@article{14793, abstract = {Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a sin(2y) CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.}, author = {Valentini, Marco and Sagi, Oliver and Baghumyan, Levon and de Gijsel, Thijs and Jung, Jason and Calcaterra, Stefano and Ballabio, Andrea and Aguilera Servin, Juan L and Aggarwal, Kushagra and Janik, Marian and Adletzberger, Thomas and Seoane Souto, Rubén and Leijnse, Martin and Danon, Jeroen and Schrade, Constantin and Bakkers, Erik and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium}}, doi = {10.1038/s41467-023-44114-0}, volume = {15}, year = {2024}, } @article{15018, abstract = {The epitaxial growth of a strained Ge layer, which is a promising candidate for the channel material of a hole spin qubit, has been demonstrated on 300 mm Si wafers using commercially available Si0.3Ge0.7 strain relaxed buffer (SRB) layers. The assessment of the layer and the interface qualities for a buried strained Ge layer embedded in Si0.3Ge0.7 layers is reported. The XRD reciprocal space mapping confirmed that the reduction of the growth temperature enables the 2-dimensional growth of the Ge layer fully strained with respect to the Si0.3Ge0.7. Nevertheless, dislocations at the top and/or bottom interface of the Ge layer were observed by means of electron channeling contrast imaging, suggesting the importance of the careful dislocation assessment. The interface abruptness does not depend on the selection of the precursor gases, but it is strongly influenced by the growth temperature which affects the coverage of the surface H-passivation. The mobility of 2.7 × 105 cm2/Vs is promising, while the low percolation density of 3 × 1010 /cm2 measured with a Hall-bar device at 7 K illustrates the high quality of the heterostructure thanks to the high Si0.3Ge0.7 SRB quality.}, author = {Shimura, Yosuke and Godfrin, Clement and Hikavyy, Andriy and Li, Roy and Aguilera Servin, Juan L and Katsaros, Georgios and Favia, Paola and Han, Han and Wan, Danny and de Greve, Kristiaan and Loo, Roger}, issn = {1369-8001}, journal = {Materials Science in Semiconductor Processing}, keywords = {Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics, General Materials Science}, number = {5}, publisher = {Elsevier}, title = {{Compressively strained epitaxial Ge layers for quantum computing applications}}, doi = {10.1016/j.mssp.2024.108231}, volume = {174}, year = {2024}, } @article{13119, abstract = {A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen–Cooper–Schrieffer superfluid to a Bose–Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen–Cooper–Schrieffer superfluid and Bose–Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order.}, author = {Helson, Victor and Zwettler, Timo and Mivehvar, Farokh and Colella, Elvia and Roux, Kevin Etienne Robert and Konishi, Hideki and Ritsch, Helmut and Brantut, Jean Philippe}, issn = {1476-4687}, journal = {Nature}, pages = {716--720}, publisher = {Springer Nature}, title = {{Density-wave ordering in a unitary Fermi gas with photon-mediated interactions}}, doi = {10.1038/s41586-023-06018-3}, volume = {618}, year = {2023}, } @unpublished{13312, abstract = {Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a $ \sin \left( 2 \varphi \right)$ CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with $ \approx 100 \%$ efficiency. The reported results open up the path towards monolithic integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on a silicon technology compatible platform.}, author = {Valentini, Marco and Sagi, Oliver and Baghumyan, Levon and Gijsel, Thijs de and Jung, Jason and Calcaterra, Stefano and Ballabio, Andrea and Servin, Juan Aguilera and Aggarwal, Kushagra and Janik, Marian and Adletzberger, Thomas and Souto, Rubén Seoane and Leijnse, Martin and Danon, Jeroen and Schrade, Constantin and Bakkers, Erik and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, booktitle = {arXiv}, keywords = {Mesoscale and Nanoscale Physics}, title = {{Radio frequency driven superconducting diode and parity conserving Cooper pair transport in a two-dimensional germanium hole gas}}, doi = {10.48550/arXiv.2306.07109}, year = {2023}, } @phdthesis{13286, abstract = {Semiconductor-superconductor hybrid systems are the harbour of many intriguing mesoscopic phenomena. This material combination leads to spatial variations of the superconducting properties, which gives rise to Andreev bound states (ABSs). Some of these states might exhibit remarkable properties that render them highly desirable for topological quantum computing. The most prominent and hunted of such states are Majorana zero modes (MZMs), quasiparticles equals to their own quasiparticles that they follow non-abelian statistics. In this thesis, we first introduce the general framework of such hybrid systems and, then, we unveil a series of mesoscopic phenomena that we discovered. Firstly, we show tunneling spectroscopy experiments on full-shell nanowires (NWs) showing that unwanted quantum-dot states coupled to superconductors (Yu-Shiba-Rusinov states) can mimic MZMs signatures. Then, we introduce a novel protocol which allowed the integration of tunneling spectroscopy with Coulomb spectroscopy within the same device. Employing this approach on both full-shell NWs and partial-shell NWs, we demonstrated that longitudinally confined states reveal charge transport phenomenology similar to the one expected for MZMs. These findings shed light on the intricate interplay between superconductivity and quantum confinement, which brought us to explore another material platform, i.e. a two-dimensional Germanium hole gas. After developing a robust way to induce superconductivity in such system, we showed how to engineer the proximity effect and we revealed a superconducting hard gap. Finally, we created a superconducting radio frequency driven ideal diode and a generator of non-sinusoidal current-phase relations. Our results open the path for the exploration of protected superconducting qubits and more complex hybrid devices in planar Germanium, like Kitaev chains and hybrid qubit devices.}, author = {Valentini, Marco}, issn = {2663 - 337X}, pages = {184}, publisher = {Institute of Science and Technology Austria}, title = {{Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium}}, doi = {10.15479/at:ista:13286}, year = {2023}, } @article{10920, abstract = {The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.}, author = {Jirovec, Daniel and Mutter, Philipp M. and Hofmann, Andrea C and Crippa, Alessandro and Rychetsky, Marek and Craig, David L. and Kukucka, Josip and Martins, Frederico and Ballabio, Andrea and Ares, Natalia and Chrastina, Daniel and Isella, Giovanni and Burkard, Guido and Katsaros, Georgios}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {12}, publisher = {American Physical Society}, title = {{Dynamics of hole singlet-triplet qubits with large g-factor differences}}, doi = {10.1103/PhysRevLett.128.126803}, volume = {128}, year = {2022}, } @article{12118, abstract = {Hybrid semiconductor–superconductor devices hold great promise for realizing topological quantum computing with Majorana zero modes1,2,3,4,5. However, multiple claims of Majorana detection, based on either tunnelling6,7,8,9,10 or Coulomb blockade (CB) spectroscopy11,12, remain disputed. Here we devise an experimental protocol that allows us to perform both types of measurement on the same hybrid island by adjusting its charging energy via tunable junctions to the normal leads. This method reduces ambiguities of Majorana detections by checking the consistency between CB spectroscopy and zero-bias peaks in non-blockaded transport. Specifically, we observe junction-dependent, even–odd modulated, single-electron CB peaks in InAs/Al hybrid nanowires without concomitant low-bias peaks in tunnelling spectroscopy. We provide a theoretical interpretation of the experimental observations in terms of low-energy, longitudinally confined island states rather than overlapping Majorana modes. Our results highlight the importance of combined measurements on the same device for the identification of topological Majorana zero modes.}, author = {Valentini, Marco and Borovkov, Maksim and Prada, Elsa and Martí-Sánchez, Sara and Botifoll, Marc and Hofmann, Andrea C and Arbiol, Jordi and Aguado, Ramón and San-Jose, Pablo and Katsaros, Georgios}, issn = {1476-4687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7940}, pages = {442--447}, publisher = {Springer Nature}, title = {{Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks}}, doi = {10.1038/s41586-022-05382-w}, volume = {612}, year = {2022}, } @misc{12522, abstract = {This .zip File contains the transport data, the codes for the data analysis, the microscopy analysis and the codes for the theoretical simulations for "Majorana-like Coulomb spectroscopy in the absence of zero bias peaks" by M. Valentini, et. al. The transport data are saved with hdf5 file format. The files can be open with the log browser of Labber.