@article{14793, abstract = {Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a sin(2y) CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.}, author = {Valentini, Marco and Sagi, Oliver and Baghumyan, Levon and de Gijsel, Thijs and Jung, Jason and Calcaterra, Stefano and Ballabio, Andrea and Aguilera Servin, Juan L and Aggarwal, Kushagra and Janik, Marian and Adletzberger, Thomas and Seoane Souto, Rubén and Leijnse, Martin and Danon, Jeroen and Schrade, Constantin and Bakkers, Erik and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium}}, doi = {10.1038/s41467-023-44114-0}, volume = {15}, year = {2024}, } @article{15018, abstract = {The epitaxial growth of a strained Ge layer, which is a promising candidate for the channel material of a hole spin qubit, has been demonstrated on 300 mm Si wafers using commercially available Si0.3Ge0.7 strain relaxed buffer (SRB) layers. The assessment of the layer and the interface qualities for a buried strained Ge layer embedded in Si0.3Ge0.7 layers is reported. The XRD reciprocal space mapping confirmed that the reduction of the growth temperature enables the 2-dimensional growth of the Ge layer fully strained with respect to the Si0.3Ge0.7. Nevertheless, dislocations at the top and/or bottom interface of the Ge layer were observed by means of electron channeling contrast imaging, suggesting the importance of the careful dislocation assessment. The interface abruptness does not depend on the selection of the precursor gases, but it is strongly influenced by the growth temperature which affects the coverage of the surface H-passivation. The mobility of 2.7 × 105 cm2/Vs is promising, while the low percolation density of 3 × 1010 /cm2 measured with a Hall-bar device at 7 K illustrates the high quality of the heterostructure thanks to the high Si0.3Ge0.7 SRB quality.}, author = {Shimura, Yosuke and Godfrin, Clement and Hikavyy, Andriy and Li, Roy and Aguilera Servin, Juan L and Katsaros, Georgios and Favia, Paola and Han, Han and Wan, Danny and de Greve, Kristiaan and Loo, Roger}, issn = {1369-8001}, journal = {Materials Science in Semiconductor Processing}, keywords = {Mechanical Engineering, Mechanics of Materials, Condensed Matter Physics, General Materials Science}, number = {5}, publisher = {Elsevier}, title = {{Compressively strained epitaxial Ge layers for quantum computing applications}}, doi = {10.1016/j.mssp.2024.108231}, volume = {174}, year = {2024}, } @article{13119, abstract = {A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen–Cooper–Schrieffer superfluid to a Bose–Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen–Cooper–Schrieffer superfluid and Bose–Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order.}, author = {Helson, Victor and Zwettler, Timo and Mivehvar, Farokh and Colella, Elvia and Roux, Kevin Etienne Robert and Konishi, Hideki and Ritsch, Helmut and Brantut, Jean Philippe}, issn = {1476-4687}, journal = {Nature}, pages = {716--720}, publisher = {Springer Nature}, title = {{Density-wave ordering in a unitary Fermi gas with photon-mediated interactions}}, doi = {10.1038/s41586-023-06018-3}, volume = {618}, year = {2023}, } @unpublished{13312, abstract = {Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a $ \sin \left( 2 \varphi \right)$ CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with $ \approx 100 \%$ efficiency. The reported results open up the path towards monolithic integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on a silicon technology compatible platform.}, author = {Valentini, Marco and Sagi, Oliver and Baghumyan, Levon and Gijsel, Thijs de and Jung, Jason and Calcaterra, Stefano and Ballabio, Andrea and Servin, Juan Aguilera and Aggarwal, Kushagra and Janik, Marian and Adletzberger, Thomas and Souto, Rubén Seoane and Leijnse, Martin and Danon, Jeroen and Schrade, Constantin and Bakkers, Erik and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, booktitle = {arXiv}, keywords = {Mesoscale and Nanoscale Physics}, title = {{Radio frequency driven superconducting diode and parity conserving Cooper pair transport in a two-dimensional germanium hole gas}}, doi = {10.48550/arXiv.2306.07109}, year = {2023}, } @phdthesis{13286, abstract = {Semiconductor-superconductor hybrid systems are the harbour of many intriguing mesoscopic phenomena. This material combination leads to spatial variations of the superconducting properties, which gives rise to Andreev bound states (ABSs). Some of these states might exhibit remarkable properties that render them highly desirable for topological quantum computing. The most prominent and hunted of such states are Majorana zero modes (MZMs), quasiparticles equals to their own quasiparticles that they follow non-abelian statistics. In this thesis, we first introduce the general framework of such hybrid systems and, then, we unveil a series of mesoscopic phenomena that we discovered. Firstly, we show tunneling spectroscopy experiments on full-shell nanowires (NWs) showing that unwanted quantum-dot states coupled to superconductors (Yu-Shiba-Rusinov states) can mimic MZMs signatures. Then, we introduce a novel protocol which allowed the integration of tunneling spectroscopy with Coulomb spectroscopy within the same device. Employing this approach on both full-shell NWs and partial-shell NWs, we demonstrated that longitudinally confined states reveal charge transport phenomenology similar to the one expected for MZMs. These findings shed light on the intricate interplay between superconductivity and quantum confinement, which brought us to explore another material platform, i.e. a two-dimensional Germanium hole gas. After developing a robust way to induce superconductivity in such system, we showed how to engineer the proximity effect and we revealed a superconducting hard gap. Finally, we created a superconducting radio frequency driven ideal diode and a generator of non-sinusoidal current-phase relations. Our results open the path for the exploration of protected superconducting qubits and more complex hybrid devices in planar Germanium, like Kitaev chains and hybrid qubit devices.