@article{1538,
abstract = {Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time.},
author = {Ruess, Jakob and Parise, Francesca and Milias Argeitis, Andreas and Khammash, Mustafa and Lygeros, John},
journal = {PNAS},
number = {26},
pages = {8148 -- 8153},
publisher = {National Academy of Sciences},
title = {{Iterative experiment design guides the characterization of a light-inducible gene expression circuit}},
doi = {10.1073/pnas.1423947112},
volume = {112},
year = {2015},
}
@article{1539,
abstract = {Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space. },
author = {Ruess, Jakob},
journal = {Journal of Chemical Physics},
number = {24},
publisher = {American Institute of Physics},
title = {{Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space}},
doi = {10.1063/1.4937937},
volume = {143},
year = {2015},
}
@article{1570,
abstract = {Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no systemspecific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking,which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.},
author = {Der, Ralf and Martius, Georg S},
journal = {PNAS},
number = {45},
pages = {E6224 -- E6232},
publisher = {National Academy of Sciences},
title = {{Novel plasticity rule can explain the development of sensorimotor intelligence}},
doi = {10.1073/pnas.1508400112},
volume = {112},
year = {2015},
}
@article{1655,
abstract = {Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.},
author = {Martius, Georg S and Olbrich, Eckehard},
journal = {Entropy},
number = {10},
pages = {7266 -- 7297},
publisher = {Multidisciplinary Digital Publishing Institute},
title = {{Quantifying emergent behavior of autonomous robots}},
doi = {10.3390/e17107266},
volume = {17},
year = {2015},
}
@inproceedings{1658,
abstract = {Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.},
author = {Bogomolov, Sergiy and Henzinger, Thomas A and Podelski, Andreas and Ruess, Jakob and Schilling, Christian},
location = {Nantes, France},
pages = {77 -- 89},
publisher = {Springer},
title = {{Adaptive moment closure for parameter inference of biochemical reaction networks}},
doi = {10.1007/978-3-319-23401-4_8},
volume = {9308},
year = {2015},
}
@article{1666,
abstract = {Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics.},
author = {Tugrul, Murat and Paixao, Tiago and Barton, Nicholas H and Tkacik, Gasper},
journal = {PLoS Genetics},
number = {11},
publisher = {Public Library of Science},
title = {{Dynamics of transcription factor binding site evolution}},
doi = {10.1371/journal.pgen.1005639},
volume = {11},
year = {2015},
}
@article{1697,
abstract = {Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar’s position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina’s population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar’s position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.},
author = {Marre, Olivier and Botella Soler, Vicente and Simmons, Kristina and Mora, Thierry and Tkacik, Gasper and Berry, Michael},
journal = {PLoS Computational Biology},
number = {7},
publisher = {Public Library of Science},
title = {{High accuracy decoding of dynamical motion from a large retinal population}},
doi = {10.1371/journal.pcbi.1004304},
volume = {11},
year = {2015},
}
@article{1701,
abstract = {The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance. },
author = {Tkacik, Gasper and Mora, Thierry and Marre, Olivier and Amodei, Dario and Palmer, Stephanie and Berry Ii, Michael and Bialek, William},
journal = {PNAS},
number = {37},
pages = {11508 -- 11513},
publisher = {National Academy of Sciences},
title = {{Thermodynamics and signatures of criticality in a network of neurons}},
doi = {10.1073/pnas.1514188112},
volume = {112},
year = {2015},
}
@article{1827,
abstract = {Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved.},
author = {Friedlander, Tamar and Mayo, Avraham and Tlusty, Tsvi and Alon, Uri},
journal = {PLoS Computational Biology},
number = {3},
publisher = {Public Library of Science},
title = {{Evolution of bow-tie architectures in biology}},
doi = {10.1371/journal.pcbi.1004055},
volume = {11},
year = {2015},
}
@article{1861,
abstract = {Continuous-time Markov chains are commonly used in practice for modeling biochemical reaction networks in which the inherent randomness of themolecular interactions cannot be ignored. This has motivated recent research effort into methods for parameter inference and experiment design for such models. The major difficulty is that such methods usually require one to iteratively solve the chemical master equation that governs the time evolution of the probability distribution of the system. This, however, is rarely possible, and even approximation techniques remain limited to relatively small and simple systems. An alternative explored in this article is to base methods on only some low-order moments of the entire probability distribution. We summarize the theory behind such moment-based methods for parameter inference and experiment design and provide new case studies where we investigate their performance.},
author = {Ruess, Jakob and Lygeros, John},
journal = {ACM Transactions on Modeling and Computer Simulation},
number = {2},
publisher = {ACM},
title = {{Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks}},
doi = {10.1145/2688906},
volume = {25},
year = {2015},
}