@article{530,
abstract = {Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
journal = {Computational Geometry: Theory and Applications},
pages = {119 -- 133},
publisher = {Elsevier},
title = {{Multiple covers with balls I: Inclusion–exclusion}},
doi = {10.1016/j.comgeo.2017.06.014},
volume = {68},
year = {2018},
}
@article{106,
abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.},
author = {Akopyan, Arseniy and Petrunin, Anton},
journal = {Mathematical Intelligencer},
number = {3},
pages = {26 -- 31},
publisher = {Springer},
title = {{Long geodesics on convex surfaces}},
doi = {10.1007/s00283-018-9795-5},
volume = {40},
year = {2018},
}
@article{409,
abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.},
author = {Akopyan, Arseniy},
issn = {1631073X},
journal = {Comptes Rendus Mathematique},
number = {4},
pages = {412--414},
publisher = {Elsevier},
title = {{On the number of non-hexagons in a planar tiling}},
doi = {10.1016/j.crma.2018.03.005},
volume = {356},
year = {2018},
}
@unpublished{74,
abstract = {We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.},
author = {Akopyan, Arseniy and Karasev, Roman},
booktitle = {ArXiv},
pages = {15},
publisher = {ArXiv},
title = {{Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures}},
year = {2018},
}
@inproceedings{187,
abstract = {Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. },
author = {Edelsbrunner, Herbert and Osang, Georg F},
location = {Budapest, Hungary},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The multi-cover persistence of Euclidean balls}},
doi = {10.4230/LIPIcs.SoCG.2018.34},
volume = {99},
year = {2018},
}
@unpublished{75,
abstract = {We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.},
author = {Akopyan, Arseniy and Avvakumov, Sergey and Karasev, Roman},
booktitle = {ArXiv},
pages = {11},
publisher = {ArXiv},
title = {{Convex fair partitions into arbitrary number of pieces}},
year = {2018},
}
@inproceedings{188,
abstract = {Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.},
author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert},
location = {Budapest, Hungary},
pages = {35:1 -- 35:13},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Smallest enclosing spheres and Chernoff points in Bregman geometry}},
doi = {10.4230/LIPIcs.SoCG.2018.35},
volume = {99},
year = {2018},
}
@article{87,
abstract = {Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.},
author = {Edelsbrunner, Herbert and Nikitenko, Anton},
journal = {Annals of Applied Probability},
number = {5},
pages = {3215 -- 3238},
publisher = {Institute of Mathematical Statistics},
title = {{Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics}},
doi = {10.1214/18-AAP1389},
volume = {28},
year = {2018},
}
@article{312,
abstract = {Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.},
author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel},
issn = {08954801},
journal = {SIAM J Discrete Math},
number = {1},
pages = {750 -- 782},
publisher = {Society for Industrial and Applied Mathematics },
title = {{On the optimality of the FCC lattice for soft sphere packing}},
doi = {10.1137/16M1097201},
volume = {32},
year = {2018},
}
@article{1064,
abstract = {In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.},
author = {Akopyan, Arseniy and Balitskiy, Alexey and Grigorev, Mikhail},
issn = {14320444},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {1001--1009},
publisher = {Springer},
title = {{On the circle covering theorem by A.W. Goodman and R.E. Goodman}},
doi = {10.1007/s00454-017-9883-x},
volume = {59},
year = {2018},
}