}, author = {Valentini, Marco and San-Jose, Pablo and Arbiol, Jordi and Marti-Sanchez, Sara and Botifoll, Marc}, publisher = {Institute of Science and Technology Austria}, title = {{Data for "Majorana-like Coulomb spectroscopy in the absence of zero bias peaks"}}, doi = {10.15479/AT:ISTA:12102}, year = {2022}, } @inproceedings{9464, abstract = {We firstly introduce the self-assembled growth of highly uniform Ge quantum wires with controllable position, distance and length on patterned Si (001) substrates. We then present the electrically tunable strong spin-orbit coupling, the first Ge hole spin qubit and ultrafast operation of hole spin qubit in the Ge/Si quantum wires.}, author = {Gao, Fei and Zhang, Jie Yin and Wang, Jian Huan and Ming, Ming and Wang, Tina and Zhang, Jian Jun and Watzinger, Hannes and Kukucka, Josip and Vukušić, Lada and Katsaros, Georgios and Wang, Ke and Xu, Gang and Li, Hai Ou and Guo, Guo Ping}, booktitle = {2021 5th IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2021}, isbn = {9781728181769}, location = {Virtual, Online}, publisher = {IEEE}, title = {{Ge/Si quantum wires for quantum computing}}, doi = {10.1109/EDTM50988.2021.9420817}, year = {2021}, } @misc{9291, abstract = {This .zip File contains the transport data for figures presented in the main text and supplementary material of "Enhancement of Proximity Induced Superconductivity in Planar Germanium" by K. Aggarwal, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html).}, author = {Katsaros, Georgios}, publisher = {Institute of Science and Technology Austria}, title = {{Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium}}, doi = {10.15479/AT:ISTA:9291}, year = {2021}, } @article{8910, abstract = {A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.}, author = {Valentini, Marco and Peñaranda, Fernando and Hofmann, Andrea C and Brauns, Matthias and Hauschild, Robert and Krogstrup, Peter and San-Jose, Pablo and Prada, Elsa and Aguado, Ramón and Katsaros, Georgios}, issn = {10959203}, journal = {Science}, number = {6550}, publisher = {American Association for the Advancement of Science}, title = {{Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states}}, doi = {10.1126/science.abf1513}, volume = {373}, year = {2021}, } @misc{9323, abstract = {This .zip File contains the data for figures presented in the main text and supplementary material of "A singlet triplet hole spin qubit in planar Ge" by D. Jirovec, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html). A single file is acquired with QCodes and features the corresponding data type. XRD data are in .dat format and a code to open the data is provided. The code for simulations is as well provided in Python.}, author = {Jirovec, Daniel}, publisher = {Institute of Science and Technology Austria}, title = {{Research data for "A singlet-triplet hole spin qubit planar Ge"}}, doi = {10.15479/AT:ISTA:9323}, year = {2021}, } @misc{9389, abstract = {This .zip File contains the transport data for "Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states" by M. Valentini, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. Instructions of how to read the data are in "Notebook_Valentini.pdf".}, author = {Valentini, Marco}, publisher = {Institute of Science and Technology Austria}, title = {{Research data for "Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states"}}, doi = {10.15479/AT:ISTA:9389}, year = {2021}, } @article{10559, abstract = {Hole gases in planar germanium can have high mobilities in combination with strong spin-orbit interaction and electrically tunable g factors, and are therefore emerging as a promising platform for creating hybrid superconductor-semiconductor devices. A key challenge towards hybrid Ge-based quantum technologies is the design of high-quality interfaces and superconducting contacts that are robust against magnetic fields. In this work, by combining the assets of aluminum, which provides good contact to the Ge, and niobium, which has a significant superconducting gap, we demonstrate highly transparent low-disordered JoFETs with relatively large ICRN products that are capable of withstanding high magnetic fields. We furthermore demonstrate the ability of phase-biasing individual JoFETs, opening up an avenue to explore topological superconductivity in planar Ge. The persistence of superconductivity in the reported hybrid devices beyond 1.8 T paves the way towards integrating spin qubits and proximity-induced superconductivity on the same chip.