Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




68 Publications

2021 | Journal Article | IST-REx-ID: 9541 | OA
Graph sparsification for derandomizing massively parallel computation with low space
A. Czumaj, P. Davies, M. Parter, ACM Transactions on Algorithms 17 (2021).
View | Files available | DOI | Download Submitted Version (ext.) | arXiv
 
2021 | Journal Article | IST-REx-ID: 9571 | OA
NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization
A. Ramezani-Kebrya, F. Faghri, I. Markov, V. Aksenov, D.-A. Alistarh, D.M. Roy, Journal of Machine Learning Research 22 (2021) 1−43.
View | Files available | arXiv
 
2021 | Conference Paper | IST-REx-ID: 9678 | OA
Efficient load-balancing through distributed token dropping
S. Brandt, B. Keller, J. Rybicki, J. Suomela, J. Uitto, in:, Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2021, pp. 129–139.
View | DOI | Download Preprint (ext.) | arXiv
 
2021 | Conference Paper | IST-REx-ID: 9620 | OA
Collecting coupons is faster with friends
D.-A. Alistarh, P. Davies, in:, Structural Information and Communication Complexity, Springer Nature, 2021, pp. 3–12.
View | Files available | DOI
 
2021 | Conference Paper | IST-REx-ID: 9543 | OA
New bounds for distributed mean estimation and variance reduction
P. Davies, V. Gurunanthan, N. Moshrefi, S. Ashkboos, D.-A. Alistarh, in:, 9th International Conference on Learning Representations, 2021.
View | Download Published Version (ext.) | arXiv
 
2021 | Journal Article | IST-REx-ID: 9827
Concurrent linearizable nearest neighbour search in LockFree-kD-tree
B. Chatterjee, I. Walulya, P. Tsigas, Theoretical Computer Science (n.d.).
View | DOI | Download None (ext.)
 
2021 | Conference Paper | IST-REx-ID: 9823 | OA
Wait-free approximate agreement on graphs
D.-A. Alistarh, F. Ellen, J. Rybicki, in:, Structural Information and Communication Complexity, Springer Nature, 2021, pp. 87–105.
View | DOI | Download Preprint (ext.) | arXiv
 
2021 | Journal Article | IST-REx-ID: 8723 | OA
Breaking (global) barriers in parallel stochastic optimization with wait-avoiding group averaging
S. Li, T.B.-N. Tal Ben-Nun, G. Nadiradze, S.D. Girolamo, N. Dryden, D.-A. Alistarh, T. Hoefler, IEEE Transactions on Parallel and Distributed Systems 32 (2021).
View | DOI | Download Preprint (ext.) | arXiv
 
2021 | Conference Paper | IST-REx-ID: 9933 | OA
Component stability in low-space massively parallel computation
A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 481–491.
View | DOI | Download Submitted Version (ext.) | arXiv
 
2021 | Conference Paper | IST-REx-ID: 9935 | OA
Improved deterministic (Δ+1) coloring in low-space MPC
A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 469–479.
View | DOI | Download Submitted Version (ext.)
 
2021 | Conference Paper | IST-REx-ID: 9951
Comparison dynamics in population protocols
D.-A. Alistarh, M. Töpfer, P. Uznański, in:, Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 55–65.
View | DOI
 
2020 | Conference Paper | IST-REx-ID: 8191
Memory tagging: Minimalist synchronization for scalable concurrent data structures
D.-A. Alistarh, T.A. Brown, N. Singhal, in:, Annual ACM Symposium on Parallelism in Algorithms and Architectures, ACM, 2020, pp. 37–49.
View | DOI
 
2020 | Journal Article | IST-REx-ID: 8268 | OA
Compressive sensing using iterative hard thresholding with low precision data representation: Theory and applications
N.M. Gurel, K. Kara, A. Stojanov, T. Smith, T. Lemmin, D.-A. Alistarh, M. Puschel, C. Zhang, IEEE Transactions on Signal Processing 68 (2020) 4268–4282.
View | DOI | Download Preprint (ext.) | arXiv
 
