--- _id: '725' abstract: - lang: eng text: Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here, we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an “active” mode, in which they are sensitive to the swimming patterns of conspecifics, and a “passive” mode, where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors’ behavior. At the group level, switching between active and passive modes is uncorrelated among fish, but correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multi-modal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates as well as to other species. author: - first_name: Roy full_name: Harpaz, Roy last_name: Harpaz - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 - first_name: Elad full_name: Schneidman, Elad last_name: Schneidman citation: ama: Harpaz R, Tkačik G, Schneidman E. Discrete modes of social information processing predict individual behavior of fish in a group. PNAS. 2017;114(38):10149-10154. doi:10.1073/pnas.1703817114 apa: Harpaz, R., Tkačik, G., & Schneidman, E. (2017). Discrete modes of social information processing predict individual behavior of fish in a group. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1703817114 chicago: Harpaz, Roy, Gašper Tkačik, and Elad Schneidman. “Discrete Modes of Social Information Processing Predict Individual Behavior of Fish in a Group.” PNAS. National Academy of Sciences, 2017. https://doi.org/10.1073/pnas.1703817114. ieee: R. Harpaz, G. Tkačik, and E. Schneidman, “Discrete modes of social information processing predict individual behavior of fish in a group,” PNAS, vol. 114, no. 38. National Academy of Sciences, pp. 10149–10154, 2017. ista: Harpaz R, Tkačik G, Schneidman E. 2017. Discrete modes of social information processing predict individual behavior of fish in a group. PNAS. 114(38), 10149–10154. mla: Harpaz, Roy, et al. “Discrete Modes of Social Information Processing Predict Individual Behavior of Fish in a Group.” PNAS, vol. 114, no. 38, National Academy of Sciences, 2017, pp. 10149–54, doi:10.1073/pnas.1703817114. short: R. Harpaz, G. Tkačik, E. Schneidman, PNAS 114 (2017) 10149–10154. date_created: 2018-12-11T11:48:10Z date_published: 2017-09-19T00:00:00Z date_updated: 2021-01-12T08:12:36Z day: '19' department: - _id: GaTk doi: 10.1073/pnas.1703817114 external_id: pmid: - '28874581' intvolume: ' 114' issue: '38' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617265/ month: '09' oa: 1 oa_version: Submitted Version page: 10149 - 10154 pmid: 1 publication: PNAS publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '6953' quality_controlled: '1' scopus_import: 1 status: public title: Discrete modes of social information processing predict individual behavior of fish in a group type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 114 year: '2017' ... --- _id: '9709' abstract: - lang: eng text: Across the nervous system, certain population spiking patterns are observed far more frequently than others. A hypothesis about this structure is that these collective activity patterns function as population codewords–collective modes–carrying information distinct from that of any single cell. We investigate this phenomenon in recordings of ∼150 retinal ganglion cells, the retina’s output. We develop a novel statistical model that decomposes the population response into modes; it predicts the distribution of spiking activity in the ganglion cell population with high accuracy. We found that the modes represent localized features of the visual stimulus that are distinct from the features represented by single neurons. Modes form clusters of activity states that are readily discriminated from one another. When we repeated the same visual stimulus, we found that the same mode was robustly elicited. These results suggest that retinal ganglion cells’ collective signaling is endowed with a form of error-correcting code–a principle that may hold in brain areas beyond retina. article_processing_charge: No author: - first_name: Jason full_name: Prentice, Jason last_name: Prentice - first_name: Olivier full_name: Marre, Olivier last_name: Marre - first_name: Mark full_name: Ioffe, Mark last_name: Ioffe - first_name: Adrianna full_name: Loback, Adrianna last_name: Loback - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Michael full_name: Berry, Michael last_name: Berry citation: ama: 'Prentice J, Marre O, Ioffe M, Loback