--- _id: '15179' abstract: - lang: eng text: The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis—a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors. acknowledgement: "We thank Milaboratory (milaboratory.com) for the access to computing and storage infrastructure. We thank J. Petrasek for providing the BY-2 cell culture line. We thank Konstantin Lukyanov laboratory and Sergey Deyev laboratory for assistance with experiments.\r\nThis study was partially funded by Light Bio and Planta. The Synthetic biology Group is funded by the MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0). Cloning and luminescent assays performed in BY-2 were partially supported by RSF, project number 22-14-00400, https://rscf.ru/project/22-14-00400/. Plant transformations were funded by RFBR and MOST, project number 21-54-52004. Plant imaging experiments were funded by RSF, project number 22-74-00124, https://rscf.ru/project/22-74-00124/. Viral delivery experiments were funded by the grant PID2019-108203RB-I00 Plan Nacional I + D from the Ministerio de Ciencia e Innovación (Spain) through the Agencia Estatal de Investigación (cofinanced by the European Regional Development Fund)." article_number: adk1992 article_processing_charge: Yes article_type: original author: - first_name: Kseniia A. full_name: Palkina, Kseniia A. last_name: Palkina - first_name: Tatiana A. full_name: Karataeva, Tatiana A. last_name: Karataeva - first_name: Maxim M. full_name: Perfilov, Maxim M. last_name: Perfilov - first_name: Liliia I. full_name: Fakhranurova, Liliia I. last_name: Fakhranurova - first_name: Nadezhda M. full_name: Markina, Nadezhda M. last_name: Markina - first_name: Louisa full_name: Gonzalez Somermeyer, Louisa id: 4720D23C-F248-11E8-B48F-1D18A9856A87 last_name: Gonzalez Somermeyer orcid: 0000-0001-9139-5383 - first_name: Elena full_name: Garcia-Perez, Elena last_name: Garcia-Perez - first_name: Marta full_name: Vazquez-Vilar, Marta last_name: Vazquez-Vilar - first_name: Marta full_name: Rodriguez-Rodriguez, Marta last_name: Rodriguez-Rodriguez - first_name: Victor full_name: Vazquez-Vilriales, Victor last_name: Vazquez-Vilriales - first_name: Ekaterina S. full_name: Shakhova, Ekaterina S. last_name: Shakhova - first_name: Tatiana full_name: Mitiouchkina, Tatiana last_name: Mitiouchkina - first_name: Olga A. full_name: Belozerova, Olga A. last_name: Belozerova - first_name: Sergey I. full_name: Kovalchuk, Sergey I. last_name: Kovalchuk - first_name: Anna full_name: Alekberova, Anna last_name: Alekberova - first_name: Alena K. full_name: Malyshevskaia, Alena K. last_name: Malyshevskaia - first_name: Evgenia N. full_name: Bugaeva, Evgenia N. last_name: Bugaeva - first_name: Elena B. full_name: Guglya, Elena B. last_name: Guglya - first_name: Anastasia full_name: Balakireva, Anastasia last_name: Balakireva - first_name: Nikita full_name: Sytov, Nikita last_name: Sytov - first_name: Anastasia full_name: Bezlikhotnova, Anastasia last_name: Bezlikhotnova - first_name: Daria I. full_name: Boldyreva, Daria I. last_name: Boldyreva - first_name: Vladislav V. full_name: Babenko, Vladislav V. last_name: Babenko - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Vladimir V. full_name: Choob, Vladimir V. last_name: Choob - first_name: Diego full_name: Orzaez, Diego last_name: Orzaez - first_name: Ilia V. full_name: Yampolsky, Ilia V. last_name: Yampolsky - first_name: Alexander S. full_name: Mishin, Alexander S. last_name: Mishin - first_name: Karen S. full_name: Sarkisyan, Karen S. last_name: Sarkisyan citation: ama: Palkina KA, Karataeva TA, Perfilov MM, et al. A hybrid pathway for self-sustained luminescence. Science Advances. 2024;10(10). doi:10.1126/sciadv.adk1992 apa: Palkina, K. A., Karataeva, T. A., Perfilov, M. M., Fakhranurova, L. I., Markina, N. M., Gonzalez Somermeyer, L., … Sarkisyan, K. S. (2024). A hybrid pathway for self-sustained luminescence. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.adk1992 chicago: Palkina, Kseniia A., Tatiana A. Karataeva, Maxim M. Perfilov, Liliia I. Fakhranurova, Nadezhda M. Markina, Louisa Gonzalez Somermeyer, Elena Garcia-Perez, et al. “A Hybrid Pathway for Self-Sustained Luminescence.” Science Advances. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/sciadv.adk1992. ieee: K. A. Palkina et al., “A hybrid pathway for self-sustained luminescence,” Science Advances, vol. 10, no. 10. American Association for the Advancement of Science, 2024. ista: Palkina KA, Karataeva TA, Perfilov MM, Fakhranurova LI, Markina NM, Gonzalez Somermeyer L, Garcia-Perez E, Vazquez-Vilar M, Rodriguez-Rodriguez M, Vazquez-Vilriales V, Shakhova ES, Mitiouchkina T, Belozerova OA, Kovalchuk SI, Alekberova A, Malyshevskaia AK, Bugaeva EN, Guglya EB, Balakireva A, Sytov N, Bezlikhotnova A, Boldyreva DI, Babenko VV, Kondrashov F, Choob VV, Orzaez D, Yampolsky IV, Mishin AS, Sarkisyan KS. 2024. A hybrid pathway for self-sustained luminescence. Science Advances. 10(10), adk1992. mla: Palkina, Kseniia A., et al. “A Hybrid Pathway for Self-Sustained Luminescence.” Science Advances, vol. 10, no. 10, adk1992, American Association for the Advancement of Science, 2024, doi:10.1126/sciadv.adk1992. short: K.A. Palkina, T.A. Karataeva, M.M. Perfilov, L.I. Fakhranurova, N.M. Markina, L. Gonzalez Somermeyer, E. Garcia-Perez, M. Vazquez-Vilar, M. Rodriguez-Rodriguez, V. Vazquez-Vilriales, E.S. Shakhova, T. Mitiouchkina, O.A. Belozerova, S.I. Kovalchuk, A. Alekberova, A.K. Malyshevskaia, E.N. Bugaeva, E.B. Guglya, A. Balakireva, N. Sytov, A. Bezlikhotnova, D.I. Boldyreva, V.V. Babenko, F. Kondrashov, V.V. Choob, D. Orzaez, I.V. Yampolsky, A.S. Mishin, K.S. Sarkisyan, Science Advances 10 (2024). date_created: 2024-03-25T08:54:33Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T09:44:53Z day: '01' ddc: - '580' department: - _id: FyKo doi: 10.1126/sciadv.adk1992 file: - access_level: open_access checksum: a19c43b260ea0bbaf895a29712e3153c content_type: application/pdf creator: dernst date_created: 2024-03-25T09:42:10Z date_updated: 2024-03-25T09:42:10Z file_id: '15185' file_name: 2024_ScienceAdv_Palkina.pdf file_size: 1499302 relation: main_file success: 1 file_date_updated: 2024-03-25T09:42:10Z has_accepted_license: '1' intvolume: ' 10' issue: '10' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: A hybrid pathway for self-sustained luminescence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2024' ... --- _id: '12758' abstract: - lang: eng text: AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is “solved”. However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability (ΔΔG) and function. To study the question we extracted the pLDDT and metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known ΔΔG values. Additionally, we correlated the same AlphaFold pLDDT metrics with the impact of a single mutation on structure using a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold may not be immediately applied to other problems or applications in protein folding. acknowledgement: The authors acknowledge the use of Zhores supercomputer [28] for obtaining the results presented in this paper.The authors thank Zimin Foundation and Petrovax for support of the presented study at the School of Molecular and Theoretical Biology 2021. article_number: e0282689 article_processing_charge: No article_type: original author: - first_name: Marina A. full_name: Pak, Marina A. last_name: Pak - first_name: Karina A. full_name: Markhieva, Karina A. last_name: Markhieva - first_name: Mariia S. full_name: Novikova, Mariia S. last_name: Novikova - first_name: Dmitry S. full_name: Petrov, Dmitry S. last_name: Petrov - first_name: Ilya S. full_name: Vorobyev, Ilya S. last_name: Vorobyev - first_name: Ekaterina full_name: Maksimova, Ekaterina id: 2FBE0DE4-F248-11E8-B48F-1D18A9856A87 last_name: Maksimova - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Dmitry N. full_name: Ivankov, Dmitry N. last_name: Ivankov citation: ama: Pak MA, Markhieva KA, Novikova MS, et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. 2023;18(3). doi:10.1371/journal.pone.0282689 apa: Pak, M. A., Markhieva, K. A., Novikova, M. S., Petrov, D. S., Vorobyev, I. S., Maksimova, E., … Ivankov, D. N. (2023). Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0282689 chicago: Pak, Marina A., Karina A. Markhieva, Mariia S. Novikova, Dmitry S. Petrov, Ilya S. Vorobyev, Ekaterina Maksimova, Fyodor Kondrashov, and Dmitry N. Ivankov. “Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function.” PLoS ONE. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0282689. ieee: M. A. Pak et al., “Using AlphaFold to predict the impact of single mutations on protein stability and function,” PLoS ONE, vol. 18, no. 3. Public Library of Science, 2023. ista: Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS, Maksimova E, Kondrashov F, Ivankov DN. 2023. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE. 18(3), e0282689. mla: Pak, Marina A., et al. “Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function.” PLoS ONE, vol. 18, no. 3, e0282689, Public Library of Science, 2023, doi:10.1371/journal.pone.0282689. short: M.A. Pak, K.A. Markhieva, M.S. Novikova, D.S. Petrov, I.S. Vorobyev, E. Maksimova, F. Kondrashov, D.N. Ivankov, PLoS ONE 18 (2023). date_created: 2023-03-26T22:01:07Z date_published: 2023-03-16T00:00:00Z date_updated: 2023-08-01T13:47:14Z day: '16' ddc: - '570' department: - _id: FyKo - _id: MaRo doi: 10.1371/journal.pone.0282689 external_id: isi: - '000985134400106' file: - access_level: open_access checksum: 0281bdfccf8d76c4e08dd011c603f6b6 content_type: application/pdf creator: dernst date_created: 2023-03-27T07:09:08Z date_updated: 2023-03-27T07:09:08Z file_id: '12771' file_name: 2023_PLoSOne_Pak.pdf file_size: 856625 relation: main_file success: 1 file_date_updated: 2023-03-27T07:09:08Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Using AlphaFold to predict the impact of single mutations on protein stability and function tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2023' ... --- _id: '13164' abstract: - lang: eng text: Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer’s evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization. acknowledgement: We thank Manfred Schartl for sharing RNA-seq data from medaka ovaries and testes prior to publication; Maria Novatchkova for help with RNA-seq analysis; Katharina Lust for advice on medaka techniques; Milan Malinsky for input on Lake Malawi cichlid Bouncer sequences; Felicia Spitzer, Mirjam Binner, and Anna Bandura for help with genotyping; Friedrich Puhl, Kerstin Rattner, Julia Koenig, and Dijana Sunjic for taking care of zebrafish and medaka; and the Pauli lab for helpful discussions about the project and feedback on the manuscript. K.R.B.G. was supported by a DOC Fellowship from the Austrian Academy of Sciences. Work in the Pauli lab was supported by the FWF START program (Y 1031-B28 to A.P.), the ERC CoG 101044495/GaMe, the HFSP Career Development Award (CDA00066/2015 to A.P.), a HFSP Young Investigator Award (RGY0079/2020 to A.P.) and the FWF SFB RNA-Deco (project number F80). The IMP receives institutional funding from Boehringer Ingelheim and the Austrian Research Promotion Agency (Headquarter grant FFG-852936). Work by J.S. and Y.M. in this project was supported by the Israel Science Foundation grant 636/21 to Y.M. Work by L.J. was supported by the Swedish Research Council grant 2020-04936 and the Knut and Alice Wallenberg Foundation grant 2018.0042. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission. article_number: '3506' article_processing_charge: No article_type: original author: - first_name: Krista R.B. full_name: Gert, Krista R.B. last_name: Gert - first_name: Karin full_name: Panser, Karin last_name: Panser - first_name: Joachim full_name: Surm, Joachim last_name: Surm - first_name: Benjamin S. full_name: Steinmetz, Benjamin S. last_name: Steinmetz - first_name: Alexander full_name: Schleiffer, Alexander last_name: Schleiffer - first_name: Luca full_name: Jovine, Luca last_name: Jovine - first_name: Yehu full_name: Moran, Yehu last_name: Moran - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Andrea full_name: Pauli, Andrea last_name: Pauli citation: ama: Gert KRB, Panser K, Surm J, et al. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. 2023;14. doi:10.1038/s41467-023-39317-4 apa: Gert, K. R. B., Panser, K., Surm, J., Steinmetz, B. S., Schleiffer, A., Jovine, L., … Pauli, A. (2023). Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-39317-4 chicago: Gert, Krista R.B., Karin Panser, Joachim Surm, Benjamin S. Steinmetz, Alexander Schleiffer, Luca Jovine, Yehu Moran, Fyodor Kondrashov, and Andrea Pauli. “Divergent Molecular Signatures in Fish Bouncer Proteins Define Cross-Fertilization Boundaries.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-39317-4. ieee: K. R. B. Gert et al., “Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. 2023. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. 14, 3506. mla: Gert, Krista R. B., et al. “Divergent Molecular Signatures in Fish Bouncer Proteins Define Cross-Fertilization Boundaries.” Nature Communications, vol. 14, 3506, Springer Nature, 2023, doi:10.1038/s41467-023-39317-4. short: K.R.B. Gert, K. Panser, J. Surm, B.S. Steinmetz, A. Schleiffer, L. Jovine, Y. Moran, F. Kondrashov, A. Pauli, Nature Communications 14 (2023). date_created: 2023-06-25T22:00:45Z date_published: 2023-06-14T00:00:00Z date_updated: 2023-12-13T11:26:34Z day: '14' ddc: - '570' department: - _id: FyKo doi: 10.1038/s41467-023-39317-4 external_id: isi: - '001048208600023' file: - access_level: open_access checksum: d6165f41c7f1c2c04b04256ec9f003fb content_type: application/pdf creator: dernst date_created: 2023-06-26T10:26:04Z date_updated: 2023-06-26T10:26:04Z file_id: '13172' file_name: 2023_NatureComm_Gert.pdf file_size: 1555006 relation: main_file success: 1 file_date_updated: 2023-06-26T10:26:04Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13976' abstract: - lang: eng text: Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades’ worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery. acknowledgement: "Our article is dedicated to all freedom-loving people around the world and to the people of Ukraine who fight for our freedom. Special thanks to Anita Bandrowski, Oleksandra V. Ivashchenko, and Sanita Reinsone for the helpful review, valuable criticism, and useful suggestions while preparing this manuscript, and to Tetiana Yes'kova for helping with Ukrainian translation.\r\nAll authors volunteered their time. No funding supported work on this article." article_processing_charge: Yes article_type: original author: - first_name: Walter full_name: Wolfsberger, Walter last_name: Wolfsberger - first_name: Karishma full_name: Chhugani, Karishma last_name: Chhugani - first_name: Khrystyna full_name: Shchubelka, Khrystyna last_name: Shchubelka - first_name: Alina full_name: Frolova, Alina last_name: Frolova - first_name: Yuriy full_name: Salyha, Yuriy last_name: Salyha - first_name: Oksana full_name: Zlenko, Oksana last_name: Zlenko - first_name: Mykhailo full_name: Arych, Mykhailo last_name: Arych - first_name: Dmytro full_name: Dziuba, Dmytro last_name: Dziuba - first_name: Andrii full_name: Parkhomenko, Andrii last_name: Parkhomenko - first_name: Volodymyr full_name: Smolanka, Volodymyr last_name: Smolanka - first_name: Zeynep H. full_name: Gümüş, Zeynep H. last_name: Gümüş - first_name: Efe full_name: Sezgin, Efe last_name: Sezgin - first_name: Alondra full_name: Diaz-Lameiro, Alondra last_name: Diaz-Lameiro - first_name: Viktor R. full_name: Toth, Viktor R. last_name: Toth - first_name: Megi full_name: Maci, Megi last_name: Maci - first_name: Eric full_name: Bortz, Eric last_name: Bortz - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Patricia M. full_name: Morton, Patricia M. last_name: Morton - first_name: Paweł P. full_name: Łabaj, Paweł P. last_name: Łabaj - first_name: Veronika full_name: Romero, Veronika last_name: Romero - first_name: Jakub full_name: Hlávka, Jakub last_name: Hlávka - first_name: Serghei full_name: Mangul, Serghei last_name: Mangul - first_name: Taras K. full_name: Oleksyk, Taras K. last_name: Oleksyk citation: ama: 'Wolfsberger W, Chhugani K, Shchubelka K, et al. Scientists without borders: Lessons from Ukraine. GigaScience. 2023;12. doi:10.1093/gigascience/giad045' apa: 'Wolfsberger, W., Chhugani, K., Shchubelka, K., Frolova, A., Salyha, Y., Zlenko, O., … Oleksyk, T. K. (2023). Scientists without borders: Lessons from Ukraine. GigaScience. Oxford Academic. https://doi.org/10.1093/gigascience/giad045' chicago: 'Wolfsberger, Walter, Karishma Chhugani, Khrystyna Shchubelka, Alina Frolova, Yuriy Salyha, Oksana Zlenko, Mykhailo Arych, et al. “Scientists without Borders: Lessons from Ukraine.” GigaScience. Oxford Academic, 2023. https://doi.org/10.1093/gigascience/giad045.' ieee: 'W. Wolfsberger et al., “Scientists without borders: Lessons from Ukraine,” GigaScience, vol. 12. Oxford Academic, 2023.' ista: 'Wolfsberger W, Chhugani K, Shchubelka K, Frolova A, Salyha Y, Zlenko O, Arych M, Dziuba D, Parkhomenko A, Smolanka V, Gümüş ZH, Sezgin E, Diaz-Lameiro A, Toth VR, Maci M, Bortz E, Kondrashov F, Morton PM, Łabaj PP, Romero V, Hlávka J, Mangul S, Oleksyk TK. 2023. Scientists without borders: Lessons from Ukraine. GigaScience. 12.' mla: 'Wolfsberger, Walter, et al. “Scientists without Borders: Lessons from Ukraine.” GigaScience, vol. 12, Oxford Academic, 2023, doi:10.1093/gigascience/giad045.' short: W. Wolfsberger, K. Chhugani, K. Shchubelka, A. Frolova, Y. Salyha, O. Zlenko, M. Arych, D. Dziuba, A. Parkhomenko, V. Smolanka, Z.H. Gümüş, E. Sezgin, A. Diaz-Lameiro, V.R. Toth, M. Maci, E. Bortz, F. Kondrashov, P.M. Morton, P.P. Łabaj, V. Romero, J. Hlávka, S. Mangul, T.K. Oleksyk, GigaScience 12 (2023). date_created: 2023-08-06T22:01:13Z date_published: 2023-07-27T00:00:00Z date_updated: 2023-12-13T12:01:46Z day: '27' department: - _id: FyKo doi: 10.1093/gigascience/giad045 external_id: isi: - '001081086100001' pmid: - '37496156' intvolume: ' 12' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/gigascience/giad045 month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: GigaScience publication_identifier: eissn: - 2047-217X publication_status: epub_ahead publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: 'Scientists without borders: Lessons from Ukraine' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2023' ... --- _id: '14716' abstract: - lang: eng text: "Background: Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide association studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they uncover only highly significant variants which have already been reported in literature.\r\n\r\nResults: In this work, we introduce a novel phylogeny-related parallelism score (PRPS), which measures whether a certain feature is correlated with the population structure of a set of samples. We demonstrate that PRPS can be used, in combination with SVM- and random forest-based models, to reduce the number of features in the analysis, while simultaneously increasing models’ performance. We applied our pipeline to publicly available AMR data from PATRIC database for Mycobacterium tuberculosis against six common antibiotics.\r\n\r\nConclusions: Using our pipeline, we re-discovered known resistance-associated mutations as well as new candidate mutations which can be related to resistance and not previously reported in the literature. We demonstrated that taking into account phylogenetic relationships not only improves the model performance, but also yields more biologically relevant predicted most contributing resistance markers." acknowledgement: Open Access funding enabled and organized by Projekt DEAL. A.Y. and O.V.K. acknowledge financial support from the Klaus Faber Foundation. A.A.A. was funded by the Helmholtz AI project AMR-XAI. The work of O.O.B. is funded by Fonds zur Förderung der Wissenschaftlichen Forschung (FWF), Grant ESP 253-B. article_number: '404' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alper full_name: Yurtseven, Alper last_name: Yurtseven - first_name: Sofia full_name: Buyanova, Sofia id: 2F54A7BC-3902-11EA-AC87-BC9F3DDC885E last_name: Buyanova - first_name: Amay Ajaykumar A. full_name: Agrawal, Amay Ajaykumar A. last_name: Agrawal - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Olga V V. full_name: Kalinina, Olga V V. last_name: Kalinina citation: ama: Yurtseven A, Buyanova S, Agrawal AAA, Bochkareva O, Kalinina OVV. Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. 2023;23(1). doi:10.1186/s12866-023-03147-7 apa: Yurtseven, A., Buyanova, S., Agrawal, A. A. A., Bochkareva, O., & Kalinina, O. V. V. (2023). Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. Springer Nature. https://doi.org/10.1186/s12866-023-03147-7 chicago: Yurtseven, Alper, Sofia Buyanova, Amay Ajaykumar A. Agrawal, Olga Bochkareva, and Olga V V. Kalinina. “Machine Learning and Phylogenetic Analysis Allow for Predicting Antibiotic Resistance in M. Tuberculosis.” BMC Microbiology. Springer Nature, 2023. https://doi.org/10.1186/s12866-023-03147-7. ieee: A. Yurtseven, S. Buyanova, A. A. A. Agrawal, O. Bochkareva, and O. V. V. Kalinina, “Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis,” BMC Microbiology, vol. 23, no. 1. Springer Nature, 2023. ista: Yurtseven A, Buyanova S, Agrawal AAA, Bochkareva O, Kalinina OVV. 2023. Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. 23(1), 404. mla: Yurtseven, Alper, et al. “Machine Learning and Phylogenetic Analysis Allow for Predicting Antibiotic Resistance in M. Tuberculosis.” BMC Microbiology, vol. 23, no. 1, 404, Springer Nature, 2023, doi:10.1186/s12866-023-03147-7. short: A. Yurtseven, S. Buyanova, A.A.A. Agrawal, O. Bochkareva, O.V.V. Kalinina, BMC Microbiology 23 (2023). date_created: 2023-12-31T23:01:02Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-01-02T09:20:57Z day: '01' ddc: - '570' department: - _id: FyKo doi: 10.1186/s12866-023-03147-7 external_id: pmid: - '38124060' file: - access_level: open_access checksum: 7ff5e95f3496ff663301eb4a13a316d5 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:09:32Z date_updated: 2024-01-02T09:09:32Z file_id: '14723' file_name: 2023_BMCMicrobiology_Yurtseven.pdf file_size: 1979922 relation: main_file success: 1 file_date_updated: 2024-01-02T09:09:32Z has_accepted_license: '1' intvolume: ' 23' issue: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: BMC Microbiology publication_identifier: eissn: - 1471-2180 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2023' ... --- _id: '10927' abstract: - lang: eng text: "Motivation\r\nHigh plasticity of bacterial genomes is provided by numerous mechanisms including horizontal gene transfer and recombination via numerous flanking repeats. Genome rearrangements such as inversions, deletions, insertions and duplications may independently occur in different strains, providing parallel adaptation or phenotypic diversity. Specifically, such rearrangements might be responsible for virulence, antibiotic resistance and antigenic variation. However, identification of such events requires laborious manual inspection and verification of phyletic pattern consistency.\r\nResults\r\nHere, we define the term ‘parallel rearrangements’ as events that occur independently in phylogenetically distant bacterial strains and present a formalization of the problem of parallel rearrangements calling. We implement an algorithmic solution for the identification of parallel rearrangements in bacterial populations as a tool PaReBrick. The tool takes a collection of strains represented as a sequence of oriented synteny blocks and a phylogenetic tree as input data. It identifies rearrangements, tests them for consistency with a tree, and sorts the events by their parallelism score. The tool provides diagrams of the neighbors for each block of interest, allowing the detection of horizontally transferred blocks or their extra copies and the inversions in which copied blocks are involved. We demonstrated PaReBrick’s efficiency and accuracy and showed its potential to detect genome rearrangements responsible for pathogenicity and adaptation in bacterial genomes." acknowledgement: "The authors thank the 2020 student class of the Bioinformatics Institute, who\r\nused the first versions of the tool and provided many valuable suggestions to\r\nimprove usability. They also thank Louisa Gonzalez Somermeyer for manuscript proofreading\r\nThis work was supported by the National Center for Cognitive Research of\r\nITMO University and JetBrains Research [to A.Z and N.A.]; and the European\r\nUnion’s Horizon 2020 Research and Innovation Programme under the Marie\r\nSkłodowska-Curie [754411 to O.B.].