TY - JOUR AB - Early endosomes, also called sorting endosomes, are known to mature into late endosomesvia the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence isthought to be maintained by the continual fusion of transport vesicles from the plasmamembrane and thetrans-Golgi network (TGN). Here we show instead that endocytosis isdispensable and post-Golgi vesicle transport is crucial for the formation of endosomes andthe subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all threeproteins required for endosomal nucleotide exchange on Vps21p arefirst recruited to theTGN before transport to the endosome, namely the GEF Vps9p and the epsin-relatedadaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, withVps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These resultsprovide a different view of endosome formation and identify the TGN as a critical location forregulating progress through the endolysosomal trafficking pathway. AU - Nagano, Makoto AU - Toshima, Junko Y. AU - Siekhaus, Daria E AU - Toshima, Jiro ID - 7097 IS - 1 JF - Communications Biology SN - 2399-3642 TI - Rab5-mediated endosome formation is regulated at the trans-Golgi network VL - 2 ER - TY - JOUR AB - Arabidopsis PIN2 protein directs transport of the phytohormone auxin from the root tip into the root elongation zone. Variation in hormone transport, which depends on a delicate interplay between PIN2 sorting to and from polar plasma membrane domains, determines root growth. By employing a constitutively degraded version of PIN2, we identify brassinolides as antagonists of PIN2 endocytosis. This response does not require de novo protein synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no prerequisite for root bending but rather dampens asymmetric auxin flow and signaling. Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential for determining the rate of gravity-induced root curvature via attenuation of differential cell elongation. AU - Retzer, Katarzyna AU - Akhmanova, Maria AU - Konstantinova, Nataliia AU - Malínská, Kateřina AU - Leitner, Johannes AU - Petrášek, Jan AU - Luschnig, Christian ID - 7180 JF - Nature Communications TI - Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter VL - 10 ER - TY - JOUR AB - Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside the nervous system (hemocytes) require the same transcription factor Glide/Gcm for their development. This raises the issue of how do glia specifically differentiate in the nervous system and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and pan-glial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENTDistinct cell types often require the same pioneer transcription factor, raising the issue of how does one factor trigger different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the Glide/Gcm transcription factor, glia originate from the ectoderm, hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification. AU - Trébuchet, Guillaume AU - Cattenoz, Pierre B AU - Zsámboki, János AU - Mazaud, David AU - Siekhaus, Daria E AU - Fanto, Manolis AU - Giangrande, Angela ID - 8 IS - 2 JF - Journal of Neuroscience TI - The Repo homeodomain transcription factor suppresses hematopoiesis in Drosophila and preserves the glial fate VL - 39 ER - TY - JOUR AB - Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis. AU - Valosková, Katarina AU - Biebl, Julia AU - Roblek, Marko AU - Emtenani, Shamsi AU - György, Attila AU - Misova, Michaela AU - Ratheesh, Aparna AU - Rodrigues, Patricia AU - Shkarina, Katerina AU - Larsen, Ida Signe Bohse AU - Vakhrushev, Sergey Y AU - Clausen, Henrik AU - Siekhaus, Daria E ID - 6187 JF - eLife SN - 2050-084X TI - A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion VL - 8 ER - TY - THES AB - Invasive migration plays a crucial role not only during development and homeostasis but also in pathological states, such as tumor metastasis. Drosophila macrophage migration into the extended germband is an interesting system to study invasive migration. It carries similarities to immune cell transmigration and cancer cell invasion, therefore studying this process could also bring new understanding of invasion in higher organisms. In our work, we uncover a highly conserved member of the major facilitator family that plays a role in tissue invasion through regulation of glycosylation on a subgroup of proteins and/or by aiding the precise timing of DN-Cadherin downregulation. Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis. AU - Valosková, Katarina ID - 6546 SN - 2663-337X TI - The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration ER - TY - JOUR AB - Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. AU - Ratheesh, Aparna AU - Biebl, Julia AU - Smutny, Michael AU - Veselá, Jana AU - Papusheva, Ekaterina AU - Krens, Gabriel AU - Kaufmann, Walter AU - György, Attila AU - Casano, Alessandra M AU - Siekhaus, Daria E ID - 308 IS - 3 JF - Developmental Cell TI - Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration VL - 45 ER - TY - JOUR AB - Clathrin-mediated endocytosis requires the coordinated assembly of various endocytic proteins and lipids at the plasma membrane. Accumulating evidence demonstrates a crucial role for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) in endocytosis, but specific roles for PtdIns(4)P other than as the biosynthetic precursor of PtdIns(4,5)P2 have not been clarified. In this study we investigated the role of PtdIns(4)P or PtdIns(4,5)P2 in receptor-mediated endocytosis through the construction of temperature-sensitive (ts) mutants for the PI 4-kinases Stt4p and Pik1p and the PtdIns(4) 5-kinase Mss4p. Quantitative analyses of endocytosis revealed that both the stt4(ts)pik1(ts) and mss4(ts) mutants have a severe defect in endocytic internalization. Live-cell imaging of endocytic protein dynamics in stt4(ts)pik1(ts) and mss4(ts) mutants revealed that PtdIns(4)P is required for the recruitment of the alpha-factor receptor Ste2p to clathrin-coated pits whereas PtdIns(4,5)P2 is required for membrane internalization. We also found that the localization to endocytic sites of the ENTH/ANTH domain-bearing clathrin adaptors, Ent1p/Ent2p and Yap1801p/Yap1802p, is significantly impaired in the stt4(ts)pik1(ts) mutant, but not in the mss4(ts) mutant. These results suggest distinct roles in successive steps for PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis. AU - Yamamoto, Wataru AU - Wada, Suguru AU - Nagano, Makoto AU - Aoshima, Kaito AU - Siekhaus, Daria E AU - Toshima, Junko AU - Toshima, Jiro ID - 620 IS - 1 JF - Journal of Cell Science TI - Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis VL - 131 ER - TY - JOUR AB - The phytohormone auxin is the information carrier in a plethora of developmental and physiological processes in plants(1). It has been firmly established that canonical, nuclear auxin signalling acts through regulation of gene transcription(2). Here, we combined microfluidics, live imaging, genetic engineering and computational modelling to reanalyse the classical case of root growth inhibition(3) by auxin. We show that Arabidopsis roots react to addition and removal of auxin by extremely rapid adaptation of growth rate. This process requires intracellular auxin perception but not transcriptional reprogramming. The formation of the canonical TIR1/AFB-Aux/IAA co-receptor complex is required for the growth regulation, hinting to a novel, non-transcriptional branch of this signalling pathway. Our results challenge the current understanding of root growth regulation by auxin and suggest another, presumably non-transcriptional, signalling output of the canonical auxin pathway. AU - Fendrych, Matyas AU - Akhmanova, Maria AU - Merrin, Jack AU - Glanc, Matous AU - Hagihara, Shinya AU - Takahashi, Koji AU - Uchida, Naoyuki AU - Torii, Keiko U AU - Friml, Jirí ID - 192 IS - 7 JF - Nature Plants TI - Rapid and reversible root growth inhibition by TIR1 auxin signalling VL - 4 ER - TY - JOUR AB - The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport inplanta. AU - Hille, Sander AU - Akhmanova, Maria AU - Glanc, Matous AU - Johnson, Alexander J AU - Friml, Jirí ID - 14 IS - 11 JF - International Journal of Molecular Sciences TI - Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation VL - 19 ER - TY - THES AB - Immune cells migrating to the sites of infection navigate through diverse tissue architectures and switch their migratory mechanisms upon demand. However, little is known about systemic regulators that could allow the acquisition of these mechanisms. We performed a genetic screen in Drosophila melanogaster to identify regulators of germband invasion by embryonic macrophages into the confined space between the ectoderm and mesoderm. We have found that bZIP circadian transcription factors (TFs) Kayak (dFos) and Vrille (dNFIL3) have opposite effects on macrophage germband infiltration: Kayak facilitated and Vrille inhibited it. These TFs are enriched in the macrophages during migration and genetically interact to control it. Kayak sets a less coordinated mode of migration of the macrophage group and increases the probability and length of Levy walks. Intriguingly, the motility of kayak mutant macrophages was also strongly affected during initial germband invasion but not along another less confined route. Inhibiting Rho1 signaling within