--- _id: '1266' abstract: - lang: eng text: 'Cortical networks exhibit ‘global oscillations’, in which neural spike times are entrained to an underlying oscillatory rhythm, but where individual neurons fire irregularly, on only a fraction of cycles. While the network dynamics underlying global oscillations have been well characterised, their function is debated. Here, we show that such global oscillations are a direct consequence of optimal efficient coding in spiking networks with synaptic delays and noise. To avoid firing unnecessary spikes, neurons need to share information about the network state. Ideally, membrane potentials should be strongly correlated and reflect a ‘prediction error’ while the spikes themselves are uncorrelated and occur rarely. We show that the most efficient representation is when: (i) spike times are entrained to a global Gamma rhythm (implying a consistent representation of the error); but (ii) few neurons fire on each cycle (implying high efficiency), while (iii) excitation and inhibition are tightly balanced. This suggests that cortical networks exhibiting such dynamics are tuned to achieve a maximally efficient population code.' acknowledgement: Boris Gutkin acknowledges funding by the Russian Academic Excellence Project '5-100’. article_number: e13824 author: - first_name: Matthew J full_name: Chalk, Matthew J id: 2BAAC544-F248-11E8-B48F-1D18A9856A87 last_name: Chalk orcid: 0000-0001-7782-4436 - first_name: Boris full_name: Gutkin, Boris last_name: Gutkin - first_name: Sophie full_name: Denève, Sophie last_name: Denève citation: ama: Chalk MJ, Gutkin B, Denève S. Neural oscillations as a signature of efficient coding in the presence of synaptic delays. eLife. 2016;5(2016JULY). doi:10.7554/eLife.13824 apa: Chalk, M. J., Gutkin, B., & Denève, S. (2016). Neural oscillations as a signature of efficient coding in the presence of synaptic delays. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.13824 chicago: Chalk, Matthew J, Boris Gutkin, and Sophie Denève. “Neural Oscillations as a Signature of Efficient Coding in the Presence of Synaptic Delays.” ELife. eLife Sciences Publications, 2016. https://doi.org/10.7554/eLife.13824. ieee: M. J. Chalk, B. Gutkin, and S. Denève, “Neural oscillations as a signature of efficient coding in the presence of synaptic delays,” eLife, vol. 5, no. 2016JULY. eLife Sciences Publications, 2016. ista: Chalk MJ, Gutkin B, Denève S. 2016. Neural oscillations as a signature of efficient coding in the presence of synaptic delays. eLife. 5(2016JULY), e13824. mla: Chalk, Matthew J., et al. “Neural Oscillations as a Signature of Efficient Coding in the Presence of Synaptic Delays.” ELife, vol. 5, no. 2016JULY, e13824, eLife Sciences Publications, 2016, doi:10.7554/eLife.13824. short: M.J. Chalk, B. Gutkin, S. Denève, ELife 5 (2016). date_created: 2018-12-11T11:51:02Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:49:30Z day: '01' ddc: - '571' department: - _id: GaTk doi: 10.7554/eLife.13824 file: - access_level: open_access checksum: dc52d967dc76174477bb258d84be2899 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:20Z date_updated: 2020-07-14T12:44:42Z file_id: '4874' file_name: IST-2016-700-v1+1_e13824-download.pdf file_size: 2819055 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 5' issue: 2016JULY language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '6056' pubrep_id: '700' quality_controlled: '1' scopus_import: 1 status: public title: Neural oscillations as a signature of efficient coding in the presence of synaptic delays tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2016' ... --- _id: '1290' abstract: - lang: eng text: We developed a competition-based screening strategy to identify compounds that invert the selective advantage of antibiotic resistance. Using our assay, we screened over 19,000 compounds for the ability