}, author = {Aggarwal, Kushagra and Hofmann, Andrea C and Jirovec, Daniel and Prieto Gonzalez, Ivan and Sammak, Amir and Botifoll, Marc and Martí-Sánchez, Sara and Veldhorst, Menno and Arbiol, Jordi and Scappucci, Giordano and Danon, Jeroen and Katsaros, Georgios}, issn = {2643-1564}, journal = {Physical Review Research}, keywords = {general engineering}, number = {2}, publisher = {American Physical Society}, title = {{Enhancement of proximity-induced superconductivity in a planar Ge hole gas}}, doi = {10.1103/physrevresearch.3.l022005}, volume = {3}, year = {2021}, } @article{8911, abstract = {In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the germanium valence-band states, commonly known as holes, such as their inherently strong spin-orbit coupling and the ability to host superconducting pairing correlations. In this Review, we initially introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective. We then examine the material science progress underpinning germanium-based planar heterostructures and nanowires. We review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising prospects toward scalable quantum information processing. }, author = {Scappucci, Giordano and Kloeffel, Christoph and Zwanenburg, Floris A. and Loss, Daniel and Myronov, Maksym and Zhang, Jian-Jun and Franceschi, Silvano De and Katsaros, Georgios and Veldhorst, Menno}, issn = {2058-8437}, journal = {Nature Reviews Materials}, pages = {926–943 }, publisher = {Springer Nature}, title = {{The germanium quantum information route}}, doi = {10.1038/s41578-020-00262-z}, volume = {6}, year = {2021}, } @phdthesis{10058, abstract = {Quantum information and computation has become a vast field paved with opportunities for researchers and investors. As large multinational companies and international funds are heavily investing in quantum technologies it is still a question which platform is best suited for the task of realizing a scalable quantum processor. In this work we investigate hole spins in Ge quantum wells. These hold great promise as they possess several favorable properties: a small effective mass, a strong spin-orbit coupling, long relaxation time and an inherent immunity to hyperfine noise. All these characteristics helped Ge hole spin qubits to evolve from a single qubit to a fully entangled four qubit processor in only 3 years. Here, we investigated a qubit approach leveraging the large out-of-plane g-factors of heavy hole states in Ge quantum dots. We found this qubit to be reproducibly operable at extremely low magnetic field and at large speeds while maintaining coherence. This was possible because large differences of g-factors in adjacent dots can be achieved in the out-of-plane direction. In the in-plane direction the small g-factors, on the other hand, can be altered very effectively by the confinement potentials. Here, we found that this can even lead to a sign change of the g-factors. The resulting g-factor difference alters the dynamics of the system drastically and produces effects typically attributed to a spin-orbit induced spin-flip term. The investigations carried out in this thesis give further insights into the possibilities of holes in Ge and reveal new physical properties that need to be considered when designing future spin qubit experiments.}, author = {Jirovec, Daniel}, issn = {2663-337X}, keywords = {qubits, quantum computing, holes}, pages = {151}, publisher = {Institute of Science and Technology Austria}, title = {{Singlet-Triplet qubits and spin-orbit interaction in 2-dimensional Ge hole gases}}, doi = {10.15479/at:ista:10058}, year = {2021}, } @article{8909, abstract = {Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled X and Z-rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1μs which we extend beyond 15μs with echo techniques. These results show that Ge hole singlet triplet qubits outperform their electronic Si and GaAs based counterparts in speed and coherence, respectively. In addition, they are on par with Ge single spin qubits, but can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies.}, author = {Jirovec, Daniel and Hofmann, Andrea C and Ballabio, Andrea and Mutter, Philipp M. and Tavani, Giulio and Botifoll, Marc and Crippa, Alessandro and Kukucka, Josip and Sagi, Oliver and Martins, Frederico and Saez Mollejo, Jaime and Prieto Gonzalez, Ivan and Borovkov, Maksim and Arbiol, Jordi and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, issn = {1476-4660}, journal = {Nature Materials}, number = {8}, pages = {1106–1112}, publisher = {Springer Nature}, title = {{A singlet triplet hole spin qubit in planar Ge}}, doi = {10.1038/s41563-021-01022-2}, volume = {20}, year = {2021}, } @unpublished{10066, abstract = {The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions. We give a key step towards tackling this variability with an algorithm that, without modification, is capable of tuning a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate SiGe heterostructure double quantum dot device from scratch. We achieve tuning times of 30, 10, and 92 minutes, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning.}, author = {Severin, B. and Lennon, D. T. and Camenzind, L. C. and Vigneau, F. and Fedele, F. and Jirovec, Daniel and Ballabio, A. and Chrastina, D. and Isella, G. and Kruijf, M. de and Carballido, M. J. and Svab, S. and Kuhlmann, A. V. and Braakman, F. R. and Geyer, S. and Froning, F. N. M. and Moon, H. and Osborne, M. A. and Sejdinovic, D. and Katsaros, Georgios and Zumbühl, D. M. and Briggs, G. A. D. and Ares, N.}, booktitle = {arXiv}, title = {{Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning}}, doi = {10.48550/arXiv.2107.12975}, year = {2021}, } @phdthesis{7996, abstract = {Quantum computation enables the execution of algorithms that have exponential complexity. This might open the path towards the synthesis of new materials or medical drugs, optimization of transport or financial strategies etc., intractable on even the fastest classical computers. A quantum computer consists of interconnected two level quantum systems, called qubits, that satisfy DiVincezo’s criteria. Worldwide, there are ongoing efforts to find the qubit architecture which will unite quantum error correction compatible single and two qubit fidelities, long distance qubit to qubit coupling and calability. Superconducting qubits have gone the furthest in this race, demonstrating an algorithm running on 53 coupled qubits, but still the fidelities are not even close to those required for realizing a single logical qubit. emiconductor qubits offer extremely good characteristics, but they are currently investigated across different platforms. Uniting those good characteristics into a single platform might be a big step towards the quantum computer realization. Here we describe the implementation of a hole spin qubit hosted in a Ge hut wire double quantum dot. The high and tunable spin-orbit coupling together with a heavy hole state character is expected to allow fast spin manipulation and long coherence times. Furthermore large lever arms, for hut wire devices, should allow good coupling to superconducting resonators enabling efficient long distance spin to spin coupling and a sensitive gate reflectometry spin readout. The developed cryogenic setup (printed circuit board sample holders, filtering, high-frequency wiring) enabled us to perform low temperature spin dynamics experiments. Indeed, we measured the fastest single spin qubit Rabi frequencies reported so far, reaching 140 MHz, while the dephasing times of 130 ns oppose the long decoherence predictions. In order to further investigate this, a double quantum dot gate was connected directly to a lumped element resonator which enabled gate reflectometry readout. The vanishing inter-dot transition signal, for increasing external magnetic field, revealed the spin nature of the measured quantity.}, author = {Kukucka, Josip}, issn = {2663-337X}, pages = {178}, publisher = {Institute of Science and Technology Austria}, title = {{Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing}}, doi = {10.15479/AT:ISTA:7996}, year = {2020}, } @misc{8834, abstract = {This data collection contains the transport data for figures presented in the supplementary material of "Enhancement of Proximity Induced Superconductivity in Planar Germanium" by K. Aggarwal, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html). }, author = {Katsaros, Georgios}, publisher = {Institute of Science and Technology Austria}, title = {{Enhancement of proximity induced superconductivity in planar Germanium}}, doi = {10.15479/AT:ISTA:8834}, year = {2020}, }