--- _id: '305' abstract: - lang: eng text: The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks. acknowledgement: This work was financially supported by FP7 of the EU through the project “Body on a chip,” ICT-FET-296257, and the ERC Advanced Grant “NeuroCMOS” (contract 267351), as well as by an individual Ambizione Grant 142440 from the Swiss National Science Foundation for Olivier Frey. The research leading to these results also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. [291734]. We would like to thank Alexander Stettler, ETH Zurich for his expertise and support in the cleanroom, and we acknowledge the Single Cell Unit of D-BSSE, ETH Zurich for assistance in microscopy issues. M.L. is grateful to the members of the Guet and Tkačik groups, IST Austria, for valuable comments and support. alternative_title: - MIMB author: - first_name: Patrick full_name: Misun, Patrick last_name: Misun - first_name: Axel full_name: Birchler, Axel last_name: Birchler - first_name: Moritz full_name: Lang, Moritz id: 29E0800A-F248-11E8-B48F-1D18A9856A87 last_name: Lang - first_name: Andreas full_name: Hierlemann, Andreas last_name: Hierlemann - first_name: Olivier full_name: Frey, Olivier last_name: Frey citation: ama: Misun P, Birchler A, Lang M, Hierlemann A, Frey O. Fabrication and operation of microfluidic hanging drop networks. Methods in Molecular Biology. 2018;1771:183-202. doi:10.1007/978-1-4939-7792-5_15 apa: Misun, P., Birchler, A., Lang, M., Hierlemann, A., & Frey, O. (2018). Fabrication and operation of microfluidic hanging drop networks. Methods in Molecular Biology. Springer. https://doi.org/10.1007/978-1-4939-7792-5_15 chicago: Misun, Patrick, Axel Birchler, Moritz Lang, Andreas Hierlemann, and Olivier Frey. “Fabrication and Operation of Microfluidic Hanging Drop Networks.” Methods in Molecular Biology. Springer, 2018. https://doi.org/10.1007/978-1-4939-7792-5_15. ieee: P. Misun, A. Birchler, M. Lang, A. Hierlemann, and O. Frey, “Fabrication and operation of microfluidic hanging drop networks,” Methods in Molecular Biology, vol. 1771. Springer, pp. 183–202, 2018. ista: Misun P, Birchler A, Lang M, Hierlemann A, Frey O. 2018. Fabrication and operation of microfluidic hanging drop networks. Methods in Molecular Biology. 1771, 183–202. mla: Misun, Patrick, et al. “Fabrication and Operation of Microfluidic Hanging Drop Networks.” Methods in Molecular Biology, vol. 1771, Springer, 2018, pp. 183–202, doi:10.1007/978-1-4939-7792-5_15. short: P. Misun, A. Birchler, M. Lang, A. Hierlemann, O. Frey, Methods in Molecular Biology 1771 (2018) 183–202. date_created: 2018-12-11T11:45:43Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T07:40:42Z day: '01' department: - _id: CaGu - _id: GaTk doi: 10.1007/978-1-4939-7792-5_15 ec_funded: 1 intvolume: ' 1771' language: - iso: eng month: '01' oa_version: None page: 183 - 202 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Methods in Molecular Biology publication_status: published publisher: Springer publist_id: '7574' quality_controlled: '1' scopus_import: 1 status: public title: Fabrication and operation of microfluidic hanging drop networks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1771 year: '2018' ... --- _id: '281' abstract: - lang: eng text: 'Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.' acknowledgement: This work was supported by the Biotechnology and Biological Sciences Research Council (J.M.J.P., I.F., and P.S.S.), the Engineering and Physical Sciences Research Council (EPSRC) (A.A.G.), and Austrian Science Fund Grant FWF P28844 (to G.T.). article_processing_charge: No article_type: original author: - first_name: Alejandro full_name: Granados, Alejandro last_name: Granados - first_name: Julian full_name: Pietsch, Julian last_name: Pietsch - first_name: Sarah A full_name: Cepeda Humerez, Sarah A id: 3DEE19A4-F248-11E8-B48F-1D18A9856A87 last_name: Cepeda Humerez - first_name: Isebail full_name: Farquhar, Isebail last_name: Farquhar - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 - first_name: Peter full_name: Swain, Peter last_name: Swain citation: ama: Granados A, Pietsch J, Cepeda Humerez SA, Farquhar I, Tkačik G, Swain P. Distributed and dynamic intracellular organization of extracellular information. PNAS. 2018;115(23):6088-6093. doi:10.1073/pnas.1716659115 apa: Granados, A., Pietsch, J., Cepeda Humerez, S. A., Farquhar, I., Tkačik, G., & Swain, P. (2018). Distributed and dynamic intracellular organization of extracellular information. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1716659115 chicago: Granados, Alejandro, Julian Pietsch, Sarah A Cepeda Humerez, Isebail Farquhar, Gašper Tkačik, and Peter Swain. “Distributed and Dynamic Intracellular Organization of Extracellular Information.