@article{1928,
abstract = {In infectious disease epidemiology the basic reproductive ratio, R0, is defined as the average number of new infections caused by a single infected individual in a fully susceptible population. Many models describing competition for hosts between non-interacting pathogen strains in an infinite population lead to the conclusion that selection favors invasion of new strains if and only if they have higher R0 values than the resident. Here we demonstrate that this picture fails in finite populations. Using a simple stochastic SIS model, we show that in general there is no analogous optimization principle. We find that successive invasions may in some cases lead to strains that infect a smaller fraction of the host population, and that mutually invasible pathogen strains exist. In the limit of weak selection we demonstrate that an optimization principle does exist, although it differs from R0 maximization. For strains with very large R0, we derive an expression for this local fitness function and use it to establish a lower bound for the error caused by neglecting stochastic effects. Furthermore, we apply this weak selection limit to investigate the selection dynamics in the presence of a trade-off between the virulence and the transmission rate of a pathogen.},
author = {Humplik, Jan and Hill, Alison and Nowak, Martin},
journal = {Journal of Theoretical Biology},
pages = {149 -- 162},
publisher = {Elsevier},
title = {{Evolutionary dynamics of infectious diseases in finite populations}},
doi = {10.1016/j.jtbi.2014.06.039},
volume = {360},
year = {2014},
}
@article{1931,
abstract = {A wealth of experimental evidence suggests that working memory circuits preferentially represent information that is behaviorally relevant. Still, we are missing a mechanistic account of how these representations come about. Here we provide a simple explanation for a range of experimental findings, in light of prefrontal circuits adapting to task constraints by reward-dependent learning. In particular, we model a neural network shaped by reward-modulated spike-timing dependent plasticity (r-STDP) and homeostatic plasticity (intrinsic excitability and synaptic scaling). We show that the experimentally-observed neural representations naturally emerge in an initially unstructured circuit as it learns to solve several working memory tasks. These results point to a critical, and previously unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.},
author = {Savin, Cristina and Triesch, Jochen},
journal = {Frontiers in Computational Neuroscience},
number = {MAY},
publisher = {Frontiers Research Foundation},
title = {{Emergence of task-dependent representations in working memory circuits}},
doi = {10.3389/fncom.2014.00057},
volume = {8},
year = {2014},
}
@article{3263,
abstract = {Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.},
author = {Tkacik, Gasper and Ghosh, Anandamohan and Schneidman, Elad and Segev, Ronen},
journal = {PLoS One},
number = {1},
publisher = {Public Library of Science},
title = {{Adaptation to changes in higher-order stimulus statistics in the salamander retina}},
doi = {10.1371/journal.pone.0085841},
volume = {9},
year = {2014},
}
@article{2277,
abstract = {Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.},
author = {Simmons, Kristina and Prentice, Jason and Tkacik, Gasper and Homann, Jan and Yee, Heather and Palmer, Stephanie and Nelson, Philip and Balasubramanian, Vijay},
journal = {PLoS Computational Biology},
number = {12},
publisher = {Public Library of Science},
title = {{Transformation of stimulus correlations by the retina}},
doi = {10.1371/journal.pcbi.1003344},
volume = {9},
year = {2013},
}
@inbook{2413,
abstract = {Progress in understanding the global brain dynamics has remained slow to date in large part because of the highly multiscale nature of brain activity. Indeed, normal brain dynamics is characterized by complex interactions between multiple levels: from the microscopic scale of single neurons to the mesoscopic level of local groups of neurons, and finally to the macroscopic level of the whole brain. Among the most difficult tasks are those of identifying which scales are significant for a given particular function and describing how the scales affect each other. It is important to realize that the scales of time and space are linked together, or even intertwined, and that causal inference is far more ambiguous between than within levels. We approach this problem from the perspective of our recent work on simultaneous recording from micro- and macroelectrodes in the human brain. We propose a physiological description of these multilevel interactions, based on phase–amplitude coupling of neuronal oscillations that operate at multiple frequencies and on different spatial scales. Specifically, the amplitude of the oscillations on a particular spatial scale is modulated by phasic variations in neuronal excitability induced by lower frequency oscillations that emerge on a larger spatial scale. Following this general principle, it is possible to scale up or scale down the multiscale brain dynamics. It is expected that large-scale network oscillations in the low-frequency range, mediating downward effects, may play an important role in attention and consciousness.},
author = {Valderrama, Mario and Botella Soler, Vicente and Le Van Quyen, Michel},
booktitle = {Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain},
editor = {Meyer, Misha and Pesenson, Z.},
isbn = {9783527411986 },
publisher = {Wiley-VCH},
title = {{Neuronal oscillations scale up and scale down the brain dynamics }},
doi = {10.1002/9783527671632.ch08},
year = {2013},
}
@article{499,