to select against the TetA tetracycline-resistance efflux pump in Escherichia coli and identified two hits, β-thujaplicin and disulfiram. Treating a tetracycline-resistant population with β-thujaplicin selects for loss of the resistance gene, enabling an effective second-phase treatment with doxycycline. acknowledgement: "This work was supported in part by National Institute of Allergy and Infectious Diseases grant U54 AI057159, US National Institutes of Health grants R01 GM081617 (to R.K.) and GM086258 (to J.C.), European Research Council FP7 ERC grant 281891 (to R.K.) and a National Science Foundation Graduate Fellowship (to L.K.S.).\r\n" author: - first_name: Laura full_name: Stone, Laura last_name: Stone - first_name: Michael full_name: Baym, Michael last_name: Baym - first_name: Tami full_name: Lieberman, Tami last_name: Lieberman - first_name: Remy P full_name: Chait, Remy P id: 3464AE84-F248-11E8-B48F-1D18A9856A87 last_name: Chait orcid: 0000-0003-0876-3187 - first_name: Jon full_name: Clardy, Jon last_name: Clardy - first_name: Roy full_name: Kishony, Roy last_name: Kishony citation: ama: Stone L, Baym M, Lieberman T, Chait RP, Clardy J, Kishony R. Compounds that select against the tetracycline-resistance efflux pump. Nature Chemical Biology. 2016;12(11):902-904. doi:10.1038/nchembio.2176 apa: Stone, L., Baym, M., Lieberman, T., Chait, R. P., Clardy, J., & Kishony, R. (2016). Compounds that select against the tetracycline-resistance efflux pump. Nature Chemical Biology. Nature Publishing Group. https://doi.org/10.1038/nchembio.2176 chicago: Stone, Laura, Michael Baym, Tami Lieberman, Remy P Chait, Jon Clardy, and Roy Kishony. “Compounds That Select against the Tetracycline-Resistance Efflux Pump.” Nature Chemical Biology. Nature Publishing Group, 2016. https://doi.org/10.1038/nchembio.2176. ieee: L. Stone, M. Baym, T. Lieberman, R. P. Chait, J. Clardy, and R. Kishony, “Compounds that select against the tetracycline-resistance efflux pump,” Nature Chemical Biology, vol. 12, no. 11. Nature Publishing Group, pp. 902–904, 2016. ista: Stone L, Baym M, Lieberman T, Chait RP, Clardy J, Kishony R. 2016. Compounds that select against the tetracycline-resistance efflux pump. Nature Chemical Biology. 12(11), 902–904. mla: Stone, Laura, et al. “Compounds That Select against the Tetracycline-Resistance Efflux Pump.” Nature Chemical Biology, vol. 12, no. 11, Nature Publishing Group, 2016, pp. 902–04, doi:10.1038/nchembio.2176. short: L. Stone, M. Baym, T. Lieberman, R.P. Chait, J. Clardy, R. Kishony, Nature Chemical Biology 12 (2016) 902–904. date_created: 2018-12-11T11:51:10Z date_published: 2016-11-01T00:00:00Z date_updated: 2021-01-12T06:49:39Z day: '01' department: - _id: CaGu - _id: GaTk doi: 10.1038/nchembio.2176 intvolume: ' 12' issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069154/ month: '11' oa: 1 oa_version: Preprint page: 902 - 904 publication: Nature Chemical Biology publication_status: published publisher: Nature Publishing Group publist_id: '6026' quality_controlled: '1' scopus_import: 1 status: public title: Compounds that select against the tetracycline-resistance efflux pump type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2016' ... --- _id: '1320' abstract: - lang: eng text: 'In recent years, several biomolecular systems have been shown to be scale-invariant (SI), i.e. to show the same output dynamics when exposed to geometrically scaled input signals (u → pu, p > 0) after pre-adaptation to accordingly scaled constant inputs. In this article, we show that SI systems-as well as systems invariant with respect to other input transformations-can realize nonlinear differential operators: when excited by inputs obeying functional forms characteristic for a given class of invariant systems, the systems'' outputs converge to constant values directly quantifying the speed of the