@article{8924, abstract = {Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.}, author = {Nibau, Candida and Dadarou, Despoina and Kargios, Nestoras and Mallioura, Areti and Fernandez-Fuentes, Narcis and Cavallari, Nicola and Doonan, John H.}, issn = {1664-462X}, journal = {Frontiers in Plant Science}, publisher = {Frontiers}, title = {{A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis}}, doi = {10.3389/fpls.2020.586870}, volume = {11}, year = {2020}, } @article{8142, abstract = {Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.}, author = {Montesinos López, Juan C and Abuzeineh, A and Kopf, Aglaja and Juanes Garcia, Alba and Ötvös, Krisztina and Petrášek, J and Sixt, Michael K and Benková, Eva}, issn = {1460-2075}, journal = {The Embo Journal}, number = {17}, publisher = {Embo Press}, title = {{Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage}}, doi = {10.15252/embj.2019104238}, volume = {39}, year = {2020}, } @article{15037, abstract = {Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants.}, author = {Moulinier-Anzola, Jeanette and Schwihla, Maximilian and De-Araújo, Lucinda and Artner, Christina and Jörg, Lisa and Konstantinova, Nataliia and Luschnig, Christian and Korbei, Barbara}, issn = {1674-2052}, journal = {Molecular Plant}, keywords = {Plant Science, Molecular Biology}, number = {5}, pages = {717--731}, publisher = {Elsevier}, title = {{TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants}}, doi = {10.1016/j.molp.2020.02.012}, volume = {13}, year = {2020}, } @article{8002, abstract = {Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.}, author = {Hörmayer, Lukas and Montesinos López, Juan C and Marhavá, Petra and Benková, Eva and Yoshida, Saiko and Friml, Jiří}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {26}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots}}, doi = {10.1073/pnas.2003346117}, volume = {117}, year = {2020}, } @article{7427, abstract = {Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense.}, author = {Tan, Shutang and Abas, Melinda F and Verstraeten, Inge and Glanc, Matous and Molnar, Gergely and Hajny, Jakub and Lasák, Pavel and Petřík, Ivan and Russinova, Eugenia and Petrášek, Jan and Novák, Ondřej and Pospíšil, Jiří and Friml, Jiří}, issn = {09609822}, journal = {Current Biology}, number = {3}, pages = {381--395.e8}, publisher = {Cell Press}, title = {{Salicylic acid targets protein phosphatase 2A to attenuate growth in plants}}, doi = {10.1016/j.cub.2019.11.058}, volume = {30}, year = {2020}, } @article{9160, abstract = {Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.}, author = {Semeradova, Hana and Montesinos López, Juan C and Benková, Eva}, issn = {2590-3462}, journal = {Plant Communications}, number = {3}, publisher = {Elsevier}, title = {{All roads lead to auxin: Post-translational regulation of auxin transport by multiple hormonal pathways}}, doi = {10.1016/j.xplc.2020.100048}, volume = {1}, year = {2020}, } @article{6023, abstract = {Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division 1–3 . In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical–basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain.}, author = {Yoshida, Saiko and Van Der Schuren, Alja and Van Dop, Maritza and Van Galen, Luc and Saiga, Shunsuke and Adibi, Milad and Möller, Barbara and Ten Hove, Colette A. and Marhavy, Peter and Smith, Richard and Friml, Jiří and Weijers, Dolf}, journal = {Nature Plants}, number = {2}, pages = {160--166}, publisher = {Springer Nature}, title = {{A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis}}, doi = {10.1038/s41477-019-0363-6}, volume = {5}, year = {2019}, } @article{6897, abstract = {The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.}, author = {Zhu, Qiang and Gallemi, Marçal and Pospíšil, Jiří and Žádníková, Petra and Strnad, Miroslav and Benková, Eva}, issn = {14779129}, journal = {Development}, number = {17}, publisher = {The Company of Biologists}, title = {{Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis}}, doi = {10.1242/dev.175919}, volume = {146}, year = {2019}, } @article{6920, author = {Artner, Christina and Benková, Eva}, issn = {1674-2052}, journal = {Molecular Plant}, number = {10}, pages = {1312--1314}, publisher = {Cell Press}, title = {{Ethylene and cytokinin - partners in root growth regulation}}, doi = {10.1016/j.molp.2019.09.003}, volume = {12}, year = {2019}, } @article{7394, author = {Benková, Eva and Dagdas, Yasin}, issn = {1369-5266}, journal = {Current Opinion in Plant Biology}, number = {12}, pages = {A1--A2}, publisher = {Elsevier}, title = {{Editorial overview: Cell biology in the era of omics?