abstract = {Exposure of an isogenic bacterial population to a cidal antibiotic typically fails to eliminate a small fraction of refractory cells. Historically, fractional killing has been attributed to infrequently dividing or nondividing "persisters." Using microfluidic cultures and time-lapse microscopy, we found that Mycobacterium smegmatis persists by dividing in the presence of the drug isoniazid (INH). Although persistence in these studies was characterized by stable numbers of cells, this apparent stability was actually a dynamic state of balanced division and death. Single cells expressed catalase-peroxidase (KatG), which activates INH, in stochastic pulses that were negatively correlated with cell survival. These behaviors may reflect epigenetic effects, because KatG pulsing and death were correlated between sibling cells. Selection of lineages characterized by infrequent KatG pulsing could allow nonresponsive adaptation during prolonged drug exposure.},
author = {Wakamoto, Yurichi and Dhar, Neraaj and Chait, Remy P and Schneider, Katrin and Signorino Gelo, François and Leibler, Stanislas and Mckinney, John},
journal = {Science},
number = {6115},
pages = {91 -- 95},
publisher = {American Association for the Advancement of Science},
title = {{Dynamic persistence of antibiotic-stressed mycobacteria}},
doi = {10.1126/science.1229858},
volume = {339},
year = {2013},
}
@article{2818,
abstract = {Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory–based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.},
author = {Rajan, Kanaka and Marre, Olivier and Tkacik, Gasper},
journal = {Neural Computation},
number = {7},
pages = {1661 -- 1692},
publisher = {MIT Press },
title = {{Learning quadratic receptive fields from neural responses to natural stimuli}},
doi = {10.1162/NECO_a_00463},
volume = {25},
year = {2013},
}
@article{2850,
abstract = {Recent work emphasizes that the maximum entropy principle provides a bridge between statistical mechanics models for collective behavior in neural networks and experiments on networks of real neurons. Most of this work has focused on capturing the measured correlations among pairs of neurons. Here we suggest an alternative, constructing models that are consistent with the distribution of global network activity, i.e. the probability that K out of N cells in the network generate action potentials in the same small time bin. The inverse problem that we need to solve in constructing the model is analytically tractable, and provides a natural 'thermodynamics' for the network in the limit of large N. We analyze the responses of neurons in a small patch of the retina to naturalistic stimuli, and find that the implied thermodynamics is very close to an unusual critical point, in which the entropy (in proper units) is exactly equal to the energy. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
},
author = {Tkacik, Gasper and Marre, Olivier and Mora, Thierry and Amodei, Dario and Berry, Michael and Bialek, William},
journal = {Journal of Statistical Mechanics Theory and Experiment},
number = {3},
publisher = {IOP Publishing Ltd.},
title = {{The simplest maximum entropy model for collective behavior in a neural network}},
doi = {10.1088/1742-5468/2013/03/P03011},
volume = {2013},
year = {2013},
}
@article{2851,
abstract = {The number of possible activity patterns in a population of neurons grows exponentially with the size of the population. Typical experiments explore only a tiny fraction of the large space of possible activity patterns in the case of populations with more than 10 or 20 neurons. It is thus impossible, in this undersampled regime, to estimate the probabilities with which most of the activity patterns occur. As a result, the corresponding entropy - which is a measure of the computational power of the neural population - cannot be estimated directly. We propose a simple scheme for estimating the entropy in the undersampled regime, which bounds its value from both below and above. The lower bound is the usual 'naive' entropy of the experimental frequencies. The upper bound results from a hybrid approximation of the entropy which makes use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We apply our simple scheme to artificial data, in order to check their accuracy; we also compare its performance to those of several previously defined entropy estimators. We then apply it to actual measurements of neural activity in populations with up to 100 cells. Finally, we discuss the similarities and differences between the proposed simple estimation scheme and various earlier methods. © 2013 IOP Publishing Ltd and SISSA Medialab srl.},
author = {Berry, Michael and Tkacik, Gasper and Dubuis, Julien and Marre, Olivier and Da Silveira, Ravá},
journal = {Journal of Statistical Mechanics Theory and Experiment},
number = {3},
publisher = {IOP Publishing Ltd.},
title = {{A simple method for estimating the entropy of neural activity}},
doi = {10.1088/1742-5468/2013/03/P03015},
volume = {2013},
year = {2013},
}
@article{2861,
abstract = {We consider a two-parameter family of piecewise linear maps in which the moduli of the two slopes take different values. We provide numerical evidence of the existence of some parameter regions in which the Lyapunov exponent and the topological entropy remain constant. Analytical proof of this phenomenon is also given for certain cases. Surprisingly however, the systems with that property are not conjugate as we prove by using kneading theory.},
author = {Botella Soler, Vicente and Oteo, José and Ros, Javier and Glendinning, Paul},
journal = {Journal of Physics A: Mathematical and Theoretical},
number = {12},
publisher = {IOP Publishing Ltd.},
title = {{Lyapunov exponent and topological entropy plateaus in piecewise linear maps}},
doi = {10.1088/1751-8113/46/12/125101},
volume = {46},
year = {2013},
}