2020 | Conference Paper | IST-REx-ID: 8286 | OA
Dynamic averaging load balancing on cycles
D.-A. Alistarh, G. Nadiradze, A. Sabour, in:, 47th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
View | Files available | DOI | arXiv
 
2020 | Conference Paper | IST-REx-ID: 8383
Brief Announcement: Why Extension-Based Proofs Fail
D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, in:, Proceedings of the 39th Symposium on Principles of Distributed Computing, ACM, 2020, pp. 54–56.
View | DOI
 
2020 | Conference Paper | IST-REx-ID: 8722 | OA
Taming unbalanced training workloads in deep learning with partial collective operations
S. Li, T.B.-N. Tal Ben-Nun, S.D. Girolamo, D.-A. Alistarh, T. Hoefler, in:, Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2020, pp. 45–61.
View | DOI | Download Preprint (ext.) | arXiv
 
2020 | Journal Article | IST-REx-ID: 7224 | OA
Habitat fragmentation and species diversity in competitive communities
J. Rybicki, N. Abrego, O. Ovaskainen, Ecology Letters 23 (2020) 506–517.
View | Files available | DOI
 
2020 | Conference Paper | IST-REx-ID: 7272 | OA
Getting to the root of concurrent binary search tree performance
M. Arbel-Raviv, T.A. Brown, A. Morrison, in:, Proceedings of the 2018 USENIX Annual Technical Conference, USENIX Association, 2020, pp. 295–306.
View | Download Published Version (ext.)
 
2020 | Conference Paper | IST-REx-ID: 7605 | OA
In search of the fastest concurrent union-find algorithm
D.-A. Alistarh, A. Fedorov, N. Koval, in:, 23rd International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 15:1-15:16.
View | Files available | DOI | arXiv
 
2020 | Conference Paper | IST-REx-ID: 7635
Testing concurrency on the JVM with Lincheck
N. Koval, M. Sokolova, A. Fedorov, D.-A. Alistarh, D. Tsitelov, in:, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP, ACM, 2020, pp. 423–424.
View | DOI
 
2020 | Conference Paper | IST-REx-ID: 7636
Non-blocking interpolation search trees with doubly-logarithmic running time
T.A. Brown, A. Prokopec, D.-A. Alistarh, in:, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, 2020, pp. 276–291.
View | DOI
 
2020 | Conference Paper | IST-REx-ID: 7803 | OA
Simple, deterministic, constant-round coloring in the congested clique
A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 309–318.
View | Files available | DOI | arXiv
 
2020 | Journal Article | IST-REx-ID: 7939 | OA
Fast approximate shortest paths in the congested clique
K. Censor-Hillel, M. Dory, J. Korhonen, D. Leitersdorf, Distributed Computing (2020).
View | Files available | DOI | Download Published Version (ext.) | arXiv
 
2020 | Conference Paper | IST-REx-ID: 8725 | OA
The splay-list: A distribution-adaptive concurrent skip-list
V. Aksenov, D.-A. Alistarh, A. Drozdova, A. Mohtashami, in:, 34th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18.
View | Files available | DOI | arXiv
 
2020 | Conference Paper | IST-REx-ID: 8724 | OA
On the sample complexity of adversarial multi-source PAC learning
N.H. Konstantinov, E. Frantar, D.-A. Alistarh, C. Lampert, in:, Proceedings of the 37th International Conference on Machine Learning, ML Research Press, 2020, pp. 5416–5425.
View | Files available | arXiv
 
2020 | Conference Paper | IST-REx-ID: 9415 | OA
Inducing and exploiting activation sparsity for fast neural network inference
M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin, W. Leiserson, S. Moore, B. Nell, N. Shavit, D.-A. Alistarh, in:, 37th International Conference on Machine Learning, ICML 2020, 2020, pp. 5533–5543.
View | Files available
 
