6},
pages = {773 -- 797},
publisher = {Academic Press},
title = {{A Koksma-Hlawka inequality for general discrepancy systems}},
doi = {10.1016/j.jco.2015.06.002},
volume = {31},
year = {2015},
}
@article{1793,
abstract = {We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.},
author = {Symonova, Olga and Topp, Christopher and Edelsbrunner, Herbert},
journal = {PLoS One},
number = {6},
publisher = {Public Library of Science},
title = {{DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots}},
doi = {10.1371/journal.pone.0127657},
volume = {10},
year = {2015},
}
@article{1805,
abstract = {We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology H∗(X) of some complex X with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in double-struck R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on double-struck S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.},
author = {Attali, Dominique and Bauer, Ulrich and Devillers, Olivier and Glisse, Marc and Lieutier, André},
journal = {Computational Geometry: Theory and Applications},
number = {8},
pages = {606 -- 621},
publisher = {Elsevier},
title = {{Homological reconstruction and simplification in R3}},
doi = {10.1016/j.comgeo.2014.08.010},
volume = {48},
year = {2015},
}