@article{2861,
abstract = {We consider a two-parameter family of piecewise linear maps in which the moduli of the two slopes take different values. We provide numerical evidence of the existence of some parameter regions in which the Lyapunov exponent and the topological entropy remain constant. Analytical proof of this phenomenon is also given for certain cases. Surprisingly however, the systems with that property are not conjugate as we prove by using kneading theory.},
author = {Botella Soler, Vicente and Oteo, José and Ros, Javier and Glendinning, Paul},
journal = {Journal of Physics A: Mathematical and Theoretical},
number = {12},
publisher = {IOP Publishing Ltd.},
title = {{Lyapunov exponent and topological entropy plateaus in piecewise linear maps}},
doi = {10.1088/1751-8113/46/12/125101},
volume = {46},
year = {2013},
}
@article{2863,
abstract = {Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.},
author = {Granot Atedgi, Einat and Tkacik, Gasper and Segev, Ronen and Schneidman, Elad},
journal = {PLoS Computational Biology},
number = {3},
publisher = {Public Library of Science},
title = {{Stimulus-dependent maximum entropy models of neural population codes}},
doi = {10.1371/journal.pcbi.1002922},
volume = {9},
year = {2013},
}
@article{2913,
abstract = {The ability of an organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures of stimulus similarity, this "neural metric" tells us how distinguishable a pair of stimulus clips is to the retina, based on the similarity between the induced distributions of population responses. We show that the retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we identify the stimulus features that the neural population is jointly sensitive to, and show the support-vector-machine- like kernel function relating the stimulus and neural response spaces. We show that the non-Euclidean nature of the retinal distance has important consequences for neural decoding.},
author = {Tkacik, Gasper and Granot Atedgi, Einat and Segev, Ronen and Schneidman, Elad},
journal = {Physical Review Letters},
number = {5},
publisher = {American Physical Society},
title = {{Retinal metric: a stimulus distance measure derived from population neural responses}},
doi = {10.1103/PhysRevLett.110.058104},
volume = {110},
year = {2013},
}
@article{2914,
abstract = {The scale invariance of natural images suggests an analogy to the statistical mechanics of physical systems at a critical point. Here we examine the distribution of pixels in small image patches and show how to construct the corresponding thermodynamics. We find evidence for criticality in a diverging specific heat, which corresponds to large fluctuations in how "surprising" we find individual images, and in the quantitative form of the entropy vs energy. We identify special image configurations as local energy minima and show that average patches within each basin are interpretable as lines and edges in all orientations.},
author = {Stephens, Greg and Mora, Thierry and Tkacik, Gasper and Bialek, William},
journal = {Physical Review Letters},
number = {1},
publisher = {American Physical Society},
title = {{Statistical thermodynamics of natural images}},
doi = {10.1103/PhysRevLett.110.018701},
volume = {110},
year = {2013},
}
@article{499,
abstract = {Exposure of an isogenic bacterial population to a cidal antibiotic typically fails to eliminate a small fraction of refractory cells. Historically, fractional killing has been attributed to infrequently dividing or nondividing "persisters." Using microfluidic cultures and time-lapse microscopy, we found that Mycobacterium smegmatis persists by dividing in the presence of the drug isoniazid (INH). Although persistence in these studies was characterized by stable numbers of cells, this apparent stability was actually a dynamic state of balanced division and death. Single cells expressed catalase-peroxidase (KatG), which activates INH, in stochastic pulses that were negatively correlated with cell survival. These behaviors may reflect epigenetic effects, because KatG pulsing and death were correlated between sibling cells. Selection of lineages characterized by infrequent KatG pulsing could allow nonresponsive adaptation during prolonged drug exposure.},
author = {Wakamoto, Yurichi and Dhar, Neraaj and Chait, Remy P and Schneider, Katrin and Signorino Gelo, François and Leibler, Stanislas and Mckinney, John},
journal = {Science},
number = {6115},
pages = {91 -- 95},
publisher = {American Association for the Advancement of Science},
title = {{Dynamic persistence of antibiotic-stressed mycobacteria}},
doi = {10.1126/science.1229858},
volume = {339},
year = {2013},
}