TY - GEN AB - Eva Benkova received a PhD in Biophysics at the Institute of Biophysics of the Czech Academy of Sciences in 1998. After working as a postdoc at the Max Planck Institute in Cologne and the Center for Plant Molecular Biology (ZMBP) in Tübingen, she became a group leader at the Plant Systems Biology Department of the Vlaams Instituut voor Biotechnologie (VIB) in Gent. In 2012, she transitioned to an Assistant Professor position at the Institute of Science and Technology Austria (ISTA) where she was later promoted to Professor. Since 2021, she has served as the Dean of the ISTA Graduate School. As a plant developmental biologist, she focuses on unraveling the molecular mechanisms and principles that underlie hormonal interactions in plants. In her current work, she explores the intricate connections between hormones and regulatory pathways that mediate the perception of environmental stimuli, including abiotic stress and nitrate availability. AU - Benková, Eva ID - 14842 IS - 1 T2 - Current Biology TI - Eva Benkova VL - 34 ER - TY - JOUR AB - Epithelial barrier function is commonly analyzed using transepithelial electrical resistance, which measures ion flux across a monolayer, or by adding traceable macromolecules and monitoring their passage across the monolayer. Although these methods measure changes in global barrier function, they lack the sensitivity needed to detect local or transient barrier breaches, and they do not reveal the location of barrier leaks. Therefore, we previously developed a method that we named the zinc-based ultrasensitive microscopic barrier assay (ZnUMBA), which overcomes these limitations, allowing for detection of local tight junction leaks with high spatiotemporal resolution. Here, we present expanded applications for ZnUMBA. ZnUMBA can be used in Xenopus embryos to measure the dynamics of barrier restoration and actin accumulation following laser injury. ZnUMBA can also be effectively utilized in developing zebrafish embryos as well as cultured monolayers of Madin–Darby canine kidney (MDCK) II epithelial cells. ZnUMBA is a powerful and flexible method that, with minimal optimization, can be applied to multiple systems to measure dynamic changes in barrier function with spatiotemporal precision. AU - Higashi, Tomohito AU - Stephenson, Rachel E. AU - Schwayer, Cornelia AU - Huljev, Karla AU - Higashi, Atsuko Y. AU - Heisenberg, Carl-Philipp J AU - Chiba, Hideki AU - Miller, Ann L. ID - 14082 IS - 15 JF - Journal of Cell Science SN - 0021-9533 TI - ZnUMBA - a live imaging method to detect local barrier breaches VL - 136 ER - TY - JOUR AB - Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links. AU - Abualia, R AU - Riegler, Stefan AU - Benková, Eva ID - 13214 IS - 12 JF - Cells SN - 2073-4409 TI - Nitrate, auxin and cytokinin - a trio to tango VL - 12 ER - TY - JOUR AB - Mineral nutrition is one of the key environmental factors determining plant development and growth. Nitrate is the major form of macronutrient nitrogen that plants take up from the soil. Fluctuating availability or deficiency of this element severely limits plant growth and negatively affects crop production in the agricultural system. To cope with the heterogeneity of nitrate distribution in soil, plants evolved a complex regulatory mechanism that allows rapid adjustment of physiological and developmental processes to the status of this nutrient. The root, as a major exploitation organ that controls the uptake of nitrate to the plant body, acts as a regulatory hub that, according to nitrate availability, coordinates the growth and development of other plant organs. Here, we identified a regulatory framework, where cytokinin response factors (CRFs) play a central role as a molecular readout of the nitrate status in roots to guide shoot adaptive developmental response. We show that nitrate-driven activation of NLP7, a master regulator of nitrate response in plants, fine tunes biosynthesis of cytokinin in roots and its translocation to shoots where it enhances expression of CRFs. CRFs, through direct transcriptional regulation of PIN auxin transporters, promote the flow of auxin and thereby stimulate the development of shoot organs. AU - Abualia, Rashed AU - Ötvös, Krisztina AU - Novák, Ondřej AU - Bouguyon, Eleonore AU - Domanegg, Kevin AU - Krapp, Anne AU - Nacry, Philip AU - Gojon, Alain AU - Lacombe, Benoit AU - Benková, Eva ID - 11734 IS - 31 JF - Proceedings of the National Academy of Sciences of the United States of America TI - Molecular framework integrating nitrate sensing in root and auxin-guided shoot adaptive responses VL - 119 ER - TY - JOUR AB - The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1,2,3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. AU - Friml, Jiří AU - Gallei, Michelle C AU - Gelová, Zuzana AU - Johnson, Alexander J AU - Mazur, Ewa AU - Monzer, Aline AU - Rodriguez Solovey, Lesia AU - Roosjen, Mark AU - Verstraeten, Inge AU - Živanović, Branka D. AU - Zou, Minxia AU - Fiedler, Lukas AU - Giannini, Caterina AU - Grones, Peter AU - Hrtyan, Mónika AU - Kaufmann, Walter AU - Kuhn, Andre AU - Narasimhan, Madhumitha AU - Randuch, Marek AU - Rýdza, Nikola AU - Takahashi, Koji AU - Tan, Shutang AU - Teplova, Anastasiia AU - Kinoshita, Toshinori AU - Weijers, Dolf AU - Rakusová, Hana ID - 12291 IS - 7927 JF - Nature SN - 0028-0836 TI - ABP1–TMK auxin perception for global phosphorylation and auxin canalization VL - 609 ER - TY - THES AB - As the overall global mean surface temperature is increasing due to climate change, plant adaptation to those stressful conditions is of utmost importance for their survival. Plants are sessile organisms, thus