--- _id: '7414' article_processing_charge: No article_type: original author: - first_name: Lisa full_name: Knaus, Lisa id: 3B2ABCF4-F248-11E8-B48F-1D18A9856A87 last_name: Knaus - first_name: Dora-Clara full_name: Tarlungeanu, Dora-Clara id: 2ABCE612-F248-11E8-B48F-1D18A9856A87 last_name: Tarlungeanu - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Knaus L, Tarlungeanu D-C, Novarino G. S.16.03 A homozygous missense mutation in SLC7A5 leads to autism spectrum disorder and microcephaly. European Neuropsychopharmacology. 2019;29(Supplement 6):S11. doi:10.1016/j.euroneuro.2019.09.039 apa: Knaus, L., Tarlungeanu, D.-C., & Novarino, G. (2019). S.16.03 A homozygous missense mutation in SLC7A5 leads to autism spectrum disorder and microcephaly. European Neuropsychopharmacology. Elsevier. https://doi.org/10.1016/j.euroneuro.2019.09.039 chicago: Knaus, Lisa, Dora-Clara Tarlungeanu, and Gaia Novarino. “S.16.03 A Homozygous Missense Mutation in SLC7A5 Leads to Autism Spectrum Disorder and Microcephaly.” European Neuropsychopharmacology. Elsevier, 2019. https://doi.org/10.1016/j.euroneuro.2019.09.039. ieee: L. Knaus, D.-C. Tarlungeanu, and G. Novarino, “S.16.03 A homozygous missense mutation in SLC7A5 leads to autism spectrum disorder and microcephaly,” European Neuropsychopharmacology, vol. 29, no. Supplement 6. Elsevier, p. S11, 2019. ista: Knaus L, Tarlungeanu D-C, Novarino G. 2019. S.16.03 A homozygous missense mutation in SLC7A5 leads to autism spectrum disorder and microcephaly. European Neuropsychopharmacology. 29(Supplement 6), S11. mla: Knaus, Lisa, et al. “S.16.03 A Homozygous Missense Mutation in SLC7A5 Leads to Autism Spectrum Disorder and Microcephaly.” European Neuropsychopharmacology, vol. 29, no. Supplement 6, Elsevier, 2019, p. S11, doi:10.1016/j.euroneuro.2019.09.039. short: L. Knaus, D.-C. Tarlungeanu, G. Novarino, European Neuropsychopharmacology 29 (2019) S11. date_created: 2020-01-30T10:06:15Z date_published: 2019-12-13T00:00:00Z date_updated: 2023-09-07T14:55:23Z day: '13' department: - _id: GaNo doi: 10.1016/j.euroneuro.2019.09.039 external_id: isi: - '000502657500020' intvolume: ' 29' isi: 1 issue: Supplement 6 language: - iso: eng month: '12' oa_version: None page: S11 publication: European Neuropsychopharmacology publication_identifier: issn: - 0924-977X publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: S.16.03 A homozygous missense mutation in SLC7A5 leads to autism spectrum disorder and microcephaly type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2019' ... --- _id: '6074' abstract: - lang: eng text: "This dataset contains the supplementary data for the research paper \"Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition\".\r\n\r\nThe contained files have the following content:\r\n'Supplementary Figures.pdf'\r\n\tAdditional figures (as referenced in the paper).\r\n'Supplementary Table 1. Statistics.xlsx'\r\n\tDetails on statistical tests performed in the paper.\r\n'Supplementary Table 2. Differentially expressed gene analysis.xlsx'\r\n\tResults for the differential gene expression analysis for embryonic (E9.5; analysis with edgeR) and in vitro (ESCs, EBs, NPCs; analysis with DESeq2) samples.\r\n'Supplementary Table 3. Gene Ontology (GO) term enrichment analysis.xlsx'\r\n\tResults for the GO term enrichment analysis for differentially expressed genes in embryonic (GO E9.5) and in vitro (GO ESC, GO EBs, GO NPCs) samples. Differentially expressed genes for in vitro samples were split into upregulated and downregulated genes (up/down) and the analysis was performed on each subset (e.g. GO ESC up / GO ESC down).