input.' acknowledgement: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734]. Work supported in part by grants AFOSR FA9550-14-1-0060 and NIH 1R01GM100473. article_number: '7526722' author: - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Eduardo full_name: Sontag, Eduardo last_name: Sontag citation: ama: 'Lang M, Sontag E. Scale-invariant systems realize nonlinear differential operators. In: Vol 2016-July. IEEE; 2016. doi:10.1109/ACC.2016.7526722' apa: 'Lang, M., & Sontag, E. (2016). Scale-invariant systems realize nonlinear differential operators (Vol. 2016–July). Presented at the ACC: American Control Conference, Boston, MA, USA: IEEE. https://doi.org/10.1109/ACC.2016.7526722' chicago: Lang, Moritz, and Eduardo Sontag. “Scale-Invariant Systems Realize Nonlinear Differential Operators,” Vol. 2016–July. IEEE, 2016. https://doi.org/10.1109/ACC.2016.7526722. ieee: 'M. Lang and E. Sontag, “Scale-invariant systems realize nonlinear differential operators,” presented at the ACC: American Control Conference, Boston, MA, USA, 2016, vol. 2016–July.' ista: 'Lang M, Sontag E. 2016. Scale-invariant systems realize nonlinear differential operators. ACC: American Control Conference vol. 2016–July, 7526722.' mla: Lang, Moritz, and Eduardo Sontag. Scale-Invariant Systems Realize Nonlinear Differential Operators. Vol. 2016–July, 7526722, IEEE, 2016, doi:10.1109/ACC.2016.7526722. short: M. Lang, E. Sontag, in:, IEEE, 2016. conference: end_date: 2016-07-08 location: Boston, MA, USA name: 'ACC: American Control Conference' start_date: 2016-07-06 date_created: 2018-12-11T11:51:21Z date_published: 2016-07-28T00:00:00Z date_updated: 2021-01-12T06:49:51Z day: '28' ddc: - '003' - '621' department: - _id: CaGu - _id: GaTk doi: 10.1109/ACC.2016.7526722 ec_funded: 1 file: - access_level: local checksum: 7219432b43defc62a0d45f48d4ce6a19 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:17Z date_updated: 2020-07-14T12:44:43Z file_id: '5203' file_name: IST-2017-810-v1+1_root.pdf file_size: 539166 relation: main_file file_date_updated: 2020-07-14T12:44:43Z has_accepted_license: '1' language: - iso: eng month: '07' oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication_status: published publisher: IEEE publist_id: '5950' pubrep_id: '810' quality_controlled: '1' scopus_import: 1 status: public title: Scale-invariant systems realize nonlinear differential operators type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2016-July year: '2016' ... --- _id: '1332' abstract: - lang: eng text: Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance. acknowledgement: This work was partially supported by US National Institutes of Health grant R01-GM081617, Israeli Centers of Research Excellence I-CORE Program ISF Grant No. 152/11, and the European Research Council FP7 ERC Grant 281891. article_number: '10333' author: - first_name: Remy P full_name: Chait, Remy P id: 3464AE84-F248-11E8-B48F-1D18A9856A87 last_name: Chait orcid: 0000-0003-0876-3187 - first_name: Adam full_name: Palmer, Adam last_name: Palmer - first_name: Idan full_name: Yelin, Idan last_name: Yelin - first_name: Roy full_name: Kishony, Roy last_name: Kishony citation: ama: Chait RP, Palmer A, Yelin I, Kishony R. Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments. Nature Communications. 2016;7. doi:10.1038/ncomms10333 apa: Chait, R. P., Palmer, A., Yelin, I., & Kishony, R. (2016). Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms10333 chicago: Chait, Remy P, Adam Palmer, Idan Yelin, and Roy Kishony. “Pervasive Selection for and against Antibiotic Resistance in Inhomogeneous Multistress Environments.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms10333. ieee: R. P. Chait, A. Palmer, I. Yelin, and R. Kishony, “Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Chait RP, Palmer A, Yelin I, Kishony R. 2016. Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments. Nature Communications. 