TY - THES AB - Plants maintain the capacity to develop new organs e.g. lateral roots post-embryonically throughout their whole life and thereby flexibly adapt to ever-changing environmental conditions. Plant hormones auxin and cytokinin are the main regulators of the lateral root organogenesis. Additionally to their solo activities, the interaction between auxin and cytokinin plays crucial role in fine-tuning of lateral root development and growth. In particular, cytokinin modulates auxin distribution within the developing lateral root by affecting the endomembrane trafficking of auxin transporter PIN1 and promoting its vacuolar degradation (Marhavý et al., 2011, 2014). This effect is independent of transcription and translation. Therefore, it suggests novel, non-canonical cytokinin activity occuring possibly on the posttranslational level. Impact of cytokinin and other plant hormones on auxin transporters (including PIN1) on the posttranslational level is described in detail in the introduction part of this thesis in a form of a review (Semeradova et al., 2020). To gain insights into the molecular machinery underlying cytokinin effect on the endomembrane trafficking in the plant cell, in particular on the PIN1 degradation, we conducted two large proteomic screens: 1) Identification of cytokinin binding proteins using chemical proteomics. 2) Monitoring of proteomic and phosphoproteomic changes upon cytokinin treatment. In the first screen, we identified DYNAMIN RELATED PROTEIN 2A (DRP2A). We found that DRP2A plays a role in cytokinin regulated processes during the plant growth and that cytokinin treatment promotes destabilization of DRP2A protein. However, the role of DRP2A in the PIN1 degradation remains to be elucidated. In the second screen, we found VACUOLAR PROTEIN SORTING 9A (VPS9A). VPS9a plays crucial role in plant’s response to cytokin and in cytokinin mediated PIN1 degradation. Altogether, we identified proteins, which bind to cytokinin and proteins that in response to cytokinin exhibit significantly changed abundance or phosphorylation pattern. By combining information from these two screens, we can pave our way towards understanding of noncanonical cytokinin effects. AU - Semerádová, Hana ID - 10135 SN - 2663-337X TI - Molecular mechanisms of the cytokinin-regulated endomembrane trafficking to coordinate plant organogenesis ER - TY - JOUR AB - The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition. AU - Nibau, Candida AU - Gallemi, Marçal AU - Dadarou, Despoina AU - Doonan, John H. AU - Cavallari, Nicola ID - 7350 JF - Frontiers in Plant Science SN - 1664-462X TI - Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2 VL - 10 ER - TY - JOUR AB - Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens. AU - Hurny, Andrej AU - Cuesta, Candela AU - Cavallari, Nicola AU - Ötvös, Krisztina AU - Duclercq, Jerome AU - Dokládal, Ladislav AU - Montesinos López, Juan C AU - Gallemi, Marçal AU - Semeradova, Hana AU - Rauter, Thomas AU - Stenzel, Irene AU - Persiau, Geert AU - Benade, Freia AU - Bhalearo, Rishikesh AU - Sýkorová, Eva AU - Gorzsás, András AU - Sechet, Julien AU - Mouille, Gregory AU - Heilmann, Ingo AU - De Jaeger, Geert AU - Ludwig-Müller, Jutta AU - Benková, Eva ID - 7805 JF - Nature Communications TI - Synergistic on Auxin and Cytokinin 1 positively regulates growth and attenuates soil pathogen resistance VL - 11 ER - TY - JOUR AB - In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule for plant growth, development and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). In addition, our present study shows that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene expression in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing cell wall remodeling required for overlying tissues separation during LRP emergence. Both NRT1.1-mediated repression of TAR2 and LAX3 are suppressed at high nitrate availability, resulting in the nitrate induction of TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously anticipated in regulating the nitrate response of root system architecture. AU - Maghiaoui, A AU - Bouguyon, E AU - Cuesta, Candela AU - Perrine-Walker, F AU - Alcon, C AU - Krouk, G AU - Benková, Eva AU - Nacry, P AU - Gojon, A AU - Bach, L ID - 7948 IS - 15 JF - Journal of Experimental Botany SN - 0022-0957 TI - The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate