@article{14979, abstract = {Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.}, author = {Datler, Julia and Hansen, Jesse and Thader, Andreas and Schlögl, Alois and Bauer, Lukas W and Hodirnau, Victor-Valentin and Schur, Florian KM}, issn = {1545-9985}, journal = {Nature Structural & Molecular Biology}, keywords = {Molecular Biology, Structural Biology}, publisher = {Springer Nature}, title = {{Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores}}, doi = {10.1038/s41594-023-01201-6}, year = {2024}, } @article{14846, abstract = {Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole—a protuberance of the zygote’s vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces.}, author = {Caballero Mancebo, Silvia and Shinde, Rushikesh and Bolger-Munro, Madison and Peruzzo, Matilda and Szep, Gregory and Steccari, Irene and Labrousse Arias, David and Zheden, Vanessa and Merrin, Jack and Callan-Jones, Andrew and Voituriez, Raphaël and Heisenberg, Carl-Philipp J}, issn = {1745-2481}, journal = {Nature Physics}, publisher = {Springer Nature}, title = {{Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization}}, doi = {10.1038/s41567-023-02302-1}, year = {2024}, } @article{14843, abstract = {The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.}, author = {Chen, JingJing and Kaufmann, Walter and Chen, Chong and Arai, Itaru and Kim, Olena and Shigemoto, Ryuichi and Jonas, Peter M}, issn = {1097-4199}, journal = {Neuron}, publisher = {Elsevier}, title = {{Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse}}, doi = {10.1016/j.neuron.2023.12.002}, year = {2024}, } @article{15146, abstract = {The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.}, author = {Zens, Bettina and Fäßler, Florian and Hansen, Jesse and Hauschild, Robert and Datler, Julia and Hodirnau, Victor-Valentin and Zheden, Vanessa and Alanko, Jonna H and Sixt, Michael K and Schur, Florian KM}, issn = {1540-8140}, journal = {Journal of Cell Biology}, number = {6}, publisher = {Rockefeller University Press}, title = {{Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix}}, doi = {10.1083/jcb.202309125}, volume = {223}, year = {2024}, } @inproceedings{13161, author = {Schlögl, Alois and Elefante, Stefano and Hodirnau, Victor-Valentin}, booktitle = {ASHPC23 - Austrian-Slovenian HPC Meeting 2023}, location = {Maribor, Slovenia}, pages = {59--59}, publisher = {EuroCC}, title = {{Running Windows-applications on a Linux HPC cluster using WINE}}, year = {2023}, } @article{12334, abstract = {Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.}, author = {Fäßler, Florian and Javoor, Manjunath and Datler, Julia and Döring, Hermann and Hofer, Florian and Dimchev, Georgi A and Hodirnau, Victor-Valentin and Faix, Jan and Rottner, Klemens and Schur, Florian KM}, issn = {2375-2548}, journal = {Science Advances}, keywords = {Multidisciplinary}, number = {3}, publisher = {American Association for the Advancement of Science}, title = {{ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning}}, doi = {10.1126/sciadv.add6495}, volume = {9}, year = {2023}, } @article{9794, abstract = {Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.}, author = {Assen, Frank P and Abe, Jun and Hons, Miroslav and Hauschild, Robert and Shamipour, Shayan and Kaufmann, Walter and Costanzo, Tommaso and Krens, Gabriel and Brown, Markus and Ludewig, Burkhard and Hippenmeyer, Simon and Heisenberg, Carl-Philipp J and Weninger, Wolfgang and Hannezo, Edouard B and Luther, Sanjiv A. and Stein, Jens V. and Sixt, Michael K}, issn = {1529-2916}, journal = {Nature Immunology}, pages = {1246--1255}, publisher = {Springer Nature}, title = {{Multitier mechanics control stromal adaptations in swelling lymph nodes}}, doi = {10.1038/s41590-022-01257-4}, volume = {23}, year = {2022}, } @article{10766, abstract = {Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact.}, author = {Slovakova, Jana and Sikora, Mateusz K and Arslan, Feyza N and Caballero Mancebo, Silvia and Krens, Gabriel and Kaufmann, Walter and Merrin, Jack and Heisenberg, Carl-Philipp J}, issn = {10916490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {8}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells}}, doi = {10.1073/pnas.2122030119}, volume = {119}, year = {2022}, } @article{10841, abstract = {In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.}, author = {Dahhan, DA and Reynolds, GD and Cárdenas, JJ and Eeckhout, D and Johnson, Alexander J and Yperman, K and Kaufmann, Walter and Vang, N and Yan, X and Hwang, I and Heese, A and De Jaeger, G and Friml, Jiří and Van Damme, D and Pan, J and Bednarek, SY}, issn = {1532-298x}, journal = {Plant Cell}, number = {6}, pages = {2150--2173}, publisher = {Oxford Academic}, title = {{Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components}}, doi = {10.1093/plcell/koac071}, volume = {34}, year = {2022}, } @article{11705, abstract = {The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles’ surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300–873 K, which is among the highest reported for solution-processed SnTe.}, author = {Chang, Cheng and Liu, Yu and Lee, Seungho and Spadaro, Maria and Koskela, Kristopher M. and Kleinhanns, Tobias and Costanzo, Tommaso and Arbiol, Jordi and Brutchey, Richard L. and Ibáñez, Maria}, issn = {1521-3773}, journal = {Angewandte Chemie - International Edition}, number = {35}, publisher = {Wiley}, title = {{Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance}}, doi = {10.1002/anie.202207002}, volume = {61}, year = {2022}, }