7, 10333. mla: Chait, Remy P., et al. “Pervasive Selection for and against Antibiotic Resistance in Inhomogeneous Multistress Environments.” Nature Communications, vol. 7, 10333, Nature Publishing Group, 2016, doi:10.1038/ncomms10333. short: R.P. Chait, A. Palmer, I. Yelin, R. Kishony, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:25Z date_published: 2016-01-20T00:00:00Z date_updated: 2021-01-12T06:49:57Z day: '20' ddc: - '570' - '579' department: - _id: CaGu - _id: GaTk doi: 10.1038/ncomms10333 file: - access_level: open_access checksum: ef147bcbb8bd37e9079cf3ce06f5815d content_type: application/pdf creator: system date_created: 2018-12-12T10:13:52Z date_updated: 2020-07-14T12:44:44Z file_id: '5039' file_name: IST-2016-662-v1+1_ncomms10333.pdf file_size: 1844107 relation: main_file file_date_updated: 2020-07-14T12:44:44Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5936' pubrep_id: '662' quality_controlled: '1' scopus_import: 1 status: public title: Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ... --- _id: '1342' abstract: - lang: eng text: A key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)-plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front.While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front,we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behindmore sensitive lineages.TheMEGA-plate provides a versatile platformfor studying microbial adaption and directly visualizing evolutionary dynamics. author: - first_name: Michael full_name: Baym, Michael last_name: Baym - first_name: Tami full_name: Lieberman, Tami last_name: Lieberman - first_name: Eric full_name: Kelsic, Eric last_name: Kelsic - first_name: Remy P full_name: Chait, Remy P id: 3464AE84-F248-11E8-B48F-1D18A9856A87 last_name: Chait orcid: 0000-0003-0876-3187 - first_name: Rotem full_name: Gross, Rotem last_name: Gross - first_name: Idan full_name: Yelin, Idan last_name: Yelin - first_name: Roy full_name: Kishony, Roy last_name: Kishony citation: ama: Baym M, Lieberman T, Kelsic E, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353(6304):1147-1151. doi:10.1126/science.aag0822 apa: Baym, M., Lieberman, T., Kelsic, E., Chait, R. P., Gross, R., Yelin, I., & Kishony, R. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aag0822 chicago: Baym, Michael, Tami Lieberman, Eric Kelsic, Remy P Chait, Rotem Gross, Idan Yelin, and Roy Kishony. “Spatiotemporal Microbial Evolution on Antibiotic Landscapes.” Science. American Association for the Advancement of Science, 2016. https://doi.org/10.1126/science.aag0822. ieee: M. Baym et al., “Spatiotemporal microbial evolution on antibiotic landscapes,” Science, vol. 353, no. 6304. American Association for the Advancement of Science, pp. 1147–1151, 2016. ista: Baym M, Lieberman T, Kelsic E, Chait RP, Gross R, Yelin I, Kishony R. 2016. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 353(6304), 1147–1151. mla: Baym, Michael, et al. “Spatiotemporal Microbial Evolution on Antibiotic Landscapes.” Science, vol. 353, no. 6304, American Association for the Advancement of Science, 2016, pp. 1147–51, doi:10.1126/science.aag0822. short: M. Baym, T. Lieberman, E. Kelsic, R.P. Chait, R. Gross, I. Yelin, R. Kishony, Science 353 (2016) 1147–1151. date_created: 2018-12-11T11:51:29Z date_published: 2016-09-09T00:00:00Z date_updated: 2021-01-12T06:50:01Z day: '09' department: - _id: CaGu - _id: GaTk doi: 10.1126/science.aag0822 intvolume: ' 353' issue: '6304' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534434/ month: '09' oa: 1 oa_version: Preprint page: 1147 - 1151 publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '5911' quality_controlled: '1' scopus_import: 1 status: public title: Spatiotemporal microbial evolution on antibiotic landscapes type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 353 year: '2016' ...