the tail ectoderm partially rescued the Kayak mutant phenotype, strongly suggesting that migrating macrophages have to overcome a barrier imposed by the stiffness of the ectoderm. Also, Kayak appeared to be important for the maintenance of the round cell shape and the rear edge translocation of the macrophages invading the germband. Complementary to this, the cortical actin cytoskeleton of Kayak- deficient macrophages was strongly affected. RNA sequencing revealed the filamin Cheerio and tetraspanin TM4SF to be downstream of Kayak. Chromatin immunoprecipitation and immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Indeed, Cheerio, TM4SF and Diaphanous are required within macrophages for germband invasion, and expression of constitutively active Diaphanous in macrophages was able to rescue the kayak mutant phenotype. Moreover, Cher and Diaphanous are also reduced in the macrophages overexpressing Vrille. We hypothesize that Kayak, through its targets, increases actin polymerization and cortical tension in macrophages and thus allows extra force generation necessary for macrophage dissemination and migration through confined stiff tissues, while Vrille counterbalances it. AU - Belyaeva, Vera ID - 9 SN - 2663-337X TI - Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ER - TY - JOUR AB - Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid in fully understanding these processes, but are lacking. Here we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, cytoplasm or actin cytoskeleton from embryonic Stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae and adults. They permit efficient GAL4-independent FACS analysis/sorting of plasmatocytes throughout life. To facilitate genetic analysis of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that in combination with extant GAL4 drivers allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and a GAL80 line that blocks GAL4 drivers from affecting plasmatocytes, both of which function from the early embryo to the adult. AU - György, Attila AU - Roblek, Marko AU - Ratheesh, Aparna AU - Valosková, Katarina AU - Belyaeva, Vera AU - Wachner, Stephanie AU - Matsubayashi, Yutaka AU - Sanchez Sanchez, Besaiz AU - Stramer, Brian AU - Siekhaus, Daria E ID - 544 IS - 3 JF - G3: Genes, Genomes, Genetics TI - Tools allowing independent visualization and genetic manipulation of Drosophila melanogaster macrophages and surrounding tissues VL - 8 ER - TY - JOUR AB - The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components. AU - Matsubayashi, Yutaka AU - Louani, Adam AU - Dragu, Anca AU - Sanchez Sanchez, Besaiz AU - Serna Morales, Eduardo AU - Yolland, Lawrence AU - György, Attila AU - Vizcay, Gema AU - Fleck, Roland AU - Heddleston, John AU - Chew, Teng AU - Siekhaus, Daria E AU - Stramer, Brian ID - 751 IS - 22 JF - Current Biology SN - 09609822 TI - A moving source of matrix components is essential for De Novo basement membrane formation VL - 27 ER - TY - JOUR AB - The dynamic assembly and disassembly of actin filaments is essential for the formation and transport of vesicles during endocytosis. In yeast, two types of actin structures, namely cortical patches and cytoplasmic cables, play a direct role in endocytosis, but how their interaction is regulated remains unclear. Here, we show that Srv2/CAP, an evolutionarily conserved actin regulator, is required for efficient endocytosis owing to its role in the formation of the actin patches that aid initial vesicle invagination and of the actin cables that these move along. Deletion of the SRV2 gene resulted in the appearance of aberrant fragmented actin cables that frequently moved past actin patches, the sites of endocytosis. We find that the C-terminal CARP domain of Srv2p is vitally important for the proper assembly of actin patches and cables; we also demonstrate that the N-terminal helical folded domain of Srv2 is required for its localization to actin patches, specifically to the ADP-actin rich region through an interaction with cofilin. These results demonstrate the in vivo roles of Srv2p in the regulation of the actin cytoskeleton during clathrin-mediated endocytosis AU - Toshima, Junko AU - Horikomi, Chika AU - Okada, Asuka AU - Hatori, Makiko AU - Nagano, Makoto AU - Masuda, Atsushi AU - Yamamoto, Wataru AU - Siekhaus, Daria E AU - Toshima, Jiro ID - 1476 IS - 2 JF - Journal of Cell Science TI - Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis VL - 129 ER - TY - JOUR AB - The actin cytoskeleton plays important roles in the formation and internalization of endocytic vesicles. In yeast, endocytic vesicles move towards early endosomes along actin cables, however, the molecular