@inproceedings{3328,
abstract = {We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL.},
author = {Berberich, Eric and Hemmer, Michael and Kerber, Michael},
location = {Paris, France},
pages = {179 -- 186},
publisher = {ACM},
title = {{A generic algebraic kernel for non linear geometric applications}},
doi = {10.1145/1998196.1998224},
year = {2011},
}
@inproceedings{3266,
abstract = {We present a joint image segmentation and labeling model (JSL) which, given a bag of figure-ground segment hypotheses extracted at multiple image locations and scales, constructs a joint probability distribution over both the compatible image interpretations (tilings or image segmentations) composed from those segments, and over their labeling into categories. The process of drawing samples from the joint distribution can be interpreted as first sampling tilings, modeled as maximal cliques, from a graph connecting spatially non-overlapping segments in the bag [1], followed by sampling labels for those segments, conditioned on the choice of a particular tiling. We learn the segmentation and labeling parameters jointly, based on Maximum Likelihood with a novel Incremental Saddle Point estimation procedure. The partition function over tilings and labelings is increasingly more accurately approximated by including incorrect configurations that a not-yet-competent model rates probable during learning. We show that the proposed methodologymatches the current state of the art in the Stanford dataset [2], as well as in VOC2010, where 41.7% accuracy on the test set is achieved.},
author = {Ion, Adrian and Carreira, Joao and Sminchisescu, Cristian},
booktitle = {NIPS Proceedings},
location = {Granada, Spain},
pages = {1827 -- 1835},
publisher = {Neural Information Processing Systems Foundation},
title = {{Probabilistic joint image segmentation and labeling}},
volume = {24},
year = {2011},
}
@inproceedings{3329,
abstract = {We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.},
author = {Berberich, Eric and Halperin, Dan and Kerber, Michael and Pogalnikova, Roza},
booktitle = {Proceedings of the twenty-seventh annual symposium on Computational geometry},
location = {Paris, France},
pages = {187 -- 196},
publisher = {ACM},
title = {{Deconstructing approximate offsets}},
doi = {10.1145/1998196.1998225},
year = {2011},
}
@inproceedings{3336,
abstract = {We introduce TopoCut: a new way to integrate knowledge about topological properties (TPs) into random field image segmentation model. Instead of including TPs as additional constraints during minimization of the energy function, we devise an efficient algorithm for modifying the unary potentials such that the resulting segmentation is guaranteed with the desired properties. Our method is more flexible in the sense that it handles more topology constraints than previous methods, which were only able to enforce pairwise or global connectivity. In particular, our method is very fast, making it for the first time possible to enforce global topological properties in practical image segmentation tasks.},
author = {Chen, Chao and Freedman, Daniel and Lampert, Christoph},
booktitle = {CVPR: Computer Vision and Pattern Recognition},
location = {Colorado Springs, CO, USA},
pages = {2089 -- 2096},
publisher = {IEEE},
title = {{Enforcing topological constraints in random field image segmentation}},
doi = {10.1109/CVPR.2011.5995503},
year = {2011},
}
@misc{3312,
abstract = {We study the 3D reconstruction of plant roots from multiple 2D images. To meet the challenge caused by the delicate nature of thin branches, we make three innovations to cope with the sensitivity to image quality and calibration. First, we model the background as a harmonic function to improve the segmentation of the root in each 2D image. Second, we develop the concept of the regularized visual hull which reduces the effect of jittering and refraction by ensuring consistency with one 2D image. Third, we guarantee connectedness through adjustments to the 3D reconstruction that minimize global error. Our software is part of a biological phenotype/genotype study of agricultural root systems. It has been tested on more than 40 plant roots and results are promising in terms of reconstruction quality and efficiency.},
author = {Zheng, Ying and Gu, Steve and Edelsbrunner, Herbert and Tomasi, Carlo and Benfey, Philip},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
location = {Barcelona, Spain},
publisher = {IEEE},
title = {{Detailed reconstruction of 3D plant root shape}},
doi = {10.1109/ICCV.2011.6126475},
year = {2011},
}
@inproceedings{3367,
abstract = {In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0,1), the running time is O(C(1-δ)ΓR(n)log n), where C(1-δ)Γ is the number of homology classes with persistence at least (1-δ)Γ, n is the total number of simplices, and R(n) is the complexity of computing the rank of an n x n matrix with O(n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O(C(1-δ)Γn2.376) algorithm, a O(C(1-δ)Γn2.28) Las-Vegas algorithm, or a O(C(1-δ)Γn2+ε) Monte-Carlo algorithm for an arbitrary ε>0.},
author = {Chen, Chao and Kerber, Michael},
location = {Paris, France},
pages = {207 -- 216},
publisher = {ACM},
title = {{An output sensitive algorithm for persistent homology}},
doi = {10.1145/1998196.1998228},
year = {2011},
}
@article{3267,
abstract = {We address the problem of localizing homology classes, namely, finding the cycle representing a given class with the most concise geometric measure. We study the problem with different measures: volume, diameter and radius. For volume, that is, the 1-norm of a cycle, two main results are presented. First, we prove that the problem is NP-hard to approximate within any constant factor. Second, we prove that for homology of dimension two or higher, the problem is NP-hard to approximate even when the Betti number is O(1). The latter result leads to the inapproximability of the problem of computing the nonbounding cycle with the smallest volume and computing cycles representing a homology basis with the minimal total volume. As for the other two measures defined by pairwise geodesic distance, diameter and radius, we show that the localization problem is NP-hard for diameter but is polynomial for radius. Our work is restricted to homology over the ℤ2 field.},
author = {Chen, Chao and Freedman, Daniel},
journal = {Discrete & Computational Geometry},
number = {3},
pages = {425 -- 448},
publisher = {Springer},
title = {{Hardness results for homology localization}},
doi = {10.1007/s00454-010-9322-8},
volume = {45},
year = {2011},
}
@inproceedings{3313,
abstract = {Interpreting an image as a function on a compact sub- set of the Euclidean plane, we get its scale-space by diffu- sion, spreading the image over the entire plane. This gener- ates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian ker- nel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.},
author = {Chen, Chao and Edelsbrunner, Herbert},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
location = {Barcelona, Spain},
publisher = {IEEE},
title = {{Diffusion runs low on persistence fast}},
doi = {10.1109/ICCV.2011.6126271},
year = {2011},
}
@article{3781,
abstract = {We bound the difference in length of two curves in terms of their total curvatures and the Fréchet distance. The bound is independent of the dimension of the ambient Euclidean space, it improves upon a bound by Cohen-Steiner and Edelsbrunner, and it generalizes a result by Fáry and Chakerian.},
author = {Fasy, Brittany Terese},
journal = {Acta Sci. Math. (Szeged)},
number = {1-2},
pages = {359 -- 367},
publisher = {Szegedi Tudományegyetem},
title = {{The difference in length of curves in R^n}},
volume = {77},
year = {2011},
}
@article{3332,
abstract = {Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3.},
author = {Kerber, Michael and Sagraloff, Michael},
journal = {Graphs and Combinatorics},
number = {3},
pages = {419 -- 430},
publisher = {Springer},
title = {{A note on the complexity of real algebraic hypersurfaces}},
doi = {10.1007/s00373-011-1020-7},
volume = {27},
year = {2011},
}