\r\n'Supplementary Table 4. Differentially expressed gene analysis for CFC samples.xlsx'\r\n\tResults for the differential gene expression analysis for samples from adult mice before (HC - Homecage) and 1h and 3h after contextual fear conditioning (1h and 3h, respectively). Each sheet shows the results for a different comparison. Sheets 1-3 show results for comparisons between timepoints for wild type (WT) samples only and sheets 4-6 for the same comparisons in mutant (Het) samples. Sheets 7-9 show results for comparisons between genotypes at each time point and sheet 10 contains the results for the analysis of differential expression trajectories between wild type and mutant.\r\n'Supplementary Table 5. Cluster identification.xlsx'\r\n\tResults for k-means clustering of genes by expression. Sheet 1 shows clustering of just the genes with significantly different expression trajectories between genotypes. Sheet 2 shows clustering of all genes that are significantly differentially expressed in any of the comparisons (includes also genes with same trajectories).\r\n'Supplementary Table 6. GO term cluster analysis.xlsx'\r\n\tResults for the GO term enrichment analysis and EWCE analysis for enrichment of cell type specific genes for each cluster identified by clustering genes with different expression trajectories (see Table S5, sheet 1).\r\n'Supplementary Table 7. Setd5 mass spectrometry results.xlsx'\r\n\tResults showing proteins interacting with Setd5 as identified by mass spectrometry. Sheet 1 shows protein protein interaction data generated from these results (combined with data from the STRING database. Sheet 2 shows the results of the statistical analysis with limma.\r\n'Supplementary Table 8. PolII ChIP-seq analysis.xlsx'\r\n\tResults for the Chip-Seq analysis for binding of RNA polymerase II (PolII). Sheet 1 shows results for differential binding of PolII at the transcription start site (TSS) between genotypes and sheets 2+3 show the corresponding GO enrichment analysis for these differentially bound genes. Sheet 4 shows RNAseq counts for genes with increased binding of PolII at the TSS." article_processing_charge: No author: - first_name: Christoph full_name: Dotter, Christoph id: 4C66542E-F248-11E8-B48F-1D18A9856A87 last_name: Dotter orcid: 0000-0002-9033-9096 - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Dotter C, Novarino G. Supplementary data for the research paper “Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition.” 2019. doi:10.15479/AT:ISTA:6074 apa: Dotter, C., & Novarino, G. (2019). Supplementary data for the research paper “Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6074 chicago: Dotter, Christoph, and Gaia Novarino. “Supplementary Data for the Research Paper ‘Haploinsufficiency of the Intellectual Disability Gene SETD5 Disturbs Developmental Gene Expression and Cognition.’” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6074. ieee: C. Dotter and G. Novarino, “Supplementary data for the research paper ‘Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition.’” Institute of Science and Technology Austria, 2019. ista: Dotter C, Novarino G. 2019. Supplementary data for the research paper ‘Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:6074. mla: Dotter, Christoph, and Gaia Novarino. Supplementary Data for the Research Paper “Haploinsufficiency of the Intellectual Disability Gene SETD5 Disturbs Developmental Gene Expression and Cognition.” Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6074. short: C. Dotter, G. Novarino, (2019). date_created: 2019-03-07T13:32:35Z date_published: 2019-01-09T00:00:00Z date_updated: 2024-02-21T13:41:01Z day: '09' ddc: - '570' department: - _id: GaNo doi: 10.15479/AT:ISTA:6074 file: - access_level: open_access checksum: bc1b285edca9e98a2c63d153c79bb75b content_type: application/zip creator: dernst date_created: 2019-03-07T13:37:19Z date_updated: 2020-07-14T12:47:18Z file_id: '6084' file_name: Setd5_paper.zip file_size: 33202743 relation: supplementary_material file_date_updated: 2020-07-14T12:47:18Z has_accepted_license: '1' month: '01' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '3' relation: research_paper status: public status: public title: Supplementary data for the research paper "Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition" type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '456' abstract: - lang: eng text: 'Inhibition of the endoplasmic reticulum stress pathway may hold the key to Zika virus-associated microcephaly treatment. ' article_number: eaar7514 author: - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: 'Novarino G. Zika-associated microcephaly: Reduce the stress and race for the treatment. Science Translational Medicine. 2018;10(423). doi:10.1126/scitranslmed.aar7514' apa: 'Novarino, G. (2018). Zika-associated microcephaly: Reduce the stress and race for the treatment. Science Translational Medicine. American Association for the Advancement of Science. https://doi.org/10.1126/scitranslmed.aar7514' chicago: 'Novarino, Gaia. “Zika-Associated Microcephaly: Reduce the Stress and Race for the Treatment.” Science Translational Medicine. American Association for the Advancement of Science, 2018. https://doi.org/10.1126/scitranslmed.aar7514.' ieee: 'G. Novarino, “Zika-associated microcephaly: Reduce the stress and race for the treatment,” Science Translational Medicine, vol. 10, no. 423. American Association for the Advancement of Science, 2018.' ista: 'Novarino G. 2018. Zika-associated microcephaly: Reduce the stress and race for the treatment. Science Translational Medicine. 10(423), eaar7514.' mla: 'Novarino, Gaia. “Zika-Associated Microcephaly: Reduce the Stress and Race for the Treatment.” Science Translational Medicine, vol. 10, no. 423, eaar7514, American Association for the Advancement of Science, 2018, doi:10.1126/scitranslmed.aar7514.' short: G. Novarino, Science Translational Medicine 10 (2018). date_created: 2018-12-11T11:46:34Z date_published: 2018-01-10T00:00:00Z date_updated: 2021-01-12T07:59:42Z day: '10' department: - _id: GaNo doi: 10.1126/scitranslmed.aar7514 intvolume: ' 10' issue: '423' language: - iso: eng month: '01' oa_version: None publication: Science Translational Medicine publication_status: published publisher: American Association for the Advancement of Science publist_id: '7365' quality_controlled: '1' scopus_import: 1 status: public title: 'Zika-associated microcephaly: Reduce the stress and race for the treatment' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2018' ... --- _id: '5888' abstract: - lang: eng text: "Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental\r\ndisorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in\r\ngenomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous\r\nmutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered,\r\nthe etiological variability and the heterogeneous clinical presentation, the need for genotype — along with phenotype-\r\nbased diagnosis of individual patients has become a requisite. In this review we look at recent advancements in\r\ngenomic analysis and their translation into clinical practice." article_number: '100' article_processing_charge: No author: - first_name: Dora-Clara full_name: Tarlungeanu, Dora-Clara id: 2ABCE612-F248-11E8-B48F-1D18A9856A87 last_name: Tarlungeanu - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: 'Tarlungeanu D-C, Novarino G. Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental & Molecular Medicine. 2018;50(8). doi:10.1038/s12276-018-0129-7' apa: 'Tarlungeanu, D.-C., & Novarino, G. (2018). Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental & Molecular Medicine. Springer Nature. https://doi.org/10.1038/s12276-018-0129-7' chicago: 'Tarlungeanu, Dora-Clara, and Gaia Novarino. “Genomics in Neurodevelopmental Disorders: An Avenue to Personalized Medicine.” Experimental & Molecular Medicine. Springer Nature, 2018. https://doi.org/10.1038/s12276-018-0129-7.' ieee: 'D.