\r\nPaReBrick is written in Python and is available on GitHub: https://github.com/ctlab/parallel-rearrangements." article_processing_charge: No article_type: original author: - first_name: Alexey full_name: Zabelkin, Alexey last_name: Zabelkin - first_name: Yulia full_name: Yakovleva, Yulia last_name: Yakovleva - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Nikita full_name: Alexeev, Nikita last_name: Alexeev citation: ama: 'Zabelkin A, Yakovleva Y, Bochkareva O, Alexeev N. PaReBrick: PArallel REarrangements and BReaks identification toolkit. Bioinformatics. 2022;38(2):357-363. doi:10.1093/bioinformatics/btab691' apa: 'Zabelkin, A., Yakovleva, Y., Bochkareva, O., & Alexeev, N. (2022). PaReBrick: PArallel REarrangements and BReaks identification toolkit. Bioinformatics. Oxford Academic. https://doi.org/10.1093/bioinformatics/btab691' chicago: 'Zabelkin, Alexey, Yulia Yakovleva, Olga Bochkareva, and Nikita Alexeev. “PaReBrick: PArallel REarrangements and BReaks Identification Toolkit.” Bioinformatics. Oxford Academic, 2022. https://doi.org/10.1093/bioinformatics/btab691.' ieee: 'A. Zabelkin, Y. Yakovleva, O. Bochkareva, and N. Alexeev, “PaReBrick: PArallel REarrangements and BReaks identification toolkit,” Bioinformatics, vol. 38, no. 2. Oxford Academic, pp. 357–363, 2022.' ista: 'Zabelkin A, Yakovleva Y, Bochkareva O, Alexeev N. 2022. PaReBrick: PArallel REarrangements and BReaks identification toolkit. Bioinformatics. 38(2), 357–363.' mla: 'Zabelkin, Alexey, et al. “PaReBrick: PArallel REarrangements and BReaks Identification Toolkit.” Bioinformatics, vol. 38, no. 2, Oxford Academic, 2022, pp. 357–63, doi:10.1093/bioinformatics/btab691.' short: A. Zabelkin, Y. Yakovleva, O. Bochkareva, N. Alexeev, Bioinformatics 38 (2022) 357–363. date_created: 2022-03-27T22:01:46Z date_published: 2022-01-15T00:00:00Z date_updated: 2023-08-03T06:21:46Z day: '15' ddc: - '000' department: - _id: FyKo doi: 10.1093/bioinformatics/btab691 ec_funded: 1 external_id: isi: - '000743380100008' file: - access_level: open_access checksum: 4b5688ff9ac86180ccdf7f82fa33d926 content_type: application/pdf creator: dernst date_created: 2022-03-28T08:07:46Z date_updated: 2022-03-28T08:07:46Z file_id: '10930' file_name: 2022_Bioinformatics_Zabelkin.pdf file_size: 3425744 relation: main_file success: 1 file_date_updated: 2022-03-28T08:07:46Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 357-363 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Bioinformatics publication_identifier: eissn: - 1460-2059 issn: - 1367-4803 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: link: - relation: software url: https://github.com/ctlab/parallel-rearrangements scopus_import: '1' status: public title: 'PaReBrick: PArallel REarrangements and BReaks identification toolkit' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2022' ... --- _id: '11187' abstract: - lang: eng text: During the COVID-19 pandemic, genomics and bioinformatics have emerged as essential public health tools. The genomic data acquired using these methods have supported the global health response, facilitated the development of testing methods and allowed the timely tracking of novel SARS-CoV-2 variants. Yet the virtually unlimited potential for rapid generation and analysis of genomic data is also coupled with unique technical, scientific and organizational challenges. Here, we discuss the application of genomic and computational methods for efficient data-driven COVID-19 response, the advantages of the democratization of viral sequencing around the world and the challenges associated with viral genome data collection and processing. acknowledgement: 'Our paper is dedicated to all freedom-loving people around the world, and to the people of Ukraine who fight for our freedom. We thank William M. Switzer and Ellsworth M. Campbell from the Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA, for discussions and suggestions. We thank Jason Ladner from the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, for providing suggestions and feedback. S.M. was partially supported by National Science Foundation grants 2041984. T.L. is supported by the NSFC Excellent Young Scientists Fund (Hong Kong and Macau; 31922087), Research Grants Council (RGC) Collaborative Research Fund (C7144-20GF), RGC Research Impact Fund (R7021-20), Innovation and Technology Commission’s InnoHK funding (D24H) and Health and Medical Research Fund (COVID190223). P.S. was supported by US National Institutes of Health (NIH) grant 1R01EB025022 and National Science Foundation (NSF) grant 2047828. M.A. acknowledges King Abdulaziz City for Science and Technology and the Saudi Human Genome Project for technical and financial support (https://shgp.kacst.edu.sa) N.W. was supported by US NIH grants R00 AI139445, DP2 AT011966 and R01 AI167910. A.S. acknowledge funding from NSF grant no. 2029025. A.Z. has been partially supported by NIH grants 1R01EB025022-01 and 1R21CA241044-01A1. S. Knyazev has been partly supported by Molecular Basis of Disease at Georgia State University and NIH awards R01 HG009120, R01 MH115676, R01 AI153827 and U01 HG011715. A.W. has been supported by the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-061). R.K. was supported by NSF project 2038509, RAPID: Improving QIIME 2 and UniFrac for Viruses to Respond to COVID-19, CDC project 30055281 with Scripps led by Kristian Andersen, Genomic sequencing of SARS-CoV-2 to investigate local and cross-border emergence and spread. J.O.W. was supported by NIH–National Institute of Allergy and Infectious Diseases (NIAID) R01 AI135992 and receives funding from the CDC unrelated to this work. T.I.V. is supported by the Branco Weiss Fellowship. Y.P. was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” N◦075-15-2020-926. E.B. was supported by a US National Institute of General Medical Sciences IDeA Alaska INBRE (P20GM103395) and NIAID CEIRR (75N93019R00028). C.E.M. thanks Testing for America (501c3), OpenCovidScreen Foundation, Igor Tulchinsky and the WorldQuant Foundation, Bill Ackman and Olivia Flatto and the Pershing Square Foundation, Ken Griffin and Citadel, the US National Institutes of Health (R01AI125416, R01AI151059, R21AI129851, U01DA053941), and the Alfred P. Sloan Foundation (G-2015-13964). C.Y.C. is supported by US CDC Epidemiology and Laboratory Capacity (ELC) for Infectious Diseases grant 6NU50CK000539 to the California Department of Public Health, the Innovative Genomics Institute (IGI) at the University of California, Berkeley, and University of California, San Francisco, NIH grant R33AI12945 and US CDC contract 75D30121C10991. A.K. was partly supported by RFBR grant 20-515-80017. P.L. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. ~725422 - ReservoirDOCS), the Wellcome Trust through project 206298/Z/17/Z (Artic Network) and NIH grants R01 AI153044 and U19 AI135995. K.C. acknowledges support from the US NSF award EEID-IOS-2109688. F.K.’s work was supported by an ERC Consolidator grant to F.K. (771209–CharFL).' article_processing_charge: No article_type: letter_note author: - first_name: Sergey full_name: Knyazev, Sergey last_name: Knyazev - first_name: Karishma full_name: Chhugani, Karishma last_name: Chhugani - first_name: Varuni full_name: Sarwal, Varuni last_name: Sarwal - first_name: Ram full_name: Ayyala, Ram last_name: Ayyala - first_name: Harman full_name: Singh, Harman last_name: Singh - first_name: Smruthi full_name: Karthikeyan, Smruthi last_name: Karthikeyan - first_name: Dhrithi full_name: Deshpande, Dhrithi last_name: Deshpande - first_name: Pelin Icer full_name: Baykal, Pelin Icer last_name: Baykal - first_name: Zoia full_name: Comarova, Zoia last_name: Comarova - first_name: Angela full_name: Lu, Angela last_name: Lu - first_name: Yuri full_name: Porozov, Yuri last_name: Porozov - first_name: Tetyana I. full_name: Vasylyeva, Tetyana I. last_name: Vasylyeva - first_name: Joel O. full_name: Wertheim, Joel O. last_name: Wertheim - first_name: Braden T. full_name: Tierney, Braden T. last_name: Tierney - first_name: Charles Y. full_name: Chiu, Charles Y. last_name: Chiu - first_name: Ren full_name: Sun, Ren last_name: Sun - first_name: Aiping full_name: Wu, Aiping last_name: Wu - first_name: Malak S. full_name: Abedalthagafi, Malak S. last_name: Abedalthagafi - first_name: Victoria M. full_name: Pak, Victoria M. last_name: Pak - first_name: Shivashankar H. full_name: Nagaraj, Shivashankar H. last_name: Nagaraj - first_name: Adam L. full_name: Smith, Adam L. last_name: Smith - first_name: Pavel full_name: Skums, Pavel last_name: Skums - first_name: Bogdan full_name: Pasaniuc, Bogdan last_name: Pasaniuc - first_name: Andrey full_name: Komissarov, Andrey last_name: Komissarov - first_name: Christopher E. full_name: Mason, Christopher E. last_name: Mason - first_name: Eric full_name: Bortz, Eric last_name: Bortz - first_name: Philippe full_name: Lemey, Philippe last_name: Lemey - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Niko full_name: Beerenwinkel, Niko last_name: Beerenwinkel - first_name: Tommy Tsan Yuk full_name: Lam, Tommy Tsan Yuk last_name: Lam - first_name: Nicholas C. full_name: Wu, Nicholas C. last_name: Wu - first_name: Alex full_name: Zelikovsky, Alex last_name: Zelikovsky - first_name: Rob full_name: Knight, Rob last_name: Knight - first_name: Keith A. full_name: Crandall, Keith A. last_name: Crandall - first_name: Serghei full_name: Mangul, Serghei last_name: Mangul citation: ama: Knyazev S, Chhugani K, Sarwal V, et al. Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods. 2022;19(4):374-380. doi:10.1038/s41592-022-01444-z apa: Knyazev, S., Chhugani, K., Sarwal, V., Ayyala, R., Singh, H., Karthikeyan, S., … Mangul, S. (2022). Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods. Springer Nature. https://doi.org/10.1038/s41592-022-01444-z chicago: Knyazev, Sergey, Karishma Chhugani, Varuni Sarwal, Ram Ayyala, Harman Singh, Smruthi Karthikeyan, Dhrithi Deshpande, et al. “Unlocking Capacities of Genomics for the COVID-19 Response and Future Pandemics.” Nature Methods. Springer Nature, 2022. https://doi.org/10.1038/s41592-022-01444-z. ieee: S. Knyazev et al., “Unlocking capacities of genomics for the COVID-19 response and future pandemics,” Nature Methods, vol. 19, no. 4. Springer Nature, pp. 374–380, 2022. ista: Knyazev S, Chhugani K, Sarwal V, Ayyala R, Singh H, Karthikeyan S, Deshpande D, Baykal PI, Comarova Z, Lu A, Porozov Y, Vasylyeva TI, Wertheim JO, Tierney BT, Chiu CY, Sun R, Wu A, Abedalthagafi MS, Pak VM, Nagaraj SH, Smith AL, Skums P, Pasaniuc B, Komissarov A, Mason CE, Bortz E, Lemey P, Kondrashov F, Beerenwinkel N, Lam TTY, Wu NC, Zelikovsky A, Knight R, Crandall KA, Mangul S. 2022. Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods. 19(4), 374–380. mla: Knyazev, Sergey, et al. “Unlocking Capacities of Genomics for the COVID-19 Response and Future Pandemics.” Nature Methods, vol. 19, no. 4, Springer Nature, 2022, pp. 374–80, doi:10.1038/s41592-022-01444-z. short: S. Knyazev, K. Chhugani, V. Sarwal, R. Ayyala, H. Singh, S. Karthikeyan, D. Deshpande, P.I. Baykal, Z. Comarova, A. Lu, Y. Porozov, T.I. Vasylyeva, J.O. Wertheim, B.T. Tierney, C.Y. Chiu, R. Sun, A. Wu, M.S. Abedalthagafi, V.M. Pak, S.H. Nagaraj, A.L. Smith, P. Skums, B. Pasaniuc, A. Komissarov, C.E. Mason, E. Bortz, P. Lemey, F. Kondrashov, N. Beerenwinkel, T.T.Y. Lam, N.C. Wu, A. Zelikovsky, R. Knight, K.A. Crandall, S. Mangul, Nature Methods 19 (2022) 374–380. date_created: 2022-04-17T22:01:48Z date_published: 2022-04-08T00:00:00Z date_updated: 2023-08-03T06:46:09Z day: '08' department: - _id: FyKo doi: 10.1038/s41592-022-01444-z ec_funded: 1 external_id: isi: - '000781199600011' pmid: - '35396471' intvolume: ' 19' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41592-022-01444-z month: '04' oa: 1 oa_version: Published Version page: 374-380 pmid: 1 project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales publication: Nature Methods publication_identifier: eissn: - 1548-7105 issn: - 1548-7091 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Unlocking capacities of genomics for the COVID-19 response and future pandemics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2022' ... --- _id: '11344' abstract: - lang: eng text: Until recently, Shigella and enteroinvasive Escherichia coli were thought to be primate-restricted pathogens. The base of their pathogenicity is the type 3 secretion system (T3SS) encoded by the pINV virulence plasmid, which facilitates host cell invasion and subsequent proliferation. A large family of T3SS effectors, E3 ubiquitin-ligases encoded by the ipaH genes, have a key role in the Shigella pathogenicity through the modulation of cellular ubiquitination that degrades host proteins. However, recent genomic studies identified ipaH genes in the genomes of Escherichia marmotae, a potential marmot pathogen, and an E. coli extracted from fecal samples of bovine calves, suggesting that non-human hosts may also be infected by these strains, potentially pathogenic to humans. We performed a comparative genomic study of the functional repertoires in the ipaH gene family in Shigella and enteroinvasive Escherichia from human and predicted non-human hosts. We found that fewer than half of Shigella genomes had a complete set of ipaH genes, with frequent gene losses and duplications that were not consistent with the species tree and nomenclature. Non-human host IpaH proteins had a diverse set of substrate-binding domains and, in contrast to the Shigella proteins, two variants of the NEL C-terminal domain. Inconsistencies between strains phylogeny and composition of effectors indicate horizontal gene transfer between E. coli adapted to different hosts. These results provide a framework for understanding of ipaH-mediated host-pathogens interactions and suggest a need for a genomic study of fecal samples from diseased animals. acknowledgement: 'The project was initiated with Aygul Minnegalieva and Yulia Yakovleva at the Summer School of Molecular and Theoretical Biology (SMTB-2020), supported by the Zimin Foundation. We thank Inna Shapovalenko, Daria Abuzova, Elizaveta Kaminskaya, and Dmitriy Zvezdin for their contribution to the project during SMTB-2020. We also thank Peter Vlasov for fruitful discussions.This study was supported by the Russian Foundation for Basic Research (RFBR), Grant # 20-54-14005 and Fonds zur Förderung der wissenschaftlichen Forschung (FWF), Grant # I5127-B. The work of OB is supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. ' article_number: '6868' article_processing_charge: No article_type: original author: - first_name: NO full_name: Dranenko, NO last_name: Dranenko - first_name: MN full_name: Tutukina, MN last_name: Tutukina - first_name: MS full_name: Gelfand, MS last_name: Gelfand - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 citation: ama: Dranenko N, Tutukina M, Gelfand M, Kondrashov F, Bochkareva O. Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia. Scientific Reports. 2022;12. doi:10.1038/s41598-022-10827-3 apa: Dranenko, N., Tutukina, M., Gelfand, M., Kondrashov, F., & Bochkareva, O. (2022). Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-022-10827-3 chicago: Dranenko, NO, MN Tutukina, MS Gelfand, Fyodor Kondrashov, and Olga Bochkareva. “Chromosome-Encoded IpaH Ubiquitin Ligases Indicate Non-Human Enteroinvasive Escherichia.” Scientific Reports. Springer Nature, 2022. https://doi.org/10.1038/s41598-022-10827-3. ieee: N. Dranenko, M. Tutukina, M. Gelfand, F. Kondrashov, and O. Bochkareva, “Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia,” Scientific Reports, vol. 12. Springer Nature, 2022. ista: Dranenko N, Tutukina M, Gelfand M, Kondrashov F, Bochkareva O. 2022. Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia. Scientific Reports. 12, 6868. mla: Dranenko, NO, et al. “Chromosome-Encoded IpaH Ubiquitin Ligases Indicate Non-Human Enteroinvasive Escherichia.” Scientific Reports, vol. 12, 6868, Springer Nature, 2022, doi:10.1038/s41598-022-10827-3. short: N. Dranenko, M. Tutukina, M. Gelfand, F. Kondrashov, O. Bochkareva, Scientific Reports 12 (2022). date_created: 2022-05-02T07:08:42Z date_published: 2022-04-27T00:00:00Z date_updated: 2023-08-03T06:59:49Z day: '27' ddc: - '570' department: - _id: FyKo doi: 10.1038/s41598-022-10827-3 ec_funded: 1 external_id: isi: - '000788639400032' pmid: - '35477739' file: - access_level: open_access checksum: 12601b8a5c6b83bb618f92bcb963ecc9 content_type: application/pdf creator: dernst date_created: 2022-05-02T09:05:20Z date_updated: 2022-05-02T09:05:20Z file_id: '11349' file_name: 2022_ScientificReports_Dranenko.pdf file_size: 3564155 relation: main_file success: 1 file_date_updated: 2022-05-02T09:05:20Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: c098eddd-5a5b-11eb-8a69-abe27170a68f grant_number: I05127 name: Evolutionary analysis of gene regulation - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Scientific Reports publication_identifier: issn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2022' ... --- _id: '11448' abstract: - lang: eng text: Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design – instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: "We thank Ondřej Draganov, Rodrigo Redondo, Bor Kavčič, Mia Juračić and Andrea Pauli for discussion and technical advice. We thank Anita Testa Salmazo for advice on resin protein purification, Dmitry Bolotin and the Milaboratory (milaboratory.com) for access to computing and storage infrastructure, and Josef Houser and Eva Fujdiarova for technical assistance and data interpretation. Core facility Biomolecular Interactions and Crystallization of CEITEC Masaryk University is gratefully acknowledged for the obtaining of the scientific data presented in this paper. This research was supported by the Scientific Service Units (SSU) of IST-Austria\r\nthrough resources provided by the Bioimaging Facility (BIF), and the Life Science Facility (LSF). MiSeq and HiSeq NGS sequencing was performed by the Next Generation Sequencing Facility at Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Austria. FACS was performed at the BioOptics Facility of the Institute of Molecular Pathology (IMP), Austria. We also thank the Biomolecular Crystallography Facility in the Vanderbilt University Center for Structural Biology. We are grateful to Joel M Harp for help with X-ray data collection. This work was supported by the ERC Consolidator grant to FAK (771209—CharFL). KSS acknowledges support by President’s Grant МК–5405.2021.1.4, the Imperial College Research Fellowship and the MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0).\r\nAF is supported by the Marie Skłodowska-Curie Fellowship (H2020-MSCA-IF-2019, Grant Agreement No. 898203, Project acronym \"FLINDIP\"). Experiments were partially carried out using equipment provided by the Institute of Bioorganic Chemistry of the Russian Academy of Sciences Сore Facility (CKP IBCH). This work was supported by a Russian Science Foundation grant 19-74-10102.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665,385." article_number: '75842' article_processing_charge: No article_type: original author: - first_name: Louisa full_name: Gonzalez Somermeyer, Louisa id: 4720D23C-F248-11E8-B48F-1D18A9856A87 last_name: Gonzalez Somermeyer orcid: 0000-0001-9139-5383 - first_name: Aubin full_name: Fleiss, Aubin last_name: Fleiss - first_name: Alexander S full_name: Mishin, Alexander S last_name: Mishin - first_name: Nina G full_name: Bozhanova, Nina G last_name: Bozhanova - first_name: Anna A full_name: Igolkina, Anna A last_name: Igolkina - first_name: Jens full_name: Meiler, Jens last_name: Meiler - first_name: Maria-Elisenda full_name: Alaball Pujol, Maria-Elisenda last_name: Alaball Pujol - first_name: Ekaterina V full_name: Putintseva, Ekaterina V last_name: Putintseva - first_name: Karen S full_name: Sarkisyan, Karen S last_name: Sarkisyan - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 citation: ama: Gonzalez Somermeyer L, Fleiss A, Mishin AS, et al. Heterogeneity of the GFP fitness landscape and data-driven protein design. eLife. 2022;11. doi:10.7554/elife.75842 apa: Gonzalez Somermeyer, L., Fleiss, A., Mishin, A. S., Bozhanova, N. G., Igolkina, A. A., Meiler, J., … Kondrashov, F. (2022). Heterogeneity of the GFP fitness landscape and data-driven protein design. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.75842 chicago: Gonzalez Somermeyer, Louisa, Aubin Fleiss, Alexander S Mishin, Nina G Bozhanova, Anna A Igolkina, Jens Meiler, Maria-Elisenda Alaball Pujol, Ekaterina V Putintseva, Karen S Sarkisyan, and Fyodor Kondrashov. “Heterogeneity of the GFP Fitness Landscape and Data-Driven Protein Design.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/elife.75842. ieee: L. Gonzalez Somermeyer et al., “Heterogeneity of the GFP fitness landscape and data-driven protein design,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Gonzalez Somermeyer L, Fleiss A, Mishin AS, Bozhanova NG, Igolkina AA, Meiler J, Alaball Pujol M-E, Putintseva EV, Sarkisyan KS, Kondrashov F. 2022. Heterogeneity of the GFP fitness landscape and data-driven protein design. eLife. 11, 75842. mla: Gonzalez Somermeyer, Louisa, et al. “Heterogeneity of the GFP Fitness Landscape and Data-Driven Protein Design.” ELife, vol. 11, 75842, eLife Sciences Publications, 2022, doi:10.7554/elife.75842. short: L. Gonzalez Somermeyer, A. Fleiss, A.S. Mishin, N.G. Bozhanova, A.A. Igolkina, J. Meiler, M.-E. Alaball Pujol, E.V. Putintseva, K.S. Sarkisyan, F. Kondrashov, ELife 11 (2022). date_created: 2022-06-18T09:06:59Z date_published: 2022-05-05T00:00:00Z date_updated: 2023-08-03T07:20:15Z day: '05' ddc: - '570' department: - _id: GradSch - _id: FyKo doi: 10.7554/elife.75842 ec_funded: 1 external_id: isi: - '000799197200001' file: - access_level: open_access checksum: 7573c28f44028ab0cc81faef30039e44 content_type: application/pdf creator: dernst date_created: 2022-06-20T07:44:19Z date_updated: 2022-06-20T07:44:19Z file_id: '11454' file_name: 2022_eLife_Somermeyer.pdf file_size: 5297213 relation: main_file success: 1 file_date_updated: 2022-06-20T07:44:19Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Medicine - General Neuroscience language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Heterogeneity of the GFP fitness landscape and data-driven protein design tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ... --- _id: '11587' abstract: - lang: eng text: "Background: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis.\r\nResults: We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts—twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage.\r\nConclusions: AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species." acknowledgement: "This work was jointly supported by funding from the Biotechnology and Biological Sciences Research Council (BBSRC) BB/P009751/1 to JB; BB/R014582/1 to RW and RZ; BB/S020160/1 to RZ; BB/S004610/1 (16 ERA-CAPS BARN) to RW; the Scottish Government Rural and Environment Science and Analytical Services division (RESAS) [to RZ, RW, and JB]; the\r\nNational Science Foundation (MCB-2014408) and the National Institute of Health (NIH) (GM-114297) to E.H.; S. H. was supported by funding to K.D. from the University of York; the Austrian Science Fund (FWF) SFB F43 to AB and MJ and [P26333] to MK; The French Agence Nationale de la Recherche grant ANR-16-CE12-0032 to MC; the Japan Science and\r\nTechnology Agency (JST), the Core Research for Evolutionary Science and Technology (CREST; Grant Number JPMJCR13B4) to M.S.; the National Science Foundation (Grant No. DBI1949036 to A.b.H and A.S.N.R, and Grant No. MCB 2014542 to E.H. and A.S.N.R.); and the DOE Office of Science, Office of Biological and Environmental Research (Grant\r\nNo. DE-SC0010733) to A.S.N.R and A.b.H.; the Deutsche Forschungsgemeinschaft (DFG) STA653/14-1 and STA653/15-1 to DS; the National Science Foundation grant (IOS-154173) to Q.Q.L.; the German Research Foundation (DFG) WA2167/8-1 to AW and SFB1101/C03 to AW and TWK; the Research Grants Council (RGC) of Hong Kong (GRF 12103020) to LX. NSF grant IOS-1849708 and NSF EPSCoR grant 1826836 to RS; the Academia Sinica to S.