@article{1185, abstract = {The developmental programme of the pistil is under the control of both auxin and cytokinin. Crosstalk between these factors converges on regulation of the auxin carrier PIN-FORMED 1 (PIN1). Here, we show that in the triple transcription factor mutant cytokinin response factor 2 (crf2) crf3 crf6 both pistil length and ovule number were reduced. PIN1 expression was also lower in the triple mutant and the phenotypes could not be rescued by exogenous cytokinin application. pin1 complementation studies using genomic PIN1 constructs showed that the pistil phenotypes were only rescued when the PCRE1 domain, to which CRFs bind, was present. Without this domain, pin mutants resemble the crf2 crf3 crf6 triple mutant, indicating the pivotal role of CRFs in auxin-cytokinin crosstalk.}, author = {Cucinotta, Mara and Manrique, Silvia and Guazzotti, Andrea and Quadrelli, Nadia and Mendes, Marta and Benková, Eva and Colombo, Lucia}, journal = {Development}, number = {23}, pages = {4419 -- 4424}, publisher = {Company of Biologists}, title = {{Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development}}, doi = {10.1242/dev.143545}, volume = {143}, year = {2016}, } @inbook{1210, abstract = {Mechanisms for cell protection are essential for survival of multicellular organisms. In plants, the apical hook, which is transiently formed in darkness when the germinating seedling penetrates towards the soil surface, plays such protective role and shields the vitally important shoot apical meristem and cotyledons from damage. The apical hook is formed by bending of the upper hypocotyl soon after germination, and it is maintained in a closed stage while the hypocotyl continues to penetrate through the soil and rapidly opens when exposed to light in proximity of the soil surface. To uncover the complex molecular network orchestrating this spatiotemporally tightly coordinated process, monitoring of the apical hook development in real time is indispensable. Here we describe an imaging platform that enables high-resolution kinetic analysis of this dynamic developmental process. © Springer Science+Business Media New York 2017.}, author = {Zhu, Qiang and Žádníková, Petra and Smet, Dajo and Van Der Straeten, Dominique and Benková, Eva}, booktitle = {Plant Hormones}, pages = {1 -- 8}, publisher = {Humana Press}, title = {{Real time analysis of the apical hook development}}, doi = {10.1007/978-1-4939-6469-7_1}, volume = {1497}, year = {2016}, } @article{1258, abstract = {When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC). DRA2, together with other nucleoporins, participates positively in the control of the hypocotyl elongation response to plant proximity, a role that can be considered dependent on the nucleocytoplasmic transport of macromolecules (i.e. is transport dependent). In addition, our results reveal a specific role for DRA2 in controlling shade-induced gene expression. We suggest that this novel regulatory role of DRA2 is transport independent and that it might rely on its dynamic localization within and outside of the NPC. These results provide mechanistic insights in to how SAS responses are rapidly established by light conditions. They also indicate that nucleoporins have an active role in plant signaling.}, author = {Gallemi Rovira, Marcal and Galstyan, Anahit and Paulišić, Sandi and Then, Christiane and Ferrández Ayela, Almudena and Lorenzo Orts, Laura and Roig Villanova, Irma and Wang, Xuewen and Micol, José and Ponce, Maria and Devlin, Paul and Martínez García, Jaime}, journal = {Development}, number = {9}, pages = {1623 -- 1631}, publisher = {Company of Biologists}, title = {{DRACULA2 is a dynamic nucleoporin with a role in regulating the shade avoidance syndrome in Arabidopsis}}, doi = {10.1242/dev.130211}, volume = {143}, year = {2016}, } @article{1264, abstract = {n contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a μA (μ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a μD (μ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of μA (μ2)- and μD (μ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively.}, author = {Sancho Andrés, Gloria and Soriano Ortega, Esther and Gao, Caiji and Bernabé Orts, Joan and Narasimhan, Madhumitha and Müller, Anna and Tejos, Ricardo and Jiang, Liwen and Friml, Jirí and Aniento, Fernando and Marcote, Maria}, journal = {Plant Physiology}, number = {3}, pages = {1965 -- 1982}, publisher = {American Society of Plant Biologists}, title = {{Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier}}, doi = {10.1104/pp.16.00373}, volume = {171}, year = {2016}, } @article{1265, abstract = {Extracellular matrices (ECMs) are central to the advent of multicellular life, and their mechanical propertiesare modulated by and impinge on intracellular signaling pathways that regulate vital cellular functions. High spatial-resolution mapping of mechanical properties in live cells is, however, extremely challenging. Thus, our understanding of how signaling pathways process physiological signals to generate appropriate mechanical responses is limited. We introduce fluorescence emission-Brillouin scattering imaging (FBi), a method for the parallel and all-optical measurements of mechanical properties and fluorescence at the submicrometer scale in living organisms. Using FBi, we showed thatchanges in cellular hydrostatic pressure and cytoplasm viscoelasticity modulate the mechanical signatures of plant ECMs. We further established that the measured "stiffness" of plant ECMs is symmetrically patternedin hypocotyl cells undergoing directional growth. Finally, application of this method to Arabidopsis thaliana with photoreceptor mutants revealed that red and far-red light signals are essential modulators of ECM viscoelasticity. By mapping the viscoelastic signatures of a complex ECM, we provide proof of principlefor the organism-wide applicability of FBi for measuring the mechanical outputs of intracellular signaling pathways. As such, our work has implications for investigations of mechanosignaling pathways and developmental biology.}, author = {Elsayad, Kareem and Werner, Stephanie and Gallemi Rovira, Marcal and Kong, Jixiang and Guajardo, Edmundo and Zhang, Lijuan and Jaillais, Yvon and Greb, Thomas and Belkhadir, Youssef}, journal = {Science Signaling}, number = {435}, publisher = {American Association for the Advancement of Science}, title = {{Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging}}, doi = {10.1126/scisignal.aaf6326}, volume = {9}, year = {2016}, }