-C. Tarlungeanu and G. Novarino, “Genomics in neurodevelopmental disorders: an avenue to personalized medicine,” Experimental & Molecular Medicine, vol. 50, no. 8. Springer Nature, 2018.' ista: 'Tarlungeanu D-C, Novarino G. 2018. Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental & Molecular Medicine. 50(8), 100.' mla: 'Tarlungeanu, Dora-Clara, and Gaia Novarino. “Genomics in Neurodevelopmental Disorders: An Avenue to Personalized Medicine.” Experimental & Molecular Medicine, vol. 50, no. 8, 100, Springer Nature, 2018, doi:10.1038/s12276-018-0129-7.' short: D.-C. Tarlungeanu, G. Novarino, Experimental & Molecular Medicine 50 (2018). date_created: 2019-01-27T22:59:11Z date_published: 2018-08-07T00:00:00Z date_updated: 2023-09-11T14:04:41Z day: '07' ddc: - '570' department: - _id: GaNo doi: 10.1038/s12276-018-0129-7 external_id: isi: - '000441266700006' pmid: - '30089840' file: - access_level: open_access checksum: 4498301c8c53097c9a1a8ef990936eb5 content_type: application/pdf creator: dernst date_created: 2019-01-28T15:18:02Z date_updated: 2020-07-14T12:47:13Z file_id: '5893' file_name: 2018_EMM_Tarlungeanu.pdf file_size: 1237482 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 50' isi: 1 issue: '8' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: Experimental & Molecular Medicine publication_identifier: issn: - 2092-6413 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Genomics in neurodevelopmental disorders: an avenue to personalized medicine' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 50 year: '2018' ... --- _id: '546' abstract: - lang: eng text: The precise control of neural stem cell (NSC) proliferation and differentiation is crucial for the development and function of the human brain. Here, we review the emerging links between the alteration of embryonic and adult neurogenesis and the etiology of neuropsychiatric disorders (NPDs) such as autism spectrum disorders (ASDs) and schizophrenia (SCZ), as well as the advances in stem cell-based modeling and the novel therapeutic targets derived from these studies. article_processing_charge: No author: - first_name: Roberto full_name: Sacco, Roberto id: 42C9F57E-F248-11E8-B48F-1D18A9856A87 last_name: Sacco - first_name: Emanuele full_name: Cacci, Emanuele last_name: Cacci - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology. 2018;48(2):131-138. doi:10.1016/j.conb.2017.12.005 apa: Sacco, R., Cacci, E., & Novarino, G. (2018). Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology. Elsevier. https://doi.org/10.1016/j.conb.2017.12.005 chicago: Sacco, Roberto, Emanuele Cacci, and Gaia Novarino. “Neural Stem Cells in Neuropsychiatric Disorders.” Current Opinion in Neurobiology. Elsevier, 2018. https://doi.org/10.1016/j.conb.2017.12.005. ieee: R. Sacco, E. Cacci, and G. Novarino, “Neural stem cells in neuropsychiatric disorders,” Current Opinion in Neurobiology, vol. 48, no. 2. Elsevier, pp. 131–138, 2018. ista: Sacco R, Cacci E, Novarino G. 2018. Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology. 48(2), 131–138. mla: Sacco, Roberto, et al. “Neural Stem Cells in Neuropsychiatric Disorders.” Current Opinion in Neurobiology, vol. 48, no. 2, Elsevier, 2018, pp. 131–38, doi:10.1016/j.conb.2017.12.005. short: R. Sacco, E. Cacci, G. Novarino, Current Opinion in Neurobiology 48 (2018) 131–138. date_created: 2018-12-11T11:47:06Z date_published: 2018-02-01T00:00:00Z date_updated: 2023-09-13T09:01:56Z day: '01' department: - _id: GaNo doi: 10.1016/j.conb.2017.12.005 external_id: isi: - '000427101600018' intvolume: ' 48' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 131 - 138 publication: Current Opinion in Neurobiology publication_status: published publisher: Elsevier publist_id: '7268' quality_controlled: '1' scopus_import: '1' status: public title: Neural stem cells in neuropsychiatric disorders type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 48 year: '2018' ...