-L. T." article_number: '149' article_processing_charge: No article_type: original author: - first_name: Runxuan full_name: Zhang, Runxuan last_name: Zhang - first_name: Richard full_name: Kuo, Richard last_name: Kuo - first_name: Max full_name: Coulter, Max last_name: Coulter - first_name: Cristiane P.G. full_name: Calixto, Cristiane P.G. last_name: Calixto - first_name: Juan Carlos full_name: Entizne, Juan Carlos last_name: Entizne - first_name: Wenbin full_name: Guo, Wenbin last_name: Guo - first_name: Yamile full_name: Marquez, Yamile last_name: Marquez - first_name: Linda full_name: Milne, Linda last_name: Milne - first_name: Stefan full_name: Riegler, Stefan id: FF6018E0-D806-11E9-8E43-0B14E6697425 last_name: Riegler orcid: 0000-0003-3413-1343 - first_name: Akihiro full_name: Matsui, Akihiro last_name: Matsui - first_name: Maho full_name: Tanaka, Maho last_name: Tanaka - first_name: Sarah full_name: Harvey, Sarah last_name: Harvey - first_name: Yubang full_name: Gao, Yubang last_name: Gao - first_name: Theresa full_name: Wießner-Kroh, Theresa last_name: Wießner-Kroh - first_name: Alejandro full_name: Paniagua, Alejandro last_name: Paniagua - first_name: Martin full_name: Crespi, Martin last_name: Crespi - first_name: Katherine full_name: Denby, Katherine last_name: Denby - first_name: Asa Ben full_name: Hur, Asa Ben last_name: Hur - first_name: Enamul full_name: Huq, Enamul last_name: Huq - first_name: Michael full_name: Jantsch, Michael last_name: Jantsch - first_name: Artur full_name: Jarmolowski, Artur last_name: Jarmolowski - first_name: Tino full_name: Koester, Tino last_name: Koester - first_name: Sascha full_name: Laubinger, Sascha last_name: Laubinger - first_name: Qingshun Quinn full_name: Li, Qingshun Quinn last_name: Li - first_name: Lianfeng full_name: Gu, Lianfeng last_name: Gu - first_name: Motoaki full_name: Seki, Motoaki last_name: Seki - first_name: Dorothee full_name: Staiger, Dorothee last_name: Staiger - first_name: Ramanjulu full_name: Sunkar, Ramanjulu last_name: Sunkar - first_name: Zofia full_name: Szweykowska-Kulinska, Zofia last_name: Szweykowska-Kulinska - first_name: Shih Long full_name: Tu, Shih Long last_name: Tu - first_name: Andreas full_name: Wachter, Andreas last_name: Wachter - first_name: Robbie full_name: Waugh, Robbie last_name: Waugh - first_name: Liming full_name: Xiong, Liming last_name: Xiong - first_name: Xiao Ning full_name: Zhang, Xiao Ning last_name: Zhang - first_name: Ana full_name: Conesa, Ana last_name: Conesa - first_name: Anireddy S.N. full_name: Reddy, Anireddy S.N. last_name: Reddy - first_name: Andrea full_name: Barta, Andrea last_name: Barta - first_name: Maria full_name: Kalyna, Maria last_name: Kalyna - first_name: John W.S. full_name: Brown, John W.S. last_name: Brown citation: ama: Zhang R, Kuo R, Coulter M, et al. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biology. 2022;23. doi:10.1186/s13059-022-02711-0 apa: Zhang, R., Kuo, R., Coulter, M., Calixto, C. P. G., Entizne, J. C., Guo, W., … Brown, J. W. S. (2022). A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biology. BioMed Central. https://doi.org/10.1186/s13059-022-02711-0 chicago: Zhang, Runxuan, Richard Kuo, Max Coulter, Cristiane P.G. Calixto, Juan Carlos Entizne, Wenbin Guo, Yamile Marquez, et al. “A High-Resolution Single-Molecule Sequencing-Based Arabidopsis Transcriptome Using Novel Methods of Iso-Seq Analysis.” Genome Biology. BioMed Central, 2022. https://doi.org/10.1186/s13059-022-02711-0. ieee: R. Zhang et al., “A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis,” Genome Biology, vol. 23. BioMed Central, 2022. ista: Zhang R, Kuo R, Coulter M, Calixto CPG, Entizne JC, Guo W, Marquez Y, Milne L, Riegler S, Matsui A, Tanaka M, Harvey S, Gao Y, Wießner-Kroh T, Paniagua A, Crespi M, Denby K, Hur AB, Huq E, Jantsch M, Jarmolowski A, Koester T, Laubinger S, Li QQ, Gu L, Seki M, Staiger D, Sunkar R, Szweykowska-Kulinska Z, Tu SL, Wachter A, Waugh R, Xiong L, Zhang XN, Conesa A, Reddy ASN, Barta A, Kalyna M, Brown JWS. 2022. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biology. 23, 149. mla: Zhang, Runxuan, et al. “A High-Resolution Single-Molecule Sequencing-Based Arabidopsis Transcriptome Using Novel Methods of Iso-Seq Analysis.” Genome Biology, vol. 23, 149, BioMed Central, 2022, doi:10.1186/s13059-022-02711-0. short: R. Zhang, R. Kuo, M. Coulter, C.P.G. Calixto, J.C. Entizne, W. Guo, Y. Marquez, L. Milne, S. Riegler, A. Matsui, M. Tanaka, S. Harvey, Y. Gao, T. Wießner-Kroh, A. Paniagua, M. Crespi, K. Denby, A.B. Hur, E. Huq, M. Jantsch, A. Jarmolowski, T. Koester, S. Laubinger, Q.Q. Li, L. Gu, M. Seki, D. Staiger, R. Sunkar, Z. Szweykowska-Kulinska, S.L. Tu, A. Wachter, R. Waugh, L. Xiong, X.N. Zhang, A. Conesa, A.S.N. Reddy, A. Barta, M. Kalyna, J.W.S. Brown, Genome Biology 23 (2022). date_created: 2022-07-17T22:01:53Z date_published: 2022-07-07T00:00:00Z date_updated: 2023-08-03T12:04:18Z day: '07' ddc: - '570' department: - _id: FyKo doi: 10.1186/s13059-022-02711-0 external_id: isi: - '000821915500002' file: - access_level: open_access checksum: 2c30ef84151d257a6b835b4e069b70ac content_type: application/pdf creator: dernst date_created: 2022-07-18T08:15:24Z date_updated: 2022-07-18T08:15:24Z file_id: '11597' file_name: 2022_GenomeBiology_Zhang.pdf file_size: 3146207 relation: main_file success: 1 file_date_updated: 2022-07-18T08:15:24Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Genome Biology publication_identifier: eissn: - 1474-760X publication_status: published publisher: BioMed Central quality_controlled: '1' scopus_import: '1' status: public title: A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2022' ... --- _id: '12131' abstract: - lang: eng text: Replication-incompetent adenoviral vectors have been extensively used as a platform for vaccine design, with at least four anti-COVID-19 vaccines authorized to date. These vaccines elicit neutralizing antibody responses directed against SARS-CoV-2 Spike protein and confer significant level of protection against SARS-CoV-2 infection. Immunization with adenovirus-vectored vaccines is known to be accompanied by the production of anti-vector antibodies, which may translate into reduced efficacy of booster or repeated rounds of revaccination. Here, we used blood samples from patients who received an adenovirus-based Gam-COVID-Vac vaccine to address the question of whether anti-vector antibodies may influence the magnitude of SARS-CoV-2-specific humoral response after booster vaccination. We observed that rAd26-based prime vaccination with Gam-COVID-Vac induced the development of Ad26-neutralizing antibodies, which persisted in circulation for at least 9 months. Our analysis further indicates that high pre-boost Ad26 neutralizing antibody titers do not appear to affect the humoral immunogenicity of the Gam-COVID-Vac boost. The titers of anti-SARS-CoV-2 RBD IgGs and antibodies, which neutralized both the wild type and the circulating variants of concern of SARS-CoV-2 such as Delta and Omicron, were independent of the pre-boost levels of Ad26-neutralizing antibodies. Thus, our results support the development of repeated immunization schedule with adenovirus-based COVID-19 vaccines. acknowledgement: We thank Sergey Kulemzin, Grigory Efimov, Yuri Lebedin, Alexander Taranin and Rudolf Valenta for providing reagents. Figures were created with the help of BioRender.com. This work was supported by the Russian Science Foundation (Project 21-15-00286). Byazrova M.G. was supported by the RUDN University Strategic Academic Leadership Program. article_number: '145' article_processing_charge: No article_type: original author: - first_name: Maria G. full_name: Byazrova, Maria G. last_name: Byazrova - first_name: Ekaterina A. full_name: Astakhova, Ekaterina A. last_name: Astakhova - first_name: Aygul full_name: Minnegalieva, Aygul id: 87DF77F0-1D9A-11EA-B6AE-CE443DDC885E last_name: Minnegalieva - first_name: Maria M. full_name: Sukhova, Maria M. last_name: Sukhova - first_name: Artem A. full_name: Mikhailov, Artem A. last_name: Mikhailov - first_name: Alexey G. full_name: Prilipov, Alexey G. last_name: Prilipov - first_name: Andrey A. full_name: Gorchakov, Andrey A. last_name: Gorchakov - first_name: Alexander V. full_name: Filatov, Alexander V. last_name: Filatov citation: ama: Byazrova MG, Astakhova EA, Minnegalieva A, et al. Anti-Ad26 humoral immunity does not compromise SARS-COV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination. npj Vaccines. 2022;7. doi:10.1038/s41541-022-00566-x apa: Byazrova, M. G., Astakhova, E. A., Minnegalieva, A., Sukhova, M. M., Mikhailov, A. A., Prilipov, A. G., … Filatov, A. V. (2022). Anti-Ad26 humoral immunity does not compromise SARS-COV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination. Npj Vaccines. Springer Nature. https://doi.org/10.1038/s41541-022-00566-x chicago: Byazrova, Maria G., Ekaterina A. Astakhova, Aygul Minnegalieva, Maria M. Sukhova, Artem A. Mikhailov, Alexey G. Prilipov, Andrey A. Gorchakov, and Alexander V. Filatov. “Anti-Ad26 Humoral Immunity Does Not Compromise SARS-COV-2 Neutralizing Antibody Responses Following Gam-COVID-Vac Booster Vaccination.” Npj Vaccines. Springer Nature, 2022. https://doi.org/10.1038/s41541-022-00566-x. ieee: M. G. Byazrova et al., “Anti-Ad26 humoral immunity does not compromise SARS-COV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination,” npj Vaccines, vol. 7. Springer Nature, 2022. ista: Byazrova MG, Astakhova EA, Minnegalieva A, Sukhova MM, Mikhailov AA, Prilipov AG, Gorchakov AA, Filatov AV. 2022. Anti-Ad26 humoral immunity does not compromise SARS-COV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination. npj Vaccines. 7, 145. mla: Byazrova, Maria G., et al. “Anti-Ad26 Humoral Immunity Does Not Compromise SARS-COV-2 Neutralizing Antibody Responses Following Gam-COVID-Vac Booster Vaccination.” Npj Vaccines, vol. 7, 145, Springer Nature, 2022, doi:10.1038/s41541-022-00566-x. short: M.G. Byazrova, E.A. Astakhova, A. Minnegalieva, M.M. Sukhova, A.A. Mikhailov, A.G. Prilipov, A.A. Gorchakov, A.V. Filatov, Npj Vaccines 7 (2022). date_created: 2023-01-12T12:02:54Z date_published: 2022-11-15T00:00:00Z date_updated: 2023-08-04T08:52:40Z day: '15' ddc: - '570' department: - _id: FyKo doi: 10.1038/s41541-022-00566-x external_id: isi: - '000884278600004' pmid: - '36379998' file: - access_level: open_access checksum: ddaac096381565b2b4b7dcc34cdbc4ee content_type: application/pdf creator: dernst date_created: 2023-01-23T11:22:09Z date_updated: 2023-01-23T11:22:09Z file_id: '12347' file_name: 2022_njpVaccines_Byazrova.pdf file_size: 1856046 relation: main_file success: 1 file_date_updated: 2023-01-23T11:22:09Z has_accepted_license: '1' intvolume: ' 7' isi: 1 keyword: - Pharmacology (medical) - Infectious Diseases - Pharmacology - Immunology - SARS-COV-2 - COVID language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: npj Vaccines publication_identifier: issn: - 2059-0105 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Anti-Ad26 humoral immunity does not compromise SARS-COV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2022' ... --- _id: '12173' abstract: - lang: eng text: With increasing urbanization and industrialization, the prevalence of inflammatory bowel diseases (IBDs) has steadily been rising over the past two decades. IBD involves flares of gastrointestinal (GI) inflammation accompanied by microbiota perturbations. However, microbial mechanisms that trigger such flares remain elusive. Here, we analyzed the association of the emerging pathogen atypical enteropathogenic E. coli (aEPEC) with IBD disease activity. The presence of diarrheagenic E. coli was assessed in stool samples from 630 IBD patients and 234 age- and sex-matched controls without GI symptoms. Microbiota was analyzed with 16S ribosomal RNA gene amplicon sequencing, and 57 clinical aEPEC isolates were subjected to whole-genome sequencing and in vitro pathogenicity experiments including biofilm formation, epithelial barrier function and the ability to induce pro-inflammatory signaling. The presence of aEPEC correlated with laboratory, clinical and endoscopic disease activity in ulcerative colitis (UC), as well as microbiota dysbiosis. In vitro, aEPEC strains induce epithelial p21-activated kinases, disrupt the epithelial barrier and display potent biofilm formation. The effector proteins espV and espG2 distinguish aEPEC cultured from UC and Crohn’s disease patients, respectively. EspV-positive aEPEC harbor more virulence factors and have a higher pro-inflammatory potential, which is counteracted by 5-ASA. aEPEC may tip a fragile immune–microbiota homeostasis and thereby contribute to flares in UC. aEPEC isolates from UC patients display properties to disrupt the epithelial barrier and to induce pro-inflammatory signaling in vitro. acknowledgement: "We would like to acknowledge Anita Krnjic, Christina Gmainer, Marion Nehr, Helga Mock, and Sena Ecin for technical support in conducting the experiments.