to compensate for their lack of mobility, they evolved a variety of mechanisms enabling them to flexibly adjust their physiological, growth and developmental processes to fluctuating temperatures and to survive in harsh environments. While these unique adaptation abilities provide an important evolutionary advantage, overall modulation of plant growth and developmental program due to non-optimal temperature negatively affects biomass production, crop productivity or sensitivity to pathogens. Thus, understanding molecular processes underlying plant adaptation to increased temperature can provide important resources for breeding strategies to ensure sufficient agricultural food production. An increase in ambient temperature by a few degrees leads to profound changes in organ growth including enhanced hypocotyl elongation, expansion of petioles, hyponastic growth of leaves and cotyledons, collectively named thermomorphogenesis (Casal & Balasubramanian, 2019). Auxin, one of the best-studied growth hormones, plays an essential role in this process by direct activation of transcriptional and non-transcriptional processes resulting in elongation growth (Majda & Robert, 2018).To modulate hypocotyl growth in response to high ambient temperature (hAT), auxin needs to be redistributed accordingly. PINs, auxin efflux transporters, are key components of the polar auxin transport (PAT) machinery, which controls the amount and direction of auxin translocated in the plant tissues and organs(Adamowski & Friml, 2015). Hence, PIN-mediated transport is tightly linked with thermo-morphogenesis, and interference with PAT through either chemical or genetic means dramatically affecting the adaptive responses to hAT. Intriguingly, despite the key role of PIN mediated transport in growth response to hAT, whether and how PINs at the level of expression adapt to fluctuation in temperature is scarcely understood. With genetic, molecular and advanced bio-imaging approaches, we demonstrate the role of PIN auxin transporters in the regulation of hypocotyl growth in response to hAT. We show that via adjustment of PIN3, PIN4 and PIN7 expression in cotyledons and hypocotyls, auxin distribution is modulated thereby determining elongation pattern of epidermal cells at hAT. Furthermore, we identified three Zinc-Finger (ZF) transcription factors as novel molecular components of the thermo-regulatory network, which through negative regulation of PIN transcription adjust the transport of auxin at hAT. Our results suggest that the ZF-PIN module might be a part of the negative feedback loop attenuating the activity of the thermo-sensing pathway to restrain exaggerated growth and developmental responses to hAT. AU - Artner, Christina ID - 11879 KW - high ambient temperature KW - auxin KW - PINs KW - Zinc-Finger proteins KW - thermomorphogenesis KW - stress SN - 2663-337X TI - Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature ER - TY - JOUR AB - Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems. AU - Li, Hongjiang AU - von Wangenheim, Daniel AU - Zhang, Xixi AU - Tan, Shutang AU - Darwish-Miranda, Nasser AU - Naramoto, Satoshi AU - Wabnik, Krzysztof T AU - de Rycke, Riet AU - Kaufmann, Walter AU - Gütl, Daniel J AU - Tejos, Ricardo AU - Grones, Peter AU - Ke, Meiyu AU - Chen, Xu AU - Dettmer, Jan AU - Friml, Jiří ID - 8582 IS - 1 JF - New Phytologist SN - 0028646X TI - Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana VL - 229 ER - TY - JOUR AB - Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL–RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL–RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner. AU - Ötvös, Krisztina AU - Miskolczi, Pál AU - Marhavý, Peter AU - Cruz-Ramírez, Alfredo AU - Benková, Eva AU - Robert, Stéphanie AU - Bakó, László ID - 9332 IS - 8 JF - International Journal of Molecular Sciences SN - 1661-6596 TI - Pickle recruits retinoblastoma related 1 to control lateral root formation in arabidopsis VL - 22 ER - TY - JOUR AB - Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development. AU - Marconi, Marco AU - Gallemi, Marçal AU - Benková, Eva AU - Wabnik, Krzysztof ID - 10270 JF - eLife SN - 2050-084X TI - A coupled mechano-biochemical model for cell polarity guided anisotropic root growth VL - 10 ER - TY - JOUR AB - Plant fitness is largely dependent on the root, the underground organ, which, besides its anchoring function, supplies the plant body with water and all nutrients necessary for growth and development. To exploit the soil effectively, roots must constantly integrate environmental signals and react through adjustment of growth and development. Important components of the root management strategy involve a rapid modulation of the root growth kinetics and growth direction, as well as an increase of the root system radius through formation of lateral roots (LRs). At the molecular level, such a fascinating growth and developmental flexibility of root organ requires regulatory networks that guarantee stability of the developmental program but also allows integration of various environmental inputs. The plant hormone auxin is one of the principal endogenous regulators of root system architecture by controlling primary root growth and formation of LR. In this review, we discuss recent progress in understanding molecular networks where auxin is one of the main players shaping the root system and acting as mediator between endogenous cues and environmental factors. AU - Cavallari, Nicola AU - Artner, Christina AU - Benková, Eva ID - 9212 IS - 7 JF - Cold Spring Harbor Perspectives in Biology SN - 1943-0264 TI - Auxin-regulated lateral root organogenesis VL - 13 ER -