A, Tkačik G, Berry M. Data from: Error-robust modes of the retinal population code. 2017. doi:10.5061/dryad.1f1rc' apa: 'Prentice, J., Marre, O., Ioffe, M., Loback, A., Tkačik, G., & Berry, M. (2017). Data from: Error-robust modes of the retinal population code. Dryad. https://doi.org/10.5061/dryad.1f1rc' chicago: 'Prentice, Jason, Olivier Marre, Mark Ioffe, Adrianna Loback, Gašper Tkačik, and Michael Berry. “Data from: Error-Robust Modes of the Retinal Population Code.” Dryad, 2017. https://doi.org/10.5061/dryad.1f1rc.' ieee: 'J. Prentice, O. Marre, M. Ioffe, A. Loback, G. Tkačik, and M. Berry, “Data from: Error-robust modes of the retinal population code.” Dryad, 2017.' ista: 'Prentice J, Marre O, Ioffe M, Loback A, Tkačik G, Berry M. 2017. Data from: Error-robust modes of the retinal population code, Dryad, 10.5061/dryad.1f1rc.' mla: 'Prentice, Jason, et al. Data from: Error-Robust Modes of the Retinal Population Code. Dryad, 2017, doi:10.5061/dryad.1f1rc.' short: J. Prentice, O. Marre, M. Ioffe, A. Loback, G. Tkačik, M. Berry, (2017). date_created: 2021-07-23T11:34:34Z date_published: 2017-10-18T00:00:00Z date_updated: 2023-02-21T16:34:41Z day: '18' department: - _id: GaTk doi: 10.5061/dryad.1f1rc main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.1f1rc month: '10' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '1197' relation: used_in_publication status: public status: public title: 'Data from: Error-robust modes of the retinal population code' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '680' abstract: - lang: eng text: In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. article_number: e1005582 author: - first_name: Matthew J full_name: Chalk, Matthew J id: 2BAAC544-F248-11E8-B48F-1D18A9856A87 last_name: Chalk orcid: 0000-0001-7782-4436 - first_name: Paul full_name: Masset, Paul last_name: Masset - first_name: Boris full_name: Gutkin, Boris last_name: Gutkin - first_name: Sophie full_name: Denève, Sophie last_name: Denève citation: ama: Chalk MJ, Masset P, Gutkin B, Denève S. Sensory noise predicts divisive reshaping of receptive fields. PLoS Computational Biology. 2017;13(6). doi:10.1371/journal.pcbi.1005582 apa: Chalk, M. J., Masset, P., Gutkin, B., & Denève, S. (2017). Sensory noise predicts divisive reshaping of receptive fields. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005582 chicago: Chalk, Matthew J, Paul Masset, Boris Gutkin, and Sophie Denève. “Sensory Noise Predicts Divisive Reshaping of Receptive Fields.” PLoS Computational Biology. Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005582. ieee: M. J. Chalk, P. Masset, B. Gutkin, and S. Denève, “Sensory noise predicts divisive reshaping of receptive fields,” PLoS Computational Biology, vol. 13, no. 6. Public Library of Science, 2017. ista: Chalk MJ, Masset P, Gutkin B, Denève S. 2017. Sensory noise predicts divisive reshaping of receptive fields. PLoS Computational Biology. 13(6), e1005582. mla: Chalk, Matthew J., et al. “Sensory Noise Predicts Divisive Reshaping of Receptive Fields.” PLoS Computational Biology, vol. 13, no. 6, e1005582, Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005582. short: M.J. Chalk, P. Masset, B. Gutkin, S. Denève, PLoS Computational Biology 13 (2017). date_created: 2018-12-11T11:47:53Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-02-23T14:10:54Z day: '01' ddc: - '571' department: - _id: GaTk doi: 10.1371/journal.pcbi.1005582 file: - access_level: open_access checksum: 796a1026076af6f4405a47d985bc7b68 content_type: application/pdf creator: system date_created: 2018-12-12T10:07:47Z date_updated: 2020-07-14T12:47:40Z file_id: '4645' file_name: IST-2017-898-v1+1_journal.pcbi.1005582.pdf file_size: 14555676 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 13' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_identifier: issn: - 1553734X publication_status: published publisher: Public Library of Science publist_id: '7035' pubrep_id: '898' quality_controlled: '1' related_material: record: - id: '9855' relation: research_data status: public scopus_import: 1 status: public title: Sensory noise predicts divisive reshaping of receptive fields tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2017' ... --- _id: '9855' abstract: - lang: eng text: Includes derivation of optimal estimation algorithm, generalisation to non-poisson noise statistics, correlated input noise, and implementation of in a multi-layer neural network. article_processing_charge: No author: - first_name: Matthew J full_name: Chalk, Matthew J id: 2BAAC544-F248-11E8-B48F-1D18A9856A87 last_name: Chalk orcid: 0000-0001-7782-4436 - first_name: Paul full_name: Masset, Paul last_name: Masset - first_name: Boris full_name: Gutkin, Boris last_name: Gutkin - first_name: Sophie full_name: Denève, Sophie last_name: Denève citation: ama: Chalk MJ, Masset P, Gutkin B, Denève S. Supplementary appendix. 