}}, doi = {10.1016/j.pbi.2019.11.002}, volume = {52}, year = {2019}, } @article{6351, abstract = {A process of restorative patterning in plant roots correctly replaces eliminated cells to heal local injuries despite the absence of cell migration, which underpins wound healing in animals. Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing.}, author = {Marhavá, Petra and Hörmayer, Lukas and Yoshida, Saiko and Marhavy, Peter and Benková, Eva and Friml, Jiří}, issn = {10974172}, journal = {Cell}, number = {4}, pages = {957--969.e13}, publisher = {Elsevier}, title = {{Re-activation of stem cell pathways for pattern restoration in plant wound healing}}, doi = {10.1016/j.cell.2019.04.015}, volume = {177}, year = {2019}, } @article{277, abstract = {Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Abstract: Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.}, author = {Dokládal, Ladislav and Benková, Eva and Honys, David and Dupláková, Nikoleta and Lee, Lan and Gelvin, Stanton and Sýkorová, Eva}, journal = {Plant Molecular Biology}, number = {5}, pages = {407 -- 420}, publisher = {Springer}, title = {{An armadillo-domain protein participates in a telomerase interaction network}}, doi = {10.1007/s11103-018-0747-4}, volume = {97}, year = {2018}, } @article{42, abstract = {Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield.}, author = {Cucinotta, Mara and Manrique, Silvia and Cuesta, Candela and Benková, Eva and Novák, Ondřej and Colombo, Lucia}, journal = {Journal of Experimental Botany}, number = {21}, pages = {5169 -- 5176}, publisher = {Oxford University Press}, title = {{Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis}}, doi = {10.1093/jxb/ery281}, volume = {69}, year = {2018}, } @article{407, abstract = {Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N6-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5). All prepared compounds were screened for affinity for the Arabidopsis thaliana cytokinin receptor (CRE1/AHK4). Although the attachment of the fluorescent labels to iP via the linkers mostly disrupted binding to the receptor, several fluorescent derivatives interacted well. For this reason, three derivatives, two rhodamine B and one 4-chloro-7-nitrobenzofurazan labeled iP were tested for their interaction with CRE1/AHK4 and Zea mays cytokinin receptors in detail. We further showed that the three derivatives were able to activate transcription of cytokinin response regulator ARR5 in Arabidopsis seedlings. The activity of fluorescently labeled cytokinins was compared with corresponding 6-dimethylaminopurine fluorescently labeled negative controls. Selected rhodamine B C2-labeled compounds 17, 18 and 4-chloro-7-nitrobenzofurazan N9-labeled compound 28 and their respective negative controls (19, 20 and 29, respectively) were used for in planta staining experiments in Arabidopsis thaliana cell suspension culture using live cell confocal microscopy.}, author = {Kubiasová, Karolina and Mik, Václav and Nisler, Jaroslav and Hönig, Martin and Husičková, Alexandra and Spíchal, Lukáš and Pěkná, Zuzana and Šamajová, Olga and Doležal, Karel and Plíhal, Ondřej and Benková, Eva and Strnad, Miroslav and Plíhalová, Lucie}, journal = {Phytochemistry}, pages = {1--11}, publisher = {Elsevier}, title = {{Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins}}, doi = {10.1016/j.phytochem.2018.02.015}, volume = {150}, year = {2018}, } @article{283, abstract = {Light represents the principal signal driving circadian clock entrainment. However, how light influences the evolution of the clock remains poorly understood. The cavefish Phreatichthys andruzzii represents a fascinating model to explore how evolution under extreme aphotic conditions shapes the circadian clock, since in this species the clock is unresponsive to light. We have previously demonstrated that loss-of-function mutations targeting non-visual opsins contribute in part to this blind clock phenotype. Here, we have compared orthologs of two core clock genes that play a key role in photic entrainment, cry1a and per2, in both zebrafish and P. andruzzii. We encountered aberrantly spliced variants for the P. andruzzii per2 transcript. The most abundant transcript encodes a truncated protein lacking the C-terminal Cry binding domain and incorporating an intronic, transposon-derived coding sequence. We demonstrate that the transposon insertion leads to a predominantly cytoplasmic localization of the cavefish Per2 protein in contrast to the zebrafish ortholog which is distributed in both the nucleus and cytoplasm. Thus, it seems that during evolution in complete darkness, the photic entrainment pathway of the circadian clock has been subject to mutation at multiple levels, extending from opsin photoreceptors to nuclear effectors.