VL - 71 ER - TY - JOUR AB - Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER. AU - Kubiasova, Karolina AU - Montesinos López, Juan C AU - Šamajová, Olga AU - Nisler, Jaroslav AU - Mik, Václav AU - Semeradova, Hana AU - Plíhalová, Lucie AU - Novák, Ondřej AU - Marhavý, Peter AU - Cavallari, Nicola AU - Zalabák, David AU - Berka, Karel AU - Doležal, Karel AU - Galuszka, Petr AU - Šamaj, Jozef AU - Strnad, Miroslav AU - Benková, Eva AU - Plíhal, Ondřej AU - Spíchal, Lukáš ID - 8336 JF - Nature Communications TI - Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum VL - 11 ER - TY - JOUR AB - Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression. AU - Nibau, Candida AU - Dadarou, Despoina AU - Kargios, Nestoras AU - Mallioura, Areti AU - Fernandez-Fuentes, Narcis AU - Cavallari, Nicola AU - Doonan, John H. ID - 8924 JF - Frontiers in Plant Science TI - A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis VL - 11 ER - TY - JOUR AB - Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells. AU - Montesinos López, Juan C AU - Abuzeineh, A AU - Kopf, Aglaja AU - Juanes Garcia, Alba AU - Ötvös, Krisztina AU - Petrášek, J AU - Sixt, Michael K AU - Benková, Eva ID - 8142 IS - 17 JF - The Embo Journal SN - 0261-4189 TI - Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage VL - 39 ER - TY - JOUR AB - Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants. AU - Moulinier-Anzola, Jeanette AU - Schwihla, Maximilian AU - De-Araújo, Lucinda AU - Artner, Christina AU - Jörg, Lisa AU - Konstantinova, Nataliia AU - Luschnig, Christian AU - Korbei, Barbara ID - 15037 IS - 5 JF - Molecular Plant KW - Plant Science KW - Molecular Biology SN - 1674-2052 TI - TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants VL - 13 ER - TY - JOUR AB - Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity. AU - Hörmayer, Lukas AU - Montesinos López, Juan C AU - Marhavá, Petra AU - Benková, Eva AU - Yoshida, Saiko AU - Friml, Jiří ID - 8002 IS - 26 JF - Proceedings of the National Academy of Sciences SN - 0027-8424 TI - Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots VL - 117 ER - TY - JOUR AB - Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense. AU - Tan, Shutang AU - Abas, Melinda F AU - Verstraeten, Inge AU - Glanc, Matous AU - Molnar, Gergely AU - Hajny, Jakub AU - Lasák, Pavel AU - Petřík, Ivan AU - Russinova, Eugenia AU - Petrášek, Jan AU - Novák, Ondřej AU - Pospíšil, Jiří AU - Friml, Jiří ID - 7427 IS - 3 JF - Current Biology SN - 09609822 TI - Salicylic acid targets protein phosphatase 2A to attenuate growth in plants VL - 30 ER - TY - JOUR AB - Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development. AU - Semeradova, Hana AU - Montesinos López, Juan C AU - Benková, Eva ID - 9160 IS - 3 JF - Plant Communications SN - 2590-3462 TI - All roads lead to auxin: Post-translational regulation of auxin transport by multiple hormonal pathways VL - 1 ER - TY - JOUR AB - Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division 1–3 . In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical–basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain. AU - Yoshida, Saiko AU - Van Der Schuren, Alja AU - Van Dop, Maritza AU - Van Galen, Luc AU - Saiga, Shunsuke AU - Adibi, Milad AU - Möller, Barbara AU - Ten Hove, Colette A. AU - Marhavy, Peter AU - Smith, Richard AU - Friml, Jiří AU - Weijers, Dolf ID - 6023 IS - 2 JF - Nature Plants TI - A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis VL - 5 ER - TY - JOUR AB - The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins. AU - Zhu, Qiang AU - Gallemi, Marçal AU - Pospíšil, Jiří AU - Žádníková, Petra AU - Strnad, Miroslav AU - Benková, Eva ID - 6897 IS - 17 JF - Development TI - Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis VL - 146 ER - TY - JOUR AU - Artner, Christina AU - Benková, Eva ID - 6920 IS - 10 JF - Molecular Plant SN - 1674-2052 TI - Ethylene and cytokinin - partners in root growth regulation VL - 12 ER - TY - JOUR AU - Benková, Eva AU - Dagdas, Yasin ID - 7394 IS - 12 JF - Current Opinion in Plant Biology SN - 1369-5266 TI - Editorial overview: Cell biology in the era of omics? VL - 52 ER - TY - JOUR AB - A process of restorative patterning in plant roots correctly replaces eliminated cells to heal local injuries despite the absence of cell migration, which underpins wound healing in animals. Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing. AU - Marhavá, Petra AU - Hörmayer, Lukas AU - Yoshida, Saiko AU - Marhavy, Peter AU - Benková, Eva AU - Friml, Jiří ID - 6351 IS - 4 JF - Cell SN - 00928674 TI - Re-activation of stem cell pathways for pattern restoration in plant wound healing VL - 177 ER - TY - JOUR AB - Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Abstract: Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions. AU - Dokládal, Ladislav AU - Benková, Eva AU - Honys, David AU - Dupláková, Nikoleta AU - Lee, Lan AU - Gelvin, Stanton AU - Sýkorová, Eva ID - 277 IS - 5 JF - Plant Molecular Biology TI - An armadillo-domain protein participates in a telomerase interaction network VL - 97 ER - TY - JOUR AB - Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield. AU - Cucinotta, Mara AU - Manrique, Silvia AU - Cuesta, Candela AU - Benková, Eva AU - Novák, Ondřej AU - Colombo, Lucia ID - 42 IS - 21 JF - Journal of Experimental Botany TI - Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis VL - 69 ER - TY - JOUR AB - Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N6-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5). All prepared compounds were screened for affinity for the Arabidopsis thaliana cytokinin receptor (CRE1/AHK4). Although the attachment of the fluorescent labels to iP via the linkers mostly disrupted binding to the receptor, several fluorescent derivatives interacted well. For this reason, three derivatives, two rhodamine B and one 4-chloro-7-nitrobenzofurazan labeled iP were tested for their interaction with CRE1/AHK4 and Zea mays cytokinin receptors in detail. We further showed that the three derivatives were able to activate transcription of cytokinin response regulator ARR5 in Arabidopsis seedlings. The activity of fluorescently labeled cytokinins was compared with corresponding 6-dimethylaminopurine fluorescently labeled negative controls. Selected rhodamine B C2-labeled compounds 17, 18 and 4-chloro-7-nitrobenzofurazan N9-labeled compound 28 and their respective negative controls (19, 20 and 29, respectively) were used for in planta staining experiments in Arabidopsis thaliana cell suspension culture using live cell confocal microscopy. AU - Kubiasová, Karolina AU - Mik, Václav AU - Nisler, Jaroslav AU - Hönig, Martin AU - Husičková, Alexandra AU - Spíchal, Lukáš AU - Pěkná, Zuzana AU - Šamajová, Olga AU - Doležal, Karel AU - Plíhal, Ondřej AU - Benková, Eva AU - Strnad, Miroslav AU - Plíhalová, Lucie ID - 407 JF - Phytochemistry TI - Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins VL - 150 ER - TY - JOUR AB - Light represents the principal signal driving circadian clock entrainment. However, how light influences the evolution of the clock remains poorly understood. The cavefish Phreatichthys andruzzii represents a fascinating model to explore how evolution under extreme aphotic conditions shapes the circadian clock, since in this species the clock is unresponsive to light. We have previously demonstrated that loss-of-function mutations targeting non-visual opsins contribute in part to this blind clock phenotype. Here, we have compared orthologs of two core clock genes that play a key role in photic entrainment, cry1a and per2, in both zebrafish and P. andruzzii. We encountered aberrantly spliced variants for the P. andruzzii per2 transcript. The most abundant transcript encodes a truncated protein lacking the C-terminal Cry binding domain and incorporating an intronic, transposon-derived coding sequence. We demonstrate that the transposon insertion leads to a predominantly cytoplasmic localization of the cavefish Per2 protein in contrast to the zebrafish ortholog which is distributed in both the nucleus and cytoplasm. Thus, it seems that during evolution in complete darkness, the photic entrainment pathway of the circadian clock has been subject to mutation at multiple levels, extending from opsin photoreceptors to nuclear effectors. AU - Ceinos, Rosa Maria AU - Frigato, Elena AU - Pagano, Cristina AU - Frohlich, Nadine AU - Negrini, Pietro AU - Cavallari, Nicola AU - Vallone, Daniela AU - Fuselli, Silvia AU - Bertolucci, Cristiano AU - Foulkes, Nicholas S ID - 283 IS - 1 JF - Scientific Reports TI - Mutations in blind cavefish target the light regulated circadian clock gene period 2 VL - 8 ER -