\r\nThis study was supported by the Austrian Science Fund (P 32302) and the Vienna Science and Technology Fund (LS18- 053; Austrian Science Fund (FWF)) [P 32302]." article_number: e2143218 article_processing_charge: No article_type: original author: - first_name: Maximilian full_name: Baumgartner, Maximilian last_name: Baumgartner - first_name: Rebecca full_name: Zirnbauer, Rebecca last_name: Zirnbauer - first_name: Sabine full_name: Schlager, Sabine last_name: Schlager - first_name: Daniel full_name: Mertens, Daniel last_name: Mertens - first_name: Nikolaus full_name: Gasche, Nikolaus last_name: Gasche - first_name: Barbara full_name: Sladek, Barbara last_name: Sladek - first_name: Craig full_name: Herbold, Craig last_name: Herbold - first_name: Olga full_name: Bochkareva, Olga last_name: Bochkareva - first_name: Vera full_name: Emelianenko, Vera id: 20152b9d-927a-11ed-8107-be36d740812d last_name: Emelianenko - first_name: Harald full_name: Vogelsang, Harald last_name: Vogelsang - first_name: Michaela full_name: Lang, Michaela last_name: Lang - first_name: Anton full_name: Klotz, Anton last_name: Klotz - first_name: Birgit full_name: Moik, Birgit last_name: Moik - first_name: Athanasios full_name: Makristathis, Athanasios last_name: Makristathis - first_name: David full_name: Berry, David last_name: Berry - first_name: Stefanie full_name: Dabsch, Stefanie last_name: Dabsch - first_name: Vineeta full_name: Khare, Vineeta last_name: Khare - first_name: Christoph full_name: Gasche, Christoph last_name: Gasche citation: ama: Baumgartner M, Zirnbauer R, Schlager S, et al. Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis. Gut Microbes. 2022;14(1). doi:10.1080/19490976.2022.2143218 apa: Baumgartner, M., Zirnbauer, R., Schlager, S., Mertens, D., Gasche, N., Sladek, B., … Gasche, C. (2022). Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis. Gut Microbes. Taylor & Francis. https://doi.org/10.1080/19490976.2022.2143218 chicago: Baumgartner, Maximilian, Rebecca Zirnbauer, Sabine Schlager, Daniel Mertens, Nikolaus Gasche, Barbara Sladek, Craig Herbold, et al. “Atypical Enteropathogenic E. Coli Are Associated with Disease Activity in Ulcerative Colitis.” Gut Microbes. Taylor & Francis, 2022. https://doi.org/10.1080/19490976.2022.2143218. ieee: M. Baumgartner et al., “Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis,” Gut Microbes, vol. 14, no. 1. Taylor & Francis, 2022. ista: Baumgartner M, Zirnbauer R, Schlager S, Mertens D, Gasche N, Sladek B, Herbold C, Bochkareva O, Emelianenko V, Vogelsang H, Lang M, Klotz A, Moik B, Makristathis A, Berry D, Dabsch S, Khare V, Gasche C. 2022. Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis. Gut Microbes. 14(1), e2143218. mla: Baumgartner, Maximilian, et al. “Atypical Enteropathogenic E. Coli Are Associated with Disease Activity in Ulcerative Colitis.” Gut Microbes, vol. 14, no. 1, e2143218, Taylor & Francis, 2022, doi:10.1080/19490976.2022.2143218. short: M. Baumgartner, R. Zirnbauer, S. Schlager, D. Mertens, N. Gasche, B. Sladek, C. Herbold, O. Bochkareva, V. Emelianenko, H. Vogelsang, M. Lang, A. Klotz, B. Moik, A. Makristathis, D. Berry, S. Dabsch, V. Khare, C. Gasche, Gut Microbes 14 (2022). date_created: 2023-01-12T12:11:36Z date_published: 2022-11-22T00:00:00Z date_updated: 2023-08-04T09:10:18Z day: '22' ddc: - '570' department: - _id: FyKo doi: 10.1080/19490976.2022.2143218 external_id: isi: - '000889180100001' file: - access_level: open_access checksum: ee7681a17ae27645e9b5c1df61c15429 content_type: application/pdf creator: dernst date_created: 2023-01-26T10:56:51Z date_updated: 2023-01-26T10:56:51Z file_id: '12400' file_name: 2022_GutMicrobes_Baumgartner.pdf file_size: 4075251 relation: main_file success: 1 file_date_updated: 2023-01-26T10:56:51Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' keyword: - Infectious Diseases - Microbiology (medical) - Gastroenterology - Microbiology language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Gut Microbes publication_identifier: eissn: - 1949-0984 issn: - 1949-0976 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2022' ... --- _id: '12116' abstract: - lang: eng text: Russia’s unprovoked attack on Ukraine has destroyed civilian infrastructure, including universities, research centers, and other academic infrastructure (1). Many Ukrainian scholars and researchers remain in Ukraine, and their work has suffered from major setbacks (2–4). We call on international scientists and institutions to support them. article_processing_charge: No article_type: letter_note author: - first_name: Karishma full_name: Chhugani, Karishma last_name: Chhugani - first_name: Alina full_name: Frolova, Alina last_name: Frolova - first_name: Yuriy full_name: Salyha, Yuriy last_name: Salyha - first_name: Andrada full_name: Fiscutean, Andrada last_name: Fiscutean - first_name: Oksana full_name: Zlenko, Oksana last_name: Zlenko - first_name: Sanita full_name: Reinsone, Sanita last_name: Reinsone - first_name: Walter W. full_name: Wolfsberger, Walter W. last_name: Wolfsberger - first_name: Oleksandra V. full_name: Ivashchenko, Oleksandra V. last_name: Ivashchenko - first_name: Megi full_name: Maci, Megi last_name: Maci - first_name: Dmytro full_name: Dziuba, Dmytro last_name: Dziuba - first_name: Andrii full_name: Parkhomenko, Andrii last_name: Parkhomenko - first_name: Eric full_name: Bortz, Eric last_name: Bortz - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Paweł P. full_name: Łabaj, Paweł P. last_name: Łabaj - first_name: Veronika full_name: Romero, Veronika last_name: Romero - first_name: Jakub full_name: Hlávka, Jakub last_name: Hlávka - first_name: Taras K. full_name: Oleksyk, Taras K. last_name: Oleksyk - first_name: Serghei full_name: Mangul, Serghei last_name: Mangul citation: ama: Chhugani K, Frolova A, Salyha Y, et al. Remote opportunities for scholars in Ukraine. Science. 2022;378(6626):1285-1286. doi:10.1126/science.adg0797 apa: Chhugani, K., Frolova, A., Salyha, Y., Fiscutean, A., Zlenko, O., Reinsone, S., … Mangul, S. (2022). Remote opportunities for scholars in Ukraine. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adg0797 chicago: Chhugani, Karishma, Alina Frolova, Yuriy Salyha, Andrada Fiscutean, Oksana Zlenko, Sanita Reinsone, Walter W. Wolfsberger, et al. “Remote Opportunities for Scholars in Ukraine.” Science. American Association for the Advancement of Science, 2022. https://doi.org/10.1126/science.adg0797. ieee: K. Chhugani et al., “Remote opportunities for scholars in Ukraine,” Science, vol. 378, no. 6626. American Association for the Advancement of Science, pp. 1285–1286, 2022. ista: Chhugani K, Frolova A, Salyha Y, Fiscutean A, Zlenko O, Reinsone S, Wolfsberger WW, Ivashchenko OV, Maci M, Dziuba D, Parkhomenko A, Bortz E, Kondrashov F, Łabaj PP, Romero V, Hlávka J, Oleksyk TK, Mangul S. 2022. Remote opportunities for scholars in Ukraine. Science. 378(6626), 1285–1286. mla: Chhugani, Karishma, et al. “Remote Opportunities for Scholars in Ukraine.” Science, vol. 378, no. 6626, American Association for the Advancement of Science, 2022, pp. 1285–86, doi:10.1126/science.adg0797. short: K. Chhugani, A. Frolova, Y. Salyha, A. Fiscutean, O. Zlenko, S. Reinsone, W.W. Wolfsberger, O.V. Ivashchenko, M. Maci, D. Dziuba, A. Parkhomenko, E. Bortz, F. Kondrashov, P.P. Łabaj, V. Romero, J. Hlávka, T.K. Oleksyk, S. Mangul, Science 378 (2022) 1285–1286. date_created: 2023-01-12T11:56:30Z date_published: 2022-12-22T00:00:00Z date_updated: 2023-10-03T11:01:06Z day: '22' department: - _id: FyKo doi: 10.1126/science.adg0797 external_id: isi: - '000963463700023' intvolume: ' 378' isi: 1 issue: '6626' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1126/science.adg0797 month: '12' oa: 1 oa_version: Published Version page: 1285-1286 publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: Remote opportunities for scholars in Ukraine type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 378 year: '2022' ... --- _id: '9255' abstract: - lang: eng text: Our ability to trust that a random number is truly random is essential for fields as diverse as cryptography and fundamental tests of quantum mechanics. Existing solutions both come with drawbacks—device-independent quantum random number generators (QRNGs) are highly impractical and standard semi-device-independent QRNGs are limited to a specific physical implementation and level of trust. Here we propose a framework for semi-device-independent randomness certification, using a source of trusted vacuum in the form of a signal shutter. It employs a flexible set of assumptions and levels of trust, allowing it to be applied in a wide range of physical scenarios involving both quantum and classical entropy sources. We experimentally demonstrate our protocol with a photonic setup and generate secure random bits under three different assumptions with varying degrees of security and resulting data rates. acknowledgement: We would like to thank Robert Fickler for discussions about the experimental realization and Marek Sýs for running the NIST randomness test on the data we acquired in the experiment. We would like to thank Ugo Zanforlin, Gerald Buller, Daniel White, and Cristian Bonato for their help with the experiment. M. Pivoluska, M. Plesch, and M.M. acknowledge Czech-Austrian project MultiQUEST (I3053-N27 and GF17-33780L). M. Pivoluska and M. Plesch additionally acknowledge the support of VEGA project 2/0136/19. M.F. acknowledges support from the Polish NCN grant Sonata UMO-2014/14/E/ST2/00020, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program ERC AdG CERQUTE (grant agreement No 834266), the State Research Agency (AEI) TRANQI (PID2019-106888GB-I00/10.13039/501100011033), the Government of Spain (FIS2020-TRANQI; Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya (CERCA, AGAUR). M.M., W.M., N.H.V., and C.F. acknowledge support from the QuantERA ERA-NET Co-fund (FWF Project I3773-N36) and the UK Engineering and Physical Sciences Research Council (EPSRC) (EP/P024114/1). article_number: '50' article_processing_charge: No article_type: original author: - first_name: Matej full_name: Pivoluska, Matej last_name: Pivoluska - first_name: Martin full_name: Plesch, Martin last_name: Plesch - first_name: Máté full_name: Farkas, Máté last_name: Farkas - first_name: Natalia full_name: Ruzickova, Natalia id: D2761128-D73D-11E9-A1BF-BA0DE6697425 last_name: Ruzickova - first_name: Clara full_name: Flegel, Clara last_name: Flegel - first_name: Natalia Herrera full_name: Valencia, Natalia Herrera last_name: Valencia - first_name: Will full_name: Mccutcheon, Will last_name: Mccutcheon - first_name: Mehul full_name: Malik, Mehul last_name: Malik - first_name: Edgar A. full_name: Aguilar, Edgar A. last_name: Aguilar citation: ama: Pivoluska M, Plesch M, Farkas M, et al. Semi-device-independent random number generation with flexible assumptions. npj Quantum Information. 2021;7. doi:10.1038/s41534-021-00387-1 apa: Pivoluska, M., Plesch, M., Farkas, M., Ruzickova, N., Flegel, C., Valencia, N. H., … Aguilar, E. A. (2021). Semi-device-independent random number generation with flexible assumptions. Npj Quantum Information. Springer Nature. https://doi.org/10.1038/s41534-021-00387-1 chicago: Pivoluska, Matej, Martin Plesch, Máté Farkas, Natalia Ruzickova, Clara Flegel, Natalia Herrera Valencia, Will Mccutcheon, Mehul Malik, and Edgar A. Aguilar. “Semi-Device-Independent Random Number Generation with Flexible Assumptions.” Npj Quantum Information. Springer Nature, 2021. https://doi.org/10.1038/s41534-021-00387-1. ieee: M. Pivoluska et al., “Semi-device-independent random number generation with flexible assumptions,” npj Quantum Information, vol. 7. Springer Nature, 2021. ista: Pivoluska M, Plesch M, Farkas M, Ruzickova N, Flegel C, Valencia NH, Mccutcheon W, Malik M, Aguilar EA. 2021. Semi-device-independent random number generation with flexible assumptions. npj Quantum Information. 