2017. doi:10.1371/journal.pcbi.1005582.s001 apa: Chalk, M. J., Masset, P., Gutkin, B., & Denève, S. (2017). Supplementary appendix. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005582.s001 chicago: Chalk, Matthew J, Paul Masset, Boris Gutkin, and Sophie Denève. “Supplementary Appendix.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005582.s001. ieee: M. J. Chalk, P. Masset, B. Gutkin, and S. Denève, “Supplementary appendix.” Public Library of Science, 2017. ista: Chalk MJ, Masset P, Gutkin B, Denève S. 2017. Supplementary appendix, Public Library of Science, 10.1371/journal.pcbi.1005582.s001. mla: Chalk, Matthew J., et al. Supplementary Appendix. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005582.s001. short: M.J. Chalk, P. Masset, B. Gutkin, S. Denève, (2017). date_created: 2021-08-10T07:05:10Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-02-23T12:52:17Z day: '01' department: - _id: GaTk doi: 10.1371/journal.pcbi.1005582.s001 month: '06' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '680' relation: used_in_publication status: public status: public title: Supplementary appendix type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '666' abstract: - lang: eng text: Antibiotics elicit drastic changes in microbial gene expression, including the induction of stress response genes. While certain stress responses are known to “cross-protect” bacteria from other stressors, it is unclear whether cellular responses to antibiotics have a similar protective role. By measuring the genome-wide transcriptional response dynamics of Escherichia coli to four antibiotics, we found that trimethoprim induces a rapid acid stress response that protects bacteria from subsequent exposure to acid. Combining microfluidics with time-lapse imaging to monitor survival and acid stress response in single cells revealed that the noisy expression of the acid resistance operon gadBC correlates with single-cell survival. Cells with higher gadBC expression following trimethoprim maintain higher intracellular pH and survive the acid stress longer. The seemingly random single-cell survival under acid stress can therefore be predicted from gadBC expression and rationalized in terms of GadB/C molecular function. Overall, we provide a roadmap for identifying the molecular mechanisms of single-cell cross-protection between antibiotics and other stressors. article_processing_charge: Yes (in subscription journal) author: - first_name: Karin full_name: Mitosch, Karin id: 39B66846-F248-11E8-B48F-1D18A9856A87 last_name: Mitosch - first_name: Georg full_name: Rieckh, Georg id: 34DA8BD6-F248-11E8-B48F-1D18A9856A87 last_name: Rieckh - first_name: Tobias full_name: Bollenbach, Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X citation: ama: Mitosch K, Rieckh G, Bollenbach MT. Noisy response to antibiotic stress predicts subsequent single cell survival in an acidic environment. Cell Systems. 2017;4(4):393-403. doi:10.1016/j.cels.2017.03.001 apa: Mitosch, K., Rieckh, G., & Bollenbach, M. T. (2017). Noisy response to antibiotic stress predicts subsequent single cell survival in an acidic environment. Cell Systems. Cell Press. https://doi.org/10.1016/j.cels.2017.03.001 chicago: Mitosch, Karin, Georg Rieckh, and Mark Tobias Bollenbach. “Noisy Response to Antibiotic Stress Predicts Subsequent Single Cell Survival in an Acidic Environment.” Cell Systems. Cell Press, 2017. https://doi.org/10.1016/j.cels.2017.03.001. ieee: K. Mitosch, G. Rieckh, and M. T. Bollenbach, “Noisy response to antibiotic stress predicts subsequent single cell survival in an acidic environment,” Cell Systems, vol. 4, no. 4. Cell Press, pp. 393–403, 2017. ista: Mitosch K, Rieckh G, Bollenbach MT. 2017. Noisy response to antibiotic stress predicts subsequent single cell survival in an acidic environment. Cell Systems. 