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1716659115. ieee: A. Granados, J. Pietsch, S. A. Cepeda Humerez, I. Farquhar, G. Tkačik, and P. Swain, “Distributed and dynamic intracellular organization of extracellular information,” PNAS, vol. 115, no. 23. National Academy of Sciences, pp. 6088–6093, 2018. ista: Granados A, Pietsch J, Cepeda Humerez SA, Farquhar I, Tkačik G, Swain P. 2018. Distributed and dynamic intracellular organization of extracellular information. PNAS. 115(23), 6088–6093. mla: Granados, Alejandro, et al. “Distributed and Dynamic Intracellular Organization of Extracellular Information.” PNAS, vol. 115, no. 23, National Academy of Sciences, 2018, pp. 6088–93, doi:10.1073/pnas.1716659115. short: A. Granados, J. Pietsch, S.A. Cepeda Humerez, I. Farquhar, G. Tkačik, P. Swain, PNAS 115 (2018) 6088–6093. date_created: 2018-12-11T11:45:35Z date_published: 2018-06-05T00:00:00Z date_updated: 2023-09-11T12:58:24Z day: '05' department: - _id: GaTk doi: 10.1073/pnas.1716659115 external_id: isi: - '000434114900071' pmid: - '29784812' intvolume: ' 115' isi: 1 issue: '23' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/early/2017/09/21/192039 month: '06' oa: 1 oa_version: Preprint page: 6088 - 6093 pmid: 1 project: - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7618' quality_controlled: '1' related_material: record: - id: '6473' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Distributed and dynamic intracellular organization of extracellular information type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '316' abstract: - lang: eng text: 'Self-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self- and non-self recognition. Most work has focused on diversification within self-recognition systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic non-self recognition (SRNase/S Locus F-box (SLF)) SI system. For this model the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and in general is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate to high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a non-self recognition SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a self recognition system common in flowering plants.' article_processing_charge: No article_type: original author: - first_name: Katarina full_name: Bodova, Katarina id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bodova orcid: 0000-0002-7214-0171 - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 citation: ama: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system. Genetics. 2018;209(3):861-883. doi:10.1534/genetics.118.300748 apa: Bodova, K., Priklopil, T., Field, D., Barton, N. H., & Pickup, M. (2018). Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.300748 chicago: Bodova, Katarina, Tadeas Priklopil, David Field, Nicholas H Barton, and Melinda Pickup. “Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Non-Self Recognition System.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.300748. ieee: K. Bodova, T. Priklopil, D. Field, N. H. Barton, and M. Pickup, “Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system,” Genetics, vol. 209, no. 3. Genetics Society of America, pp. 861–883, 2018. ista: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. 2018. Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system. Genetics. 209(3), 861–883. mla: Bodova, Katarina, et al. “Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Non-Self Recognition System.” Genetics, vol. 209, no. 3, Genetics Society of America, 2018, pp. 861–83, doi:10.1534/genetics.118.300748. short: K. Bodova, T. Priklopil, D. Field, N.H. Barton, M. Pickup, Genetics 209 (2018) 861–883. date_created: 2018-12-11T11:45:47Z date_published: 2018-07-01T00:00:00Z date_updated: 2023-09-11T13:57:43Z day: '01' department: - _id: NiBa - _id: GaTk doi: 10.1534/genetics.118.300748 ec_funded: 1 external_id: isi: - '000437171700017' intvolume: ' 209' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/node/80098.abstract month: '07' oa: 1 oa_version: Preprint page: 861-883 project: - _id: 25B36484-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '329960' name: Mating system and the evolutionary dynamics of hybrid zones - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Genetics publication_status: published publisher: Genetics Society of America quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/recognizing-others-but-not-yourself-new-insights-into-the-evolution-of-plant-mating/ record: - id: '9813' relation: research_data status: public scopus_import: '1' status: public title: Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 209 year: '2018' ... --- _id: '9813' abstract: - lang: eng text: 'File S1 contains figures that clarify the following features: (i) effect of population size on the average number/frequency of SI classes, (ii) changes in the minimal completeness deficit in time for a single class, and (iii) diversification diagrams for all studied pathways, including the summary figure for k = 8. File S2 contains the code required for a stochastic simulation of the SLF system with an example. This file also includes the output in the form of figures and tables.' article_processing_charge: No author: - first_name: Katarína full_name: Bod'ová, Katarína id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bod'ová orcid: 0000-0002-7214-0171 - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 citation: ama: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. Supplemental material for Bodova et al., 2018. 