machinery regulating interaction between endocytic vesicles and actin cables is poorly understood. The Eps15-like protein Pan1p plays a key role in actin-mediated endocytosis and is negatively regulated by Ark1 and Prk1 kinases. Here we show that pan1 mutated to prevent phosphorylation at all 18 threonines, pan1-18TA, displayed almost the same endocytic defect as ark1Δ prk1Δ cells, and contained abnormal actin concentrations including several endocytic compartments. Early endosomes were highly localized in the actin concentrations and displayed movement along actin cables. The dephosphorylated form of Pan1p also caused stable associations between endocytic vesicles and actin cables, and between endocytic vesicles and endosomes. Thus Pan1 phosphorylation is part of a novel mechanism that regulates endocytic compartment interactions with each other and with actin cables. AU - Toshima, Junko AU - Furuya, Eri AU - Nagano, Makoto AU - Kanno, Chisa AU - Sakamoto, Yuta AU - Ebihara, Masashi AU - Siekhaus, Daria E AU - Toshima, Jiro ID - 1475 IS - February 2016 JF - eLife TI - Yeast Eps15-like endocytic protein Pan1p regulates the interaction between endocytic vesicles, endosomes and the actin cytoskeleton VL - 5 ER - TY - JOUR AB - The majority of immune cells in Drosophila melanogaster are plasmatocytes; they carry out similar functions to vertebrate macrophages, influencing development as well as protecting against infection and cancer. Plasmatocytes, sometimes referred to with the broader term of hemocytes, migrate widely during embryonic development and cycle in the larvae between sessile and circulating positions. Here we discuss the similarities of plasmatocyte developmental migration and its functions to that of vertebrate macrophages, considering the recent controversy regarding the functions of Drosophila PDGF/VEGF related ligands. We also examine recent findings on the significance of adhesion for plasmatocyte migration in the embryo, as well as proliferation, trans-differentiation, and tumor responses in the larva. We spotlight parallels throughout to vertebrate immune responses. AU - Ratheesh, Aparna AU - Belyaeva, Vera AU - Siekhaus, Daria E ID - 1712 IS - 10 JF - Current Opinion in Cell Biology TI - Drosophila immune cell migration and adhesion during embryonic development and larval immune responses VL - 36 ER - TY - JOUR AB - Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. Among them, the Rab, Arf, and Rho families function in successive steps of vesicle transport, in forming vesicles from donor membranes, directing vesicle trafficking toward target membranes and docking vesicles onto target membranes. These proteins act as molecular switches that are controlled by a cycle of GTP binding and hydrolysis regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this study we explored the role of GAPs in the regulation of the endocytic pathway using fluorescently labeled yeast mating pheromone α-factor. Among 25 non-essential GAP mutants, we found that deletion of the GLO3 gene, encoding Arf-GAP protein, caused defective internalization of fluorescently labeled α-factor. Quantitative analysis revealed that glo3Δ cells show defective α-factor binding to the cell surface. Interestingly, Ste2p, the α-factor receptor, was mis-localized from the plasma membrane to the vacuole in glo3Δ cells. Domain deletion mutants of Glo3p revealed that a GAP-independent function, as well as the GAP activity, of Glo3p is important for both α-factor binding and Ste2p localization at the cell surface. Additionally, we found that deletion of the GLO3 gene affects the size and number of Arf1p-residing Golgi compartments and causes a defect in transport from the TGN to the plasma membrane. Furthermore, we demonstrated that glo3Δ cells were defective in the late endosome-to-TGN transport pathway, but not in the early endosome-to-TGN transport pathway. These findings suggest novel roles for Arf-GAP Glo3p in endocytic recycling of cell surface proteins. AU - Kawada, Daiki AU - Kobayashi, Hiromu AU - Tomita, Tsuyoshi AU - Nakata, Eisuke AU - Nagano, Makoto AU - Siekhaus, Daria E AU - Toshima, Junko AU - Toshimaa, Jiro ID - 2025 IS - 1 JF - Biochimica et Biophysica Acta - Molecular Cell Research TI - The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins VL - 1853 ER - TY - JOUR AB - The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway. AU - Toshima, Junko AU - Nishinoaki, Show AU - Sato, Yoshifumi AU - Yamamoto, Wataru AU - Furukawa, Daiki AU - Siekhaus, Daria E AU - Sawaguchi, Akira AU - Toshima, Jiro ID - 2024 JF - Nature Communications TI - Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole VL - 5 ER -