4(4), 393–403. mla: Mitosch, Karin, et al. “Noisy Response to Antibiotic Stress Predicts Subsequent Single Cell Survival in an Acidic Environment.” Cell Systems, vol. 4, no. 4, Cell Press, 2017, pp. 393–403, doi:10.1016/j.cels.2017.03.001. short: K. Mitosch, G. Rieckh, M.T. Bollenbach, Cell Systems 4 (2017) 393–403. date_created: 2018-12-11T11:47:48Z date_published: 2017-04-26T00:00:00Z date_updated: 2023-09-07T12:00:25Z day: '26' ddc: - '576' - '610' department: - _id: ToBo - _id: GaTk doi: 10.1016/j.cels.2017.03.001 ec_funded: 1 file: - access_level: open_access checksum: 04ff20011c3d9a601c514aa999a5fe1a content_type: application/pdf creator: system date_created: 2018-12-12T10:13:54Z date_updated: 2020-07-14T12:47:35Z file_id: '5041' file_name: IST-2017-901-v1+1_1-s2.0-S2405471217300868-main.pdf file_size: 2438660 relation: main_file file_date_updated: 2020-07-14T12:47:35Z has_accepted_license: '1' intvolume: ' 4' issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 393 - 403 project: - _id: 25E83C2C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '303507' name: Optimality principles in responses to antibiotics - _id: 25E9AF9E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27201-B22 name: Revealing the mechanisms underlying drug interactions - _id: 25EB3A80-B435-11E9-9278-68D0E5697425 grant_number: RGP0042/2013 name: Revealing the fundamental limits of cell growth publication: Cell Systems publication_identifier: issn: - '24054712' publication_status: published publisher: Cell Press publist_id: '7061' pubrep_id: '901' quality_controlled: '1' related_material: record: - id: '818' relation: dissertation_contains status: public scopus_import: 1 status: public title: Noisy response to antibiotic stress predicts subsequent single cell survival in an acidic environment tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2017' ... --- _id: '2016' abstract: - lang: eng text: The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness-of-fit. Here, we propose an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, this beautiful theory has fallen short of its promise for applications, because finding a Markov basis is usually computationally intractable. We develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane. article_processing_charge: No author: - first_name: Abraham full_name: Martin Del Campo Sanchez, Abraham last_name: Martin Del Campo Sanchez - first_name: Sarah A full_name: Cepeda Humerez, Sarah A id: 3DEE19A4-F248-11E8-B48F-1D18A9856A87 last_name: Cepeda Humerez - first_name: Caroline full_name: Uhler, Caroline id: 49ADD78E-F248-11E8-B48F-1D18A9856A87 last_name: Uhler orcid: 0000-0002-7008-0216 citation: ama: Martin Del Campo Sanchez A, Cepeda Humerez SA, Uhler C. Exact goodness-of-fit testing for the Ising model. Scandinavian Journal of Statistics. 2017;44(2):285-306. doi:10.1111/sjos.12251 apa: Martin Del Campo Sanchez, A., Cepeda Humerez, S. A., & Uhler, C. (2017). Exact goodness-of-fit testing for the Ising model. Scandinavian Journal of Statistics. Wiley-Blackwell. https://doi.org/10.1111/sjos.12251 chicago: Martin Del Campo Sanchez, Abraham, Sarah A Cepeda Humerez, and Caroline Uhler. “Exact Goodness-of-Fit Testing for the Ising Model.” Scandinavian Journal of Statistics. Wiley-Blackwell, 2017. https://doi.org/10.1111/sjos.12251. ieee: A. Martin Del Campo Sanchez, S. A. Cepeda Humerez, and C. Uhler, “Exact goodness-of-fit testing for the Ising model,” Scandinavian Journal of Statistics, vol. 44, no. 2. Wiley-Blackwell, pp. 285–306, 2017. ista: Martin Del Campo Sanchez A, Cepeda Humerez SA, Uhler C. 2017. Exact goodness-of-fit testing for the Ising model. Scandinavian Journal of Statistics. 44(2), 285–306. mla: Martin Del Campo Sanchez, Abraham, et al. “Exact Goodness-of-Fit Testing for the Ising Model.” Scandinavian Journal of Statistics, vol. 44, no. 2, Wiley-Blackwell, 2017, pp. 285–306, doi:10.1111/sjos.12251. short: A. Martin Del Campo Sanchez, S.A. Cepeda Humerez, C. Uhler, Scandinavian Journal of Statistics 44 (2017) 285–306. date_created: 2018-12-11T11:55:13Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-09-19T15:13:27Z day: '01' department: - _id: GaTk doi: 10.1111/sjos.12251 external_id: arxiv: - '1410.1242' isi: - '000400985000001' intvolume: ' 44' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1410.1242 month: '06' oa: 1 oa_version: Preprint page: 285 - 306 publication: Scandinavian Journal of Statistics publication_identifier: issn: - '03036898' publication_status: published publisher: Wiley-Blackwell publist_id: '5060' quality_controlled: '1' related_material: record: - id: '6473' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Exact goodness-of-fit testing for the Ising model type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 44 year: '2017' ... --- _id: '1104' abstract: - lang: eng text: In the early visual system, cells of the same type perform the same computation in different places of the visual field. How these cells code together a complex visual scene is unclear. A common assumption is that cells of a single-type extract a single-stimulus feature to form a feature map, but this has rarely been observed directly. Using large-scale recordings in the rat retina, we show that a homogeneous population of fast OFF ganglion cells simultaneously encodes two radically different features of a visual scene. Cells close to a moving object code quasilinearly for its position, while distant cells remain largely invariant to the object's position and, instead, respond nonlinearly to changes in the object's speed. We develop a quantitative model that accounts for this effect and identify a disinhibitory circuit that mediates it. Ganglion cells of a single type thus do not code for one, but two features simultaneously. This richer, flexible neural map might also be present in other sensory systems. article_number: '1964' article_processing_charge: No author: - first_name: Stephane full_name: Deny, Stephane last_name: Deny - first_name: Ulisse full_name: Ferrari, Ulisse last_name: Ferrari - first_name: Emilie full_name: Mace, Emilie last_name: Mace - first_name: Pierre full_name: Yger, Pierre last_name: Yger - first_name: Romain full_name: Caplette, Romain last_name: Caplette - first_name: Serge full_name: Picaud, Serge last_name: Picaud - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 - first_name: Olivier full_name: Marre, Olivier last_name: Marre citation: ama: Deny S, Ferrari U, Mace E, et al. Multiplexed computations in retinal ganglion cells of a single type. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-02159-y apa: Deny, S., Ferrari, U., Mace, E., Yger, P., Caplette, R., Picaud, S., … Marre, O. (2017). Multiplexed computations in retinal ganglion cells of a single type. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-017-02159-y chicago: Deny, Stephane, Ulisse Ferrari, Emilie Mace, Pierre Yger, Romain Caplette, Serge Picaud, Gašper Tkačik, and Olivier Marre. “Multiplexed Computations in Retinal Ganglion Cells of a Single Type.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/s41467-017-02159-y. ieee: S. Deny et al., “Multiplexed computations in retinal ganglion cells of a single type,” Nature Communications, vol. 8, no. 1. Nature Publishing Group, 2017. ista: Deny S, Ferrari U, Mace E, Yger P, Caplette R, Picaud S, Tkačik G, Marre O. 2017. Multiplexed computations in retinal ganglion cells of a single type. Nature Communications. 8(1), 1964. mla: Deny, Stephane, et al. “Multiplexed Computations in Retinal Ganglion Cells of a Single Type.” Nature Communications, vol. 8, no. 1, 1964, Nature Publishing Group, 2017, doi:10.1038/s41467-017-02159-y. short: S. Deny, U. Ferrari, E. Mace, P. Yger, R. Caplette, S. Picaud, G. Tkačik, O. Marre, Nature Communications 8 (2017). date_created: 2018-12-11T11:50:10Z date_published: 2017-12-06T00:00:00Z date_updated: 2023-09-20T11:41:19Z day: '06' ddc: - '571' department: - _id: GaTk doi: 10.1038/s41467-017-02159-y ec_funded: 1 external_id: isi: - '000417241200004' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:16:06Z date_updated: 2018-12-12T10:16:06Z file_id: '5191' file_name: IST-2018-921-v1+1_s41467-017-02159-y.pdf file_size: 2872887 relation: main_file file_date_updated: 2018-12-12T10:16:06Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 25CD3DD2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '604102' name: Localization of ion channels and receptors by two and three-dimensional immunoelectron microscopic approaches - _id: 254D1A94-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 25651-N26 name: Sensitivity to higher-order statistics in natural scenes publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6266' pubrep_id: '921' quality_controlled: '1' scopus_import: '1' status: public title: Multiplexed computations in retinal ganglion cells of a single type tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '993' abstract: - lang: eng text: In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development. article_number: '15140' article_processing_charge: Yes (in subscription journal) author: - first_name: Anna full_name: Levina (Martius), Anna id: 35AF8020-F248-11E8-B48F-1D18A9856A87 last_name: Levina (Martius) - first_name: Viola full_name: Priesemann, Viola last_name: Priesemann citation: ama: Levina (Martius) A, Priesemann V. Subsampling scaling. Nature Communications. 