2018. doi:10.25386/genetics.6148304.v1 apa: Bodova, K., Priklopil, T., Field, D., Barton, N. H., & Pickup, M. (2018). Supplemental material for Bodova et al., 2018. Genetics Society of America. https://doi.org/10.25386/genetics.6148304.v1 chicago: Bodova, Katarina, Tadeas Priklopil, David Field, Nicholas H Barton, and Melinda Pickup. “Supplemental Material for Bodova et Al., 2018.” Genetics Society of America, 2018. https://doi.org/10.25386/genetics.6148304.v1. ieee: K. Bodova, T. Priklopil, D. Field, N. H. Barton, and M. Pickup, “Supplemental material for Bodova et al., 2018.” Genetics Society of America, 2018. ista: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. 2018. Supplemental material for Bodova et al., 2018, Genetics Society of America, 10.25386/genetics.6148304.v1. mla: Bodova, Katarina, et al. Supplemental Material for Bodova et Al., 2018. Genetics Society of America, 2018, doi:10.25386/genetics.6148304.v1. short: K. Bodova, T. Priklopil, D. Field, N.H. Barton, M. Pickup, (2018). date_created: 2021-08-06T13:04:32Z date_published: 2018-04-30T00:00:00Z date_updated: 2023-09-11T13:57:42Z day: '30' department: - _id: NiBa - _id: GaTk doi: 10.25386/genetics.6148304.v1 main_file_link: - open_access: '1' url: https://doi.org/10.25386/genetics.6148304.v1 month: '04' oa: 1 oa_version: Published Version publisher: Genetics Society of America related_material: record: - id: '316' relation: used_in_publication status: public status: public title: Supplemental material for Bodova et al., 2018 type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '406' abstract: - lang: eng text: 'Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie’s Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data. ' acknowledgement: This work was supported by the Human Frontier Science Program RGP0065/2012 (GT, ES). article_processing_charge: Yes author: - first_name: Katarína full_name: Bod’Ová, Katarína last_name: Bod’Ová - first_name: Gabriel full_name: Mitchell, Gabriel id: 315BCD80-F248-11E8-B48F-1D18A9856A87 last_name: Mitchell - first_name: Roy full_name: Harpaz, Roy last_name: Harpaz - first_name: Elad full_name: Schneidman, Elad last_name: Schneidman - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 citation: ama: Bod’Ová K, Mitchell G, Harpaz R, Schneidman E, Tkačik G. Probabilistic models of individual and collective animal behavior. PLoS One. 2018;13(3). doi:10.1371/journal.pone.0193049 apa: Bod’Ová, K., Mitchell, G., Harpaz, R., Schneidman, E., & Tkačik, G. (2018). Probabilistic models of individual and collective animal behavior. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0193049 chicago: Bod’Ová, Katarína, Gabriel Mitchell, Roy Harpaz, Elad Schneidman, and Gašper Tkačik. “Probabilistic Models of Individual and Collective Animal Behavior.” PLoS One. Public Library of Science, 2018. https://doi.org/10.1371/journal.pone.0193049. ieee: K. Bod’Ová, G. Mitchell, R. Harpaz, E. Schneidman, and G. Tkačik, “Probabilistic models of individual and collective animal behavior,” PLoS One, vol. 13, no. 3. Public Library of Science, 2018. ista: Bod’Ová K, Mitchell G, Harpaz R, Schneidman E, Tkačik G. 2018. Probabilistic models of individual and collective animal behavior. PLoS One. 13(3). mla: Bod’Ová, Katarína, et al. “Probabilistic Models of Individual and Collective Animal Behavior.” PLoS One, vol. 13, no. 3, Public Library of Science, 2018, doi:10.1371/journal.pone.0193049. short: K. Bod’Ová, G. Mitchell, R. Harpaz, E. Schneidman, G. Tkačik, PLoS One 13 (2018). date_created: 2018-12-11T11:46:18Z date_published: 2018-03-07T00:00:00Z date_updated: 2023-09-15T12:06:19Z day: '07' ddc: - '530' - '571' department: - _id: GaTk doi: 10.1371/journal.pone.0193049 external_id: isi: - '000426896800032' file: - access_level: open_access checksum: 684229493db75b43e98a46cd922da497 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:43Z date_updated: 2020-07-14T12:46:22Z file_id: '5165' file_name: IST-2018-995-v1+1_2018_Bodova_Probabilistic.pdf file_size: 6887358 relation: main_file file_date_updated: 2020-07-14T12:46:22Z has_accepted_license: '1' intvolume: ' 13' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version project: - _id: 255008E4-B435-11E9-9278-68D0E5697425 grant_number: RGP0065/2012 name: Information processing and computation in fish groups publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '7423' pubrep_id: '995' quality_controlled: '1' related_material: record: - id: '9831' relation: research_data status: public scopus_import: '1' status: public title: Probabilistic models of individual and collective animal behavior tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13 year: '2018' ...