@article{1266, abstract = {Cortical networks exhibit ‘global oscillations’, in which neural spike times are entrained to an underlying oscillatory rhythm, but where individual neurons fire irregularly, on only a fraction of cycles. While the network dynamics underlying global oscillations have been well characterised, their function is debated. Here, we show that such global oscillations are a direct consequence of optimal efficient coding in spiking networks with synaptic delays and noise. To avoid firing unnecessary spikes, neurons need to share information about the network state. Ideally, membrane potentials should be strongly correlated and reflect a ‘prediction error’ while the spikes themselves are uncorrelated and occur rarely. We show that the most efficient representation is when: (i) spike times are entrained to a global Gamma rhythm (implying a consistent representation of the error); but (ii) few neurons fire on each cycle (implying high efficiency), while (iii) excitation and inhibition are tightly balanced. This suggests that cortical networks exhibiting such dynamics are tuned to achieve a maximally efficient population code.}, author = {Chalk, Matthew J and Gutkin, Boris and Denève, Sophie}, journal = {eLife}, number = {2016JULY}, publisher = {eLife Sciences Publications}, title = {{Neural oscillations as a signature of efficient coding in the presence of synaptic delays}}, doi = {10.7554/eLife.13824}, volume = {5}, year = {2016}, } @article{1290, abstract = {We developed a competition-based screening strategy to identify compounds that invert the selective advantage of antibiotic resistance. Using our assay, we screened over 19,000 compounds for the ability to select against the TetA tetracycline-resistance efflux pump in Escherichia coli and identified two hits, β-thujaplicin and disulfiram. Treating a tetracycline-resistant population with β-thujaplicin selects for loss of the resistance gene, enabling an effective second-phase treatment with doxycycline.}, author = {Stone, Laura and Baym, Michael and Lieberman, Tami and Chait, Remy P and Clardy, Jon and Kishony, Roy}, journal = {Nature Chemical Biology}, number = {11}, pages = {902 -- 904}, publisher = {Nature Publishing Group}, title = {{Compounds that select against the tetracycline-resistance efflux pump}}, doi = {10.1038/nchembio.2176}, volume = {12}, year = {2016}, } @inproceedings{1320, abstract = {In recent years, several biomolecular systems have been shown to be scale-invariant (SI), i.e. to show the same output dynamics when exposed to geometrically scaled input signals (u → pu, p > 0) after pre-adaptation to accordingly scaled constant inputs. In this article, we show that SI systems-as well as systems invariant with respect to other input transformations-can realize nonlinear differential operators: when excited by inputs obeying functional forms characteristic for a given class of invariant systems, the systems' outputs converge to constant values directly quantifying the speed of the input.}, author = {Lang, Moritz and Sontag, Eduardo}, location = {Boston, MA, USA}, publisher = {IEEE}, title = {{Scale-invariant systems realize nonlinear differential operators}}, doi = {10.1109/ACC.2016.7526722}, volume = {2016-July}, year = {2016}, } @article{1332, abstract = {Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance.}, author = {Chait, Remy P and Palmer, Adam and Yelin, Idan and Kishony, Roy}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments}}, doi = {10.1038/ncomms10333}, volume = {7}, year = {2016}, } @article{1342, abstract = {A key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)-plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front.While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front,we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behindmore sensitive lineages.TheMEGA-plate provides a versatile platformfor studying microbial adaption and directly visualizing evolutionary dynamics.}, author = {Baym, Michael and Lieberman, Tami and Kelsic, Eric and Chait, Remy P and Gross, Rotem and Yelin, Idan and Kishony, Roy}, journal = {Science}, number = {6304}, pages = {1147 -- 1151}, publisher = {American Association for the Advancement of Science}, title = {{Spatiotemporal microbial evolution on antibiotic landscapes}}, doi = {10.1126/science.aag0822}, volume = {353}, year = {2016}, }