}, author = {Valentini, Marco}, issn = {2663 - 337X}, pages = {184}, publisher = {Institute of Science and Technology Austria}, title = {{Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium}}, doi = {10.15479/at:ista:13286}, year = {2023}, } @article{10920, abstract = {The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.}, author = {Jirovec, Daniel and Mutter, Philipp M. and Hofmann, Andrea C and Crippa, Alessandro and Rychetsky, Marek and Craig, David L. and Kukucka, Josip and Martins, Frederico and Ballabio, Andrea and Ares, Natalia and Chrastina, Daniel and Isella, Giovanni and Burkard, Guido and Katsaros, Georgios}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {12}, publisher = {American Physical Society}, title = {{Dynamics of hole singlet-triplet qubits with large g-factor differences}}, doi = {10.1103/PhysRevLett.128.126803}, volume = {128}, year = {2022}, } @article{12118, abstract = {Hybrid semiconductor–superconductor devices hold great promise for realizing topological quantum computing with Majorana zero modes1,2,3,4,5. However, multiple claims of Majorana detection, based on either tunnelling6,7,8,9,10 or Coulomb blockade (CB) spectroscopy11,12, remain disputed. Here we devise an experimental protocol that allows us to perform both types of measurement on the same hybrid island by adjusting its charging energy via tunable junctions to the normal leads. This method reduces ambiguities of Majorana detections by checking the consistency between CB spectroscopy and zero-bias peaks in non-blockaded transport. Specifically, we observe junction-dependent, even–odd modulated, single-electron CB peaks in InAs/Al hybrid nanowires without concomitant low-bias peaks in tunnelling spectroscopy. We provide a theoretical interpretation of the experimental observations in terms of low-energy, longitudinally confined island states rather than overlapping Majorana modes. Our results highlight the importance of combined measurements on the same device for the identification of topological Majorana zero modes.}, author = {Valentini, Marco and Borovkov, Maksim and Prada, Elsa and Martí-Sánchez, Sara and Botifoll, Marc and Hofmann, Andrea C and Arbiol, Jordi and Aguado, Ramón and San-Jose, Pablo and Katsaros, Georgios}, issn = {1476-4687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7940}, pages = {442--447}, publisher = {Springer Nature}, title = {{Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks}}, doi = {10.1038/s41586-022-05382-w}, volume = {612}, year = {2022}, } @misc{12522, abstract = {This .zip File contains the transport data, the codes for the data analysis, the microscopy analysis and the codes for the theoretical simulations for "Majorana-like Coulomb spectroscopy in the absence of zero bias peaks" by M. Valentini, et. al. The transport data are saved with hdf5 file format. The files can be open with the log browser of Labber.}, author = {Valentini, Marco and San-Jose, Pablo and Arbiol, Jordi and Marti-Sanchez, Sara and Botifoll, Marc}, publisher = {Institute of Science and Technology Austria}, title = {{Data for "Majorana-like Coulomb spectroscopy in the absence of zero bias peaks"}}, doi = {10.15479/AT:ISTA:12102}, year = {2022}, } @inproceedings{9464, abstract = {We firstly introduce the self-assembled growth of highly uniform Ge quantum wires with controllable position, distance and length on patterned Si (001) substrates. We then present the electrically tunable strong spin-orbit coupling, the first Ge hole spin qubit and ultrafast operation of hole spin qubit in the Ge/Si quantum wires.}, author = {Gao, Fei and Zhang, Jie Yin and Wang, Jian Huan and Ming, Ming and Wang, Tina and Zhang, Jian Jun and Watzinger, Hannes and Kukucka, Josip and Vukušić, Lada and Katsaros, Georgios and Wang, Ke and Xu, Gang and Li, Hai Ou and Guo, Guo Ping}, booktitle = {2021 5th IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2021}, isbn = {9781728181769}, location = {Virtual, Online}, publisher = {IEEE}, title = {{Ge/Si quantum wires for quantum computing}}, doi = {10.1109/EDTM50988.2021.9420817}, year = {2021}, } @misc{9291, abstract = {This .zip File contains the transport data for figures presented in the main text and supplementary material of "Enhancement of Proximity Induced Superconductivity in Planar Germanium" by K. Aggarwal, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html).}, author = {Katsaros, Georgios}, publisher = {Institute of Science and Technology Austria}, title = {{Raw transport data for: Enhancement of proximity induced superconductivity in planar germanium}}, doi = {10.15479/AT:ISTA:9291}, year = {2021}, }