2017;8. doi:10.1038/ncomms15140 apa: Levina (Martius), A., & Priesemann, V. (2017). Subsampling scaling. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms15140 chicago: Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/ncomms15140. ieee: A. Levina (Martius) and V. Priesemann, “Subsampling scaling,” Nature Communications, vol. 8. Nature Publishing Group, 2017. ista: Levina (Martius) A, Priesemann V. 2017. Subsampling scaling. Nature Communications. 8, 15140. mla: Levina (Martius), Anna, and Viola Priesemann. “Subsampling Scaling.” Nature Communications, vol. 8, 15140, Nature Publishing Group, 2017, doi:10.1038/ncomms15140. short: A. Levina (Martius), V. Priesemann, Nature Communications 8 (2017). date_created: 2018-12-11T11:49:35Z date_published: 2017-05-04T00:00:00Z date_updated: 2023-09-22T09:54:07Z day: '04' ddc: - '005' - '571' department: - _id: GaTk - _id: JoCs doi: 10.1038/ncomms15140 ec_funded: 1 external_id: isi: - '000400560700001' file: - access_level: open_access checksum: 9880212f8c4c53404c7c6fbf9023c53a content_type: application/pdf creator: system date_created: 2018-12-12T10:15:05Z date_updated: 2020-07-14T12:48:19Z file_id: '5122' file_name: IST-2017-819-v1+1_2017_Levina_SubsamplingScaling.pdf file_size: 746224 relation: main_file file_date_updated: 2020-07-14T12:48:19Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6406' pubrep_id: '819' quality_controlled: '1' scopus_import: '1' status: public title: Subsampling scaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '955' abstract: - lang: eng text: 'Gene expression is controlled by networks of regulatory proteins that interact specifically with external signals and DNA regulatory sequences. These interactions force the network components to co-evolve so as to continually maintain function. Yet, existing models of evolution mostly focus on isolated genetic elements. In contrast, we study the essential process by which regulatory networks grow: the duplication and subsequent specialization of network components. We synthesize a biophysical model of molecular interactions with the evolutionary framework to find the conditions and pathways by which new regulatory functions emerge. We show that specialization of new network components is usually slow, but can be drastically accelerated in the presence of regulatory crosstalk and mutations that promote promiscuous interactions between network components.' article_number: '216' article_processing_charge: Yes (in subscription journal) author: - first_name: Tamar full_name: Friedlander, Tamar id: 36A5845C-F248-11E8-B48F-1D18A9856A87 last_name: Friedlander - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 citation: ama: Friedlander T, Prizak R, Barton NH, Tkačik G. Evolution of new regulatory functions on biophysically realistic fitness landscapes. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-00238-8 apa: Friedlander, T., Prizak, R., Barton, N. H., & Tkačik, G. (2017). Evolution of new regulatory functions on biophysically realistic fitness landscapes. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-017-00238-8 chicago: Friedlander, Tamar, Roshan Prizak, Nicholas H Barton, and Gašper Tkačik. “Evolution of New Regulatory Functions on Biophysically Realistic Fitness Landscapes.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/s41467-017-00238-8. ieee: T. Friedlander, R. Prizak, N. H. Barton, and G. Tkačik, “Evolution of new regulatory functions on biophysically realistic fitness landscapes,” Nature Communications, vol. 8, no. 1. Nature Publishing Group, 2017. ista: Friedlander T, Prizak R, Barton NH, Tkačik G. 2017. Evolution of new regulatory functions on biophysically realistic fitness landscapes. Nature Communications. 