}, author = {Ceinos, Rosa Maria and Frigato, Elena and Pagano, Cristina and Frohlich, Nadine and Negrini, Pietro and Cavallari, Nicola and Vallone, Daniela and Fuselli, Silvia and Bertolucci, Cristiano and Foulkes, Nicholas S}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{Mutations in blind cavefish target the light regulated circadian clock gene period 2}}, doi = {10.1038/s41598-018-27080-2}, volume = {8}, year = {2018}, } @article{403, abstract = {The ability to adapt growth and development to temperature variations is crucial to generate plant varieties resilient to predicted temperature changes. However, the mechanisms underlying plant response to progressive increases in temperature have just started to be elucidated. Here, we report that the Cyclin-dependent Kinase G1 (CDKG1) is a central element in a thermo-sensitive mRNA splicing cascade that transduces changes in ambient temperature into differential expression of the fundamental spliceosome component, ATU2AF65A. CDKG1 is alternatively spliced in a temperature-dependent manner. We found that this process is partly dependent on both the Cyclin-dependent Kinase G2 (CDKG2) and the interacting co-factor CYCLIN L1 resulting in two distinct messenger RNAs. Relative abundance of both CDKG1 transcripts correlates with ambient temperature and possibly with different expression levels of the associated protein isoforms. Both CDKG1 alternative transcripts are necessary to fully complement the expression of ATU2AF65A across the temperature range. Our data support a previously unidentified temperature-dependent mechanism based on the alternative splicing of CDKG1 and regulated by CDKG2 and CYCLIN L1. We propose that changes in ambient temperature affect the relative abundance of CDKG1 transcripts and this in turn translates into differential CDKG1 protein expression coordinating the alternative splicing of ATU2AF65A. This article is protected by copyright. All rights reserved.}, author = {Cavallari, Nicola and Nibau, Candida and Fuchs, Armin and Dadarou, Despoina and Barta, Andrea and Doonan, John}, journal = {The Plant Journal}, number = {6}, pages = {1010 -- 1022}, publisher = {Wiley}, title = {{The cyclin‐dependent kinase G group defines a thermo‐sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU 2AF 65A}}, doi = {10.1111/tpj.13914}, volume = {94}, year = {2018}, } @phdthesis{539, abstract = {The whole life cycle of plants as well as their responses to environmental stimuli is governed by a complex network of hormonal regulations. A number of studies have demonstrated an essential role of both auxin and cytokinin in the regulation of many aspects of plant growth and development including embryogenesis, postembryonic organogenic processes such as root, and shoot branching, root and shoot apical meristem activity and phyllotaxis. Over the last decades essential knowledge on the key molecular factors and pathways that spatio-temporally define auxin and cytokinin activities in the plant body has accumulated. However, how both hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions is still largely unknown. Root system architecture establishment and in particular formation of lateral organs is prime example of developmental process at whose regulation both auxin and cytokinin pathways converge. To dissect convergence points and pathways that tightly balance auxin - cytokinin antagonistic activities that determine the root branching pattern transcriptome profiling was applied. Genome wide expression analyses of the xylem pole pericycle, a tissue giving rise to lateral roots, led to identification of genes that are highly responsive to combinatorial auxin and cytokinin treatments and play an essential function in the auxin-cytokinin regulated root branching. SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene, which encodes for a protein of unknown function, was detected among the top candidate genes of which expression was synergistically up-regulated by simultaneous hormonal treatment. Plants with modulated SYAC1 activity exhibit severe defects in the root system establishment and attenuate developmental responses to both auxin and cytokinin. To explore the biological function of the SYAC1, we employed different strategies including expression pattern analysis, subcellular localization and phenotypic analyses of the syac1 loss-of-function and gain-of-function transgenic lines along with the identification of the SYAC1 interaction partners. Detailed functional characterization revealed that SYAC1 acts as a developmentally specific regulator of the secretory pathway to control deposition of cell wall components and thereby rapidly fine tune elongation growth.}, author = {Hurny, Andrej}, issn = {2663-337X}, pages = {147}, publisher = {Institute of Science and Technology Austria}, title = {{Identification and characterization of novel auxin-cytokinin cross-talk components}}, doi = {10.15479/AT:ISTA:th_930}, year = {2018}, } @article{191, abstract = {Intercellular distribution of the plant hormone auxin largely depends on the polar subcellular distribution of the plasma membrane PIN-FORMED (PIN) auxin transporters. PIN polarity switches in response to different developmental and environmental signals have been shown to redirect auxin fluxes mediating certain developmental responses. PIN phosphorylation at different sites and by different kinases is crucial for PIN function. Here we investigate the role of PIN phosphorylation during gravitropic response. Loss- and gain-of-function mutants in PINOID and related kinases but not in D6PK kinase as well as mutations mimicking constitutive dephosphorylated or phosphorylated status of two clusters of predicted phosphorylation sites partially disrupted PIN3 phosphorylation and caused defects in gravitropic bending in roots and hypocotyls. In particular, they impacted PIN3 polarity rearrangements in response to gravity and during feed-back regulation by auxin itself. Thus PIN phosphorylation, besides regulating transport activity and apical-basal targeting, is also important for the rapid polarity switches in response to environmental and endogenous signals.}, author = {Grones, Peter and Abas, Melinda F and Hajny, Jakub and Jones, Angharad and Waidmann, Sascha and Kleine Vehn, Jürgen and Friml, Jirí}, journal = {Scientific Reports}, number = {1}, publisher = {Springer}, title = {{PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism}}, doi = {10.1038/s41598-018-28188-1}, volume = {8}, year = {2018}, } @article{47, abstract = {Plant hormones as signalling molecules play an essential role in the control of plant growth and development. Typically, sites of hormonal action are usually distant from the site of biosynthesis thus relying on efficient transport mechanisms. Over the last decades, molecular identification of proteins and protein complexes involved in hormonal transport has started. Advanced screens for genes involved in hormonal transport in combination with transport assays using heterologous systems such as yeast, insect, or tobacco BY2 cells or Xenopus oocytes provided important insights into mechanisms underlying distribution of hormones in plant body and led to identification of principal transporters for each hormone. This review gives a short overview of the mechanisms of hormonal transport and transporters identified in Arabidopsis thaliana.}, author = {Abualia, Rashed and Benková, Eva and Lacombe, Benoît}, journal = {Advances in Botanical Research}, pages = {115 -- 138}, publisher = {Elsevier}, title = {{Transporters and mechanisms of hormone transport in arabidopsis}}, doi = {10.1016/bs.abr.2018.09.007}, volume = {87}, year = {2018}, } @article{1018, abstract = {In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The crosstalk between cytokinin response and light is known for a long time. However, the molecular mechanism underlying the interactionbetween light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT-1 (CKI1), encoding the constitutively active sensor histidine kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE 1 (HY1) which encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertiblephytochromes. Our analysis confirmed the light-dependent regulation oftheCKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlatewithmisregulation of MSP signaling, changedcytokinin sensitivity and developmental aberrations,previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.}, author = {Dobisova, Tereza and Hrdinova, Vendula and Cuesta, Candela and Michlickova, Sarka and Urbankova, Ivana and Hejatkova, Romana and Zadnikova, Petra and Pernisová, Markéta and Benková, Eva and Hejátko, Jan}, journal = {Plant Physiology}, number = {1}, pages = {387 -- 404}, publisher = {American Society of Plant Biologists}, title = {{Light regulated expression of sensor histidine kinase CKI1 controls cytokinin related development}}, doi = {10.1104/pp.16.01964}, volume = {174}, year = {2017}, }