@article{521, abstract = {Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.}, author = {Austin, Kyle and Virk, Ziga}, issn = {01668641}, journal = {Topology and its Applications}, pages = {45 -- 57}, publisher = {Elsevier}, title = {{Higson compactification and dimension raising}}, doi = {10.1016/j.topol.2016.10.005}, volume = {215}, year = {2017}, } @article{568, abstract = {We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).}, author = {Franek, Peter and Krcál, Marek}, issn = {15320073}, journal = {Homology, Homotopy and Applications}, number = {2}, pages = {313 -- 342}, publisher = {International Press}, title = {{Persistence of zero sets}}, doi = {10.4310/HHA.2017.v19.n2.a16}, volume = {19}, year = {2017}, } @inbook{5803, abstract = {Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept.}, author = {Biswas, Ranita and Bhowmick, Partha}, booktitle = {Combinatorial image analysis}, isbn = {978-3-319-59107-0}, issn = {0302-9743}, location = {Plovdiv, Bulgaria}, pages = {93--104}, publisher = {Springer Nature}, title = {{Construction of persistent Voronoi diagram on 3D digital plane}}, doi = {10.1007/978-3-319-59108-7_8}, volume = {10256}, year = {2017}, } @inproceedings{688, abstract = {We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory. }, author = {Edelsbrunner, Herbert and Wagner, Hubert}, issn = {18688969}, location = {Brisbane, Australia}, pages = {391--3916}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Topological data analysis with Bregman divergences}}, doi = {10.4230/LIPIcs.SoCG.2017.39}, volume = {77}, year = {2017}, } @article{707, abstract = {We answer a question of M. Gromov on the waist of the unit ball.}, author = {Akopyan, Arseniy and Karasev, Roman}, issn = {00246093}, journal = {Bulletin of the London Mathematical Society}, number = {4}, pages = {690 -- 693}, publisher = {Wiley-Blackwell}, title = {{A tight estimate for the waist of the ball }}, doi = {10.1112/blms.12062}, volume = {49}, year = {2017}, } @article{718, abstract = {Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton and Reitzner, Matthias}, issn = {00018678}, journal = {Advances in Applied Probability}, number = {3}, pages = {745 -- 767}, publisher = {Cambridge University Press}, title = {{Expected sizes of poisson Delaunay mosaics and their discrete Morse functions}}, doi = {10.1017/apr.2017.20}, volume = {49}, year = {2017}, } @phdthesis{6287, abstract = {The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.}, author = {Nikitenko, Anton}, issn = {2663-337X}, pages = {86}, publisher = {Institute of Science and Technology Austria}, title = {{Discrete Morse theory for random complexes }}, doi = {10.15479/AT:ISTA:th_873}, year = {2017}, } @article{1433, abstract = {Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.}, author = {Bauer, Ulrich and Kerber, Michael and Reininghaus, Jan and Wagner, Hubert}, issn = { 07477171}, journal = {Journal of Symbolic Computation}, pages = {76 -- 90}, publisher = {Academic Press}, title = {{Phat - Persistent homology algorithms toolbox}}, doi = {10.1016/j.jsc.2016.03.008}, volume = {78}, year = {2017}, } @article{1180, abstract = {In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.}, author = {Akopyan, Arseniy and Bárány, Imre and Robins, Sinai}, issn = {00018708}, journal = {Advances in Mathematics}, pages = {627 -- 644}, publisher = {Academic Press}, title = {{Algebraic vertices of non-convex polyhedra}}, doi = {10.1016/j.aim.2016.12.026}, volume = {308}, year = {2017}, } @article{1173, abstract = {We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.}, author = {Edelsbrunner, Herbert and Glazyrin, Alexey and Musin, Oleg and Nikitenko, Anton}, issn = {02099683}, journal = {Combinatorica}, number = {5}, pages = {887 -- 910}, publisher = {Springer}, title = {{The Voronoi functional is maximized by the Delaunay triangulation in the plane}}, doi = {10.1007/s00493-016-3308-y}, volume = {37}, year = {2017}, }