8(1), 216. mla: Friedlander, Tamar, et al. “Evolution of New Regulatory Functions on Biophysically Realistic Fitness Landscapes.” Nature Communications, vol. 8, no. 1, 216, Nature Publishing Group, 2017, doi:10.1038/s41467-017-00238-8. short: T. Friedlander, R. Prizak, N.H. Barton, G. Tkačik, Nature Communications 8 (2017). date_created: 2018-12-11T11:49:23Z date_published: 2017-08-09T00:00:00Z date_updated: 2023-09-22T10:00:49Z day: '09' ddc: - '539' - '576' department: - _id: GaTk - _id: NiBa doi: 10.1038/s41467-017-00238-8 ec_funded: 1 external_id: isi: - '000407198800005' file: - access_level: open_access checksum: 29a1b5db458048d3bd5c67e0e2a56818 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:14Z date_updated: 2020-07-14T12:48:16Z file_id: '5064' file_name: IST-2017-864-v1+1_s41467-017-00238-8.pdf file_size: 998157 relation: main_file - access_level: open_access checksum: 7b78401e52a576cf3e6bbf8d0abadc17 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:15Z date_updated: 2020-07-14T12:48:16Z file_id: '5065' file_name: IST-2017-864-v1+2_41467_2017_238_MOESM1_ESM.pdf file_size: 9715993 relation: main_file file_date_updated: 2020-07-14T12:48:16Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6459' pubrep_id: '864' quality_controlled: '1' related_material: record: - id: '6071' relation: dissertation_contains status: public scopus_import: '1' status: public title: Evolution of new regulatory functions on biophysically realistic fitness landscapes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '959' abstract: - lang: eng text: In this work it is shown that scale-free tails in metabolic flux distributions inferred in stationary models are an artifact due to reactions involved in thermodynamically unfeasible cycles, unbounded by physical constraints and in principle able to perform work without expenditure of free energy. After implementing thermodynamic constraints by removing such loops, metabolic flux distributions scale meaningfully with the physical limiting factors, acquiring in turn a richer multimodal structure potentially leading to symmetry breaking while optimizing for objective functions. article_processing_charge: No author: - first_name: Daniele full_name: De Martino, Daniele id: 3FF5848A-F248-11E8-B48F-1D18A9856A87 last_name: De Martino orcid: 0000-0002-5214-4706 citation: ama: De Martino D. Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2017;95(6):062419. doi:10.1103/PhysRevE.95.062419 apa: De Martino, D. (2017). Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics. Physical Review E Statistical Nonlinear and Soft Matter Physics . American Institute of Physics. https://doi.org/10.1103/PhysRevE.95.062419 chicago: De Martino, Daniele. “Scales and Multimodal Flux Distributions in Stationary Metabolic Network Models via Thermodynamics.” Physical Review E Statistical Nonlinear and Soft Matter Physics . American Institute of Physics, 2017. https://doi.org/10.1103/PhysRevE.95.062419. ieee: D. De Martino, “Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics,” Physical Review E Statistical Nonlinear and Soft Matter Physics , vol. 95, no. 6. American Institute of Physics, p. 062419, 2017. ista: De Martino D. 2017. Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics. Physical Review E Statistical Nonlinear and Soft Matter Physics . 95(6), 062419. mla: De Martino, Daniele. “Scales and Multimodal Flux Distributions in Stationary Metabolic Network Models via Thermodynamics.” Physical Review E Statistical Nonlinear and Soft Matter Physics , vol. 95, no. 6, American Institute of Physics, 2017, p. 062419, doi:10.1103/PhysRevE.95.062419. short: D. De Martino, Physical Review E Statistical Nonlinear and Soft Matter Physics 95 (2017) 062419. date_created: 2018-12-11T11:49:25Z date_published: 2017-06-28T00:00:00Z date_updated: 2023-09-22T09:59:01Z day: '28' department: - _id: GaTk doi: 10.1103/PhysRevE.95.062419 ec_funded: 1 external_id: isi: - '000404546400004' intvolume: ' 95' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/pdf/1703.00853.pdf month: '06' oa: 1 oa_version: Submitted Version page: '062419' project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: ' Physical Review E Statistical Nonlinear and Soft Matter Physics ' publication_identifier: issn: - '24700045' publication_status: published publisher: American Institute of Physics publist_id: '6446' quality_controlled: '1' scopus_import: '1' status: public title: Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 95 year: '2017' ...