2020 | Conference Paper | IST-REx-ID: 7802 | OA
Graph sparsification for derandomizing massively parallel computation with low space
A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020), Association for Computing Machinery, 2020, pp. 175–185.
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2020 | Conference Paper | IST-REx-ID: 9632 | OA
WoodFisher: Efficient second-order approximation for neural network compression
S.P. Singh, D.-A. Alistarh, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 18098–18109.
View | Download Published Version (ext.) | arXiv
 
2020 | Conference Paper | IST-REx-ID: 9631 | OA
Scalable belief propagation via relaxed scheduling
V. Aksenov, D.-A. Alistarh, J. Korhonen, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 22361–22372.
View | Download Published Version (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 7201 | OA
SparCML: High-performance sparse communication for machine learning
C. Renggli, S. Ashkboos, M. Aghagolzadeh, D.-A. Alistarh, T. Hoefler, in:, International Conference for High Performance Computing, Networking, Storage and Analysis, SC, ACM, 2019.
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 7213 | OA
A persistent homology perspective to the link prediction problem
S. Bhatia, B. Chatterjee, D. Nathani, M. Kaul, in:, Complex Networks and Their Applications VIII, Springer Nature, 2019, pp. 27–39.
View | Files available | DOI
 
2019 | Journal Article | IST-REx-ID: 7214 | OA
Recovering rearranged cancer chromosomes from karyotype graphs
S. Aganezov, I. Zban, V. Aksenov, N. Alexeev, M.C. Schatz, BMC Bioinformatics 20 (2019).
View | Files available | DOI
 
2019 | Conference Paper | IST-REx-ID: 7228
Scalable FIFO channels for programming via communicating sequential processes
N. Koval, D.-A. Alistarh, R. Elizarov, in:, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Nature, 2019, pp. 317–333.
View | DOI
 
2019 | Conference Paper | IST-REx-ID: 7437 | OA
Distributed learning over unreliable networks
C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D.-A. Alistarh, C. Zhang, J. Liu, in:, 36th International Conference on Machine Learning, ICML 2019, IMLS, 2019, pp. 12481–12512.
View | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 7542 | OA
Powerset convolutional neural networks
C. Wendler, D.-A. Alistarh, M. Püschel, in:, Neural Information Processing Systems Foundation, 2019, pp. 927–938.
View | Download Published Version (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 5947 | OA
A simple and practical concurrent non-blocking unbounded graph with linearizable reachability queries
B. Chatterjee, S. Peri, M. Sa, N. Singhal, in:, ACM International Conference Proceeding Series, ACM, 2019, pp. 168–177.
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Conference Poster | IST-REx-ID: 6485
Lock-free channels for programming via communicating sequential processes
N. Koval, D.-A. Alistarh, R. Elizarov, Lock-Free Channels for Programming via Communicating Sequential Processes, ACM Press, 2019.
View | DOI
 
2019 | Conference Paper | IST-REx-ID: 6673 | OA
Efficiency guarantees for parallel incremental algorithms under relaxed schedulers
D.-A. Alistarh, G. Nadiradze, N. Koval, in:, 31st ACM Symposium on Parallelism in Algorithms and Architectures, ACM Press, 2019, pp. 145–154.
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6676 | OA
Why extension-based proofs fail
D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, in:, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM Press, 2019, pp. 986–996.
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Journal Article | IST-REx-ID: 6759 | OA
On grounded L-graphs and their relatives
V. Jelínek, M. Töpfer, Electronic Journal of Combinatorics 26 (2019).
View | Files available | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6931 | OA
Byzantine approximate agreement on graphs
T. Nowak, J. Rybicki, in:, 33rd International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 29:1--29:17.
View | Files available | DOI | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6933 | OA
Fast approximate shortest paths in the congested clique
K. Censor-Hillel, M. Dory, J. Korhonen, D. Leitersdorf, in:, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, ACM, 2019, pp. 74–83.
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6935 | OA
Does preprocessing help under congestion?
K.-T. Foerster, J. Korhonen, J. Rybicki, S. Schmid, in:, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, ACM, 2019, pp. 259–261.
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Journal Article | IST-REx-ID: 6936 | OA
What can observational data reveal about metacommunity