7, 50. mla: Pivoluska, Matej, et al. “Semi-Device-Independent Random Number Generation with Flexible Assumptions.” Npj Quantum Information, vol. 7, 50, Springer Nature, 2021, doi:10.1038/s41534-021-00387-1. short: M. Pivoluska, M. Plesch, M. Farkas, N. Ruzickova, C. Flegel, N.H. Valencia, W. Mccutcheon, M. Malik, E.A. Aguilar, Npj Quantum Information 7 (2021). date_created: 2021-03-21T23:01:19Z date_published: 2021-03-15T00:00:00Z date_updated: 2023-08-07T14:17:26Z day: '15' ddc: - '530' department: - _id: FyKo doi: 10.1038/s41534-021-00387-1 external_id: isi: - '000629173100001' file: - access_level: open_access checksum: 26d3f2a2c8c8fa8c1002028326b45f64 content_type: application/pdf creator: dernst date_created: 2021-03-22T11:09:34Z date_updated: 2021-03-22T11:09:34Z file_id: '9274' file_name: 2021_NPJQuantumInformation_Pivoluska.pdf file_size: 1360271 relation: main_file success: 1 file_date_updated: 2021-03-22T11:09:34Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: npj Quantum Information publication_identifier: eissn: - 2056-6387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Semi-device-independent random number generation with flexible assumptions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2021' ... --- _id: '9380' abstract: - lang: eng text: Shigella are pathogens originating within the Escherichia lineage but frequently classified as a separate genus. Shigella genomes contain numerous insertion sequences (ISs) that lead to pseudogenisation of affected genes and an increase of non-homologous recombination. Here, we study 414 genomes of E. coli and Shigella strains to assess the contribution of genomic rearrangements to Shigella evolution. We found that Shigella experienced exceptionally high rates of intragenomic rearrangements and had a decreased rate of homologous recombination compared to pathogenic and non-pathogenic E. coli. The high rearrangement rate resulted in independent disruption of syntenic regions and parallel rearrangements in different Shigella lineages. Specifically, we identified two types of chromosomally encoded E3 ubiquitin-protein ligases acquired independently by all Shigella strains that also showed a high level of sequence conservation in the promoter and further in the 5′-intergenic region. In the only available enteroinvasive E. coli (EIEC) strain, which is a pathogenic E. coli with a phenotype intermediate between Shigella and non-pathogenic E. coli, we found a rate of genome rearrangements comparable to those in other E. coli and no functional copies of the two Shigella-specific E3 ubiquitin ligases. These data indicate that the accumulation of ISs influenced many aspects of genome evolution and played an important role in the evolution of intracellular pathogens. Our research demonstrates the power of comparative genomics-based on synteny block composition and an important role of non-coding regions in the evolution of genomic islands. acknowledgement: We thank Fyodor Kondrashov for valuable advice and manuscript proofreading. We also thank Alla Mikheenko for assistance with Circos. article_number: '628622' article_processing_charge: No article_type: original author: - first_name: Zaira full_name: Seferbekova, Zaira last_name: Seferbekova - first_name: Alexey full_name: Zabelkin, Alexey last_name: Zabelkin - first_name: Yulia full_name: Yakovleva, Yulia last_name: Yakovleva - first_name: Robert full_name: Afasizhev, Robert last_name: Afasizhev - first_name: Natalia O. full_name: Dranenko, Natalia O. last_name: Dranenko - first_name: Nikita full_name: Alexeev, Nikita last_name: Alexeev - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 citation: ama: Seferbekova Z, Zabelkin A, Yakovleva Y, et al. High rates of genome rearrangements and pathogenicity of Shigella spp. Frontiers in Microbiology. 2021;12. doi:10.3389/fmicb.2021.628622 apa: Seferbekova, Z., Zabelkin, A., Yakovleva, Y., Afasizhev, R., Dranenko, N. O., Alexeev, N., … Bochkareva, O. (2021). High rates of genome rearrangements and pathogenicity of Shigella spp. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2021.628622 chicago: Seferbekova, Zaira, Alexey Zabelkin, Yulia Yakovleva, Robert Afasizhev, Natalia O. Dranenko, Nikita Alexeev, Mikhail S. Gelfand, and Olga Bochkareva. “High Rates of Genome Rearrangements and Pathogenicity of Shigella Spp.” Frontiers in Microbiology. Frontiers, 2021. https://doi.org/10.3389/fmicb.2021.628622. ieee: Z. Seferbekova et al., “High rates of genome rearrangements and pathogenicity of Shigella spp,” Frontiers in Microbiology, vol. 12. Frontiers, 2021. ista: Seferbekova Z, Zabelkin A, Yakovleva Y, Afasizhev R, Dranenko NO, Alexeev N, Gelfand MS, Bochkareva O. 2021. High rates of genome rearrangements and pathogenicity of Shigella spp. Frontiers in Microbiology. 12, 628622. mla: Seferbekova, Zaira, et al. “High Rates of Genome Rearrangements and Pathogenicity of Shigella Spp.” Frontiers in Microbiology, vol. 12, 628622, Frontiers, 2021, doi:10.3389/fmicb.2021.628622. short: Z. Seferbekova, A. Zabelkin, Y. Yakovleva, R. Afasizhev, N.O. Dranenko, N. Alexeev, M.S. Gelfand, O. Bochkareva, Frontiers in Microbiology 12 (2021). date_created: 2021-05-09T22:01:38Z date_published: 2021-04-12T00:00:00Z date_updated: 2023-08-08T13:30:39Z day: '12' ddc: - '570' department: - _id: FyKo doi: 10.3389/fmicb.2021.628622 ec_funded: 1 external_id: isi: - '000643713300001' file: - access_level: open_access checksum: 2f856543add59273a482a7f326fc0400 content_type: application/pdf creator: kschuh date_created: 2021-05-11T13:05:52Z date_updated: 2021-05-11T13:05:52Z file_id: '9384' file_name: 2021_Frontiers_Microbiology_Seferbekova.pdf file_size: 14362316 relation: main_file success: 1 file_date_updated: 2021-05-11T13:05:52Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: High rates of genome rearrangements and pathogenicity of Shigella spp tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9910' abstract: - lang: eng text: Adult height inspired the first biometrical and quantitative genetic studies and is a test-case trait for understanding heritability. The studies of height led to formulation of the classical polygenic model, that has a profound influence on the way we view and analyse complex traits. An essential part of the classical model is an assumption of additivity of effects and normality of the distribution of the residuals. However, it may be expected that the normal approximation will become insufficient in bigger studies. Here, we demonstrate that when the height of hundreds of thousands of individuals is analysed, the model complexity needs to be increased to include non-additive interactions between sex, environment and genes. Alternatively, the use of log-normal approximation allowed us to still use the additive effects model. These findings are important for future genetic and methodologic studies that make use of adult height as an exemplar trait. acknowledgement: "We are grateful to Marianna Bevova and Pavel Borodin for fruitful discussion and help with conceptualising our findings and to Lennart C. Karssen for help with handling the UK Biobank data.\r\n\r\nFunding\r\nThis research has been conducted using the UK Biobank Resource (project # 41601, “Non-additive effects in control of complex human traits”). The work of SAS, IAK, and TIS were supported by Russian Ministry of Science and Education under the 5–100 Excellence Programme. The work of YSA and TIA was supported by the Ministry of Education and Science of the RF via the Institute of Cytology and Genetics SB RAS (project number 0324-2019-0040-C-01/AAAA-A17-117092070032-4). FAK is supported by the ERC Consolidator Grant (ChrFL: 771209)." article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Sergei A. full_name: Slavskii, Sergei A. last_name: Slavskii - first_name: Ivan A. full_name: Kuznetsov, Ivan A. last_name: Kuznetsov - first_name: Tatiana I. full_name: Shashkova, Tatiana I. last_name: Shashkova - first_name: Georgii A. full_name: Bazykin, Georgii A. last_name: Bazykin - first_name: Tatiana I. full_name: Axenovich, Tatiana I. last_name: Axenovich - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Yurii S. full_name: Aulchenko, Yurii S. last_name: Aulchenko citation: ama: Slavskii SA, Kuznetsov IA, Shashkova TI, et al. The limits of normal approximation for adult height. European Journal of Human Genetics. 2021;29(7):1082-1091. doi:10.1038/s41431-021-00836-7 apa: Slavskii, S. A., Kuznetsov, I. A., Shashkova, T. I., Bazykin, G. A., Axenovich, T. I., Kondrashov, F., & Aulchenko, Y. S. (2021). The limits of normal approximation for adult height. European Journal of Human Genetics. Springer Nature. https://doi.org/10.1038/s41431-021-00836-7 chicago: Slavskii, Sergei A., Ivan A. Kuznetsov, Tatiana I. Shashkova, Georgii A. Bazykin, Tatiana I. Axenovich, Fyodor Kondrashov, and Yurii S. Aulchenko. “The Limits of Normal Approximation for Adult Height.” European Journal of Human Genetics. Springer Nature, 2021. https://doi.org/10.1038/s41431-021-00836-7. ieee: S. A. Slavskii et al., “The limits of normal approximation for adult height,” European Journal of Human Genetics, vol. 29, no. 7. Springer Nature, pp. 1082–1091, 2021. ista: Slavskii SA, Kuznetsov IA, Shashkova TI, Bazykin GA, Axenovich TI, Kondrashov F, Aulchenko YS. 2021. The limits of normal approximation for adult height. European Journal of Human Genetics. 29(7), 1082–1091. mla: Slavskii, Sergei A., et al. “The Limits of Normal Approximation for Adult Height.” European Journal of Human Genetics, vol. 29, no. 7, Springer Nature, 2021, pp. 1082–91, doi:10.1038/s41431-021-00836-7. short: S.A. Slavskii, I.A. Kuznetsov, T.I. Shashkova, G.A. Bazykin, T.I. Axenovich, F. Kondrashov, Y.S. Aulchenko, European Journal of Human Genetics 29 (2021) 1082–1091. date_created: 2021-08-15T22:01:28Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-08-11T10:33:42Z day: '01' ddc: - '576' department: - _id: FyKo doi: 10.1038/s41431-021-00836-7 ec_funded: 1 external_id: isi: - '000625853200001' pmid: - '33664501' file: - access_level: open_access checksum: a676d76f91b0dbe0504c63e469129c2a content_type: application/pdf creator: asandaue date_created: 2021-08-16T09:14:36Z date_updated: 2021-08-16T09:14:36Z file_id: '9921' file_name: 2021_EuropeanJournalOfHumanGenetics_Slavskii.pdf file_size: 1079395 relation: main_file success: 1 file_date_updated: 2021-08-16T09:14:36Z has_accepted_license: '1' intvolume: ' 29' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1082-1091 pmid: 1 project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales publication: European Journal of Human Genetics publication_identifier: eissn: - '14765438' issn: - '10184813' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The limits of normal approximation for adult height tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 29 year: '2021' ... --- _id: '9905' abstract: - lang: eng text: Vaccines are thought to be the best available solution for controlling the ongoing SARS-CoV-2 pandemic. However, the emergence of vaccine-resistant strains may come too rapidly for current vaccine developments to alleviate the health, economic and social consequences of the pandemic. To quantify and characterize the risk of such a scenario, we created a SIR-derived model with initial stochastic dynamics of the vaccine-resistant strain to study the probability of its emergence and establishment. Using parameters realistically resembling SARS-CoV-2 transmission, we model a wave-like pattern of the pandemic and consider the impact of the rate of vaccination and the strength of non-pharmaceutical intervention measures on the probability of emergence of a resistant strain. As expected, we found that a fast rate of vaccination decreases the probability of emergence of a resistant strain. Counterintuitively, when a relaxation of non-pharmaceutical interventions happened at a time when most individuals of the population have already been vaccinated the probability of emergence of a resistant strain was greatly increased. Consequently, we show that a period of transmission reduction close to the end of the vaccination campaign can substantially reduce the probability of resistant strain establishment. Our results suggest that policymakers and individuals should consider maintaining non-pharmaceutical interventions and transmission-reducing behaviours throughout the entire vaccination period. acknowledgement: We thank Alexey Kondrashov, Nick Machnik, Raimundo Julian Saona Urmeneta, Gasper Tkacik and Nick Barton for fruitful discussions. We also thank participants of EvoLunch seminar at IST Austria and the internal seminar at the Banco de España for useful comments. The opinions expressed in this document are exclusively of the authors and, therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem. ETD is supported by the Swiss National Science and Louis Jeantet Foundation. The work of FAK was in part supported by the ERC Consolidator Grant (771209-CharFL). article_number: '15729' article_processing_charge: Yes article_type: original author: - first_name: Simon full_name: Rella, Simon id: B4765ACA-AA38-11E9-AC9A-0930E6697425 last_name: Rella - first_name: Yuliya A. full_name: Kulikova, Yuliya A. last_name: Kulikova - first_name: Emmanouil T. full_name: Dermitzakis, Emmanouil T. last_name: Dermitzakis - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 citation: ama: Rella S, Kulikova YA, Dermitzakis ET, Kondrashov F. Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Scientific Reports. 2021;11(1). doi:10.1038/s41598-021-95025-3 apa: Rella, S., Kulikova, Y. A., Dermitzakis, E. T., & Kondrashov, F. (2021). Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-021-95025-3 chicago: Rella, Simon, Yuliya A. Kulikova, Emmanouil T. Dermitzakis, and Fyodor Kondrashov. “Rates of SARS-CoV-2 Transmission and Vaccination Impact the Fate of Vaccine-Resistant Strains.” Scientific Reports. Springer Nature, 2021. https://doi.org/10.1038/s41598-021-95025-3. ieee: S. Rella, Y. A. Kulikova, E. T. Dermitzakis, and F. Kondrashov, “Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains,” Scientific Reports, vol. 11, no. 1. Springer Nature, 2021. ista: Rella S, Kulikova YA, Dermitzakis ET, Kondrashov F. 2021. Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Scientific Reports. 11(1), 15729. mla: Rella, Simon, et al. “Rates of SARS-CoV-2 Transmission and Vaccination Impact the Fate of Vaccine-Resistant Strains.” Scientific Reports, vol. 11, no. 1, 15729, Springer Nature, 2021, doi:10.1038/s41598-021-95025-3. short: S. Rella, Y.A. Kulikova, E.T. Dermitzakis, F. Kondrashov, Scientific Reports 11 (2021). date_created: 2021-08-15T22:01:26Z date_published: 2021-07-30T00:00:00Z date_updated: 2023-08-11T10:42:58Z day: '30' ddc: - '570' - '610' department: - _id: FyKo doi: 10.1038/s41598-021-95025-3 ec_funded: 1 external_id: isi: - '000683329100001' pmid: - '34330988' file: - access_level: open_access checksum: ac86892ed17e6724c7251844da5cef5c content_type: application/pdf creator: asandaue date_created: 2021-08-16T11:36:49Z date_updated: 2021-08-16T11:36:49Z file_id: '9927' file_name: 2021_ScientificReports_Rella.pdf file_size: 3432001 relation: main_file success: 1 file_date_updated: 2021-08-16T11:36:49Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales publication: Scientific Reports publication_identifier: eissn: - '20452322' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Website relation: press_release url: https://ist.ac.at/en/news/counterintuitive-dynamics-threaten-the-end-of-the-pandemic/ scopus_import: '1' status: public title: Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2021' ... --- _id: '7603' abstract: - lang: eng text: Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants. article_number: '91' article_processing_charge: No article_type: original author: - first_name: Barbara Anna full_name: Nimeth, Barbara Anna last_name: Nimeth - first_name: Stefan full_name: Riegler, Stefan id: FF6018E0-D806-11E9-8E43-0B14E6697425 last_name: Riegler orcid: 0000-0003-3413-1343 - first_name: Maria full_name: Kalyna, Maria last_name: Kalyna citation: ama: Nimeth BA, Riegler S, Kalyna M. Alternative splicing and DNA damage response in plants. Frontiers in Plant Science. 2020;11. doi:10.3389/fpls.2020.00091 apa: Nimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative splicing and DNA damage response in plants. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2020.00091 chicago: Nimeth, Barbara Anna, Stefan Riegler, and Maria Kalyna. “Alternative Splicing and DNA Damage Response in Plants.” Frontiers in Plant Science. Frontiers, 2020. https://doi.org/10.3389/fpls.2020.00091. ieee: B. A. Nimeth, S. Riegler, and M. Kalyna, “Alternative splicing and DNA damage response in plants,” Frontiers in Plant Science, vol. 11. Frontiers, 2020. ista: Nimeth BA, Riegler S, Kalyna M. 2020. Alternative splicing and DNA damage response in plants. Frontiers in Plant Science. 11, 91. mla: Nimeth, Barbara Anna, et al. “Alternative Splicing and DNA Damage Response in Plants.” Frontiers in Plant Science, vol. 11, 91, Frontiers, 2020, doi:10.3389/fpls.2020.00091. short: B.A. Nimeth, S. Riegler, M. Kalyna, Frontiers in Plant Science 11 (2020). date_created: 2020-03-22T23:00:46Z date_published: 2020-02-19T00:00:00Z date_updated: 2023-08-18T07:05:18Z day: '19' ddc: - '580' department: - _id: FyKo doi: 10.3389/fpls.2020.00091 external_id: isi: - '000518903600001' file: - access_level: open_access checksum: 57c37209f7b6712ced86c0f11b2be74e content_type: application/pdf creator: dernst date_created: 2020-03-23T09:03:40Z date_updated: 2020-07-14T12:48:01Z file_id: '7607' file_name: 2020_FrontiersPlants_Nimeth.pdf file_size: 507414 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Frontiers in Plant Science publication_identifier: eissn: - 1664462X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Alternative splicing and DNA damage response in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '7622' abstract: - lang: eng text: The International Young Physicists' Tournament (IYPT) continued in 2018 in Beijing, China and 2019 in Warsaw, Poland with its 31st and 32nd editions. The IYPT is a modern scientific competition for teams of high school students, also known as the Physics World Cup. It involves long-term theoretical and experimental work focused on solving 17 publicly announced open-ended problems in teams of five. On top of that, teams have to present their solutions in front of other teams and a scientific jury, and get opposed and reviewed by their peers. Here we present a brief information about the competition with a specific focus on one of the IYPT 2018 tasks, the 'Ring Oiler'. This seemingly simple mechanical problem appeared to be of such a complexity that even the dozens of participating teams and jurying scientists were not able to solve all of its subtleties. article_number: '034001' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Plesch, Martin last_name: Plesch - first_name: Samuel full_name: Plesník, Samuel last_name: Plesník - first_name: Natalia full_name: Ruzickova, Natalia id: D2761128-D73D-11E9-A1BF-BA0DE6697425 last_name: Ruzickova citation: ama: Plesch M, Plesník S, Ruzickova N. The IYPT and the “Ring Oiler” problem. European Journal of Physics. 2020;41(3). doi:10.1088/1361-6404/ab6414 apa: Plesch, M., Plesník, S., & Ruzickova, N. (2020). The IYPT and the “Ring Oiler” problem. European Journal of Physics. IOP Publishing. https://doi.org/10.1088/1361-6404/ab6414 chicago: Plesch, Martin, Samuel Plesník, and Natalia Ruzickova. “The IYPT and the ‘Ring Oiler’ Problem.” European Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1361-6404/ab6414. ieee: M. Plesch, S. Plesník, and N. Ruzickova, “The IYPT and the ‘Ring Oiler’ problem,” European Journal of Physics, vol. 41, no. 3. IOP Publishing, 2020. ista: Plesch M, Plesník S, Ruzickova N. 2020. The IYPT and the ‘Ring Oiler’ problem. European Journal of Physics. 41(3), 034001. mla: Plesch, Martin, et al. “The IYPT and the ‘Ring Oiler’ Problem.” European Journal of Physics, vol. 41, no. 3, 034001, IOP Publishing, 2020, doi:10.1088/1361-6404/ab6414. short: M. Plesch, S. Plesník, N. Ruzickova, European Journal of Physics 41 (2020). date_created: 2020-03-31T11:25:04Z date_published: 2020-02-24T00:00:00Z date_updated: 2023-08-18T10:18:29Z day: '24' ddc: - '530' department: - _id: FyKo doi: 10.1088/1361-6404/ab6414 external_id: arxiv: - '1910.03290' isi: - '000537425400001' file: - access_level: open_access checksum: 47dda164e33b6c0c6c3ed14aad298376 content_type: application/pdf creator: dernst date_created: 2020-04-06T08:53:53Z date_updated: 2020-07-14T12:48:01Z file_id: '7641' file_name: 2020_EuropJourPhysics_Plesch.pdf file_size: 1533672 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: European Journal of Physics publication_identifier: eissn: - '13616404' issn: - '01430807' publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: The IYPT and the 'Ring Oiler' problem tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2020' ... --- _id: '7931' abstract: - lang: eng text: In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data. article_number: '8635' article_processing_charge: No article_type: original author: - first_name: Leonid A. full_name: Uroshlev, Leonid A. last_name: Uroshlev - first_name: Eldar T. full_name: Abdullaev, Eldar T. last_name: Abdullaev - first_name: Iren R. full_name: Umarova, Iren R. last_name: Umarova - first_name: Irina A. full_name: Il’Icheva, Irina A. last_name: Il’Icheva - first_name: Larisa A. full_name: Panchenko, Larisa A. last_name: Panchenko - first_name: Robert V. full_name: Polozov, Robert V. last_name: Polozov - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Yury D. full_name: Nechipurenko, Yury D. last_name: Nechipurenko - first_name: Sergei L. full_name: Grokhovsky, Sergei L. last_name: Grokhovsky citation: ama: Uroshlev LA, Abdullaev ET, Umarova IR, et al. A method for identification of the methylation level of CpG islands from NGS data. Scientific Reports. 2020;10. doi:10.1038/s41598-020-65406-1 apa: Uroshlev, L. A., Abdullaev, E. T., Umarova, I. R., Il’Icheva, I. A., Panchenko, L. A., Polozov, R. V., … Grokhovsky, S. L. (2020). A method for identification of the methylation level of CpG islands from NGS data. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-020-65406-1 chicago: Uroshlev, Leonid A., Eldar T. Abdullaev, Iren R. Umarova, Irina A. Il’Icheva, Larisa A. Panchenko, Robert V. Polozov, Fyodor Kondrashov, Yury D. Nechipurenko, and Sergei L. Grokhovsky. “A Method for Identification of the Methylation Level of CpG Islands from NGS Data.” Scientific Reports. Springer Nature, 2020. https://doi.org/10.1038/s41598-020-65406-1. ieee: L. A. Uroshlev et al., “A method for identification of the methylation level of CpG islands from NGS data,” Scientific Reports, vol. 10. Springer Nature, 2020. ista: Uroshlev LA, Abdullaev ET, Umarova IR, Il’Icheva IA, Panchenko LA, Polozov RV, Kondrashov F, Nechipurenko YD, Grokhovsky SL. 2020. A method for identification of the methylation level of CpG islands from NGS data. Scientific Reports. 10, 8635. mla: Uroshlev, Leonid A., et al. “A Method for Identification of the Methylation Level of CpG Islands from NGS Data.” Scientific Reports, vol. 10, 8635, Springer Nature, 2020, doi:10.1038/s41598-020-65406-1. short: L.A. Uroshlev, E.T. Abdullaev, I.R. Umarova, I.A. Il’Icheva, L.A. Panchenko, R.V. Polozov, F. Kondrashov, Y.D. Nechipurenko, S.L. Grokhovsky, Scientific Reports 10 (2020). date_created: 2020-06-07T22:00:51Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-08-21T07:00:17Z day: '25' ddc: - '570' department: - _id: FyKo doi: 10.1038/s41598-020-65406-1 external_id: isi: - '000560774200007' file: - access_level: open_access checksum: 099e51611a5b7ca04244d03b2faddf33 content_type: application/pdf creator: dernst date_created: 2020-06-08T06:27:32Z date_updated: 2020-07-14T12:48:05Z file_id: '7947' file_name: 2020_ScientificReports_Uroshlev.pdf file_size: 1001724 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: Scientific Reports publication_identifier: eissn: - '20452322' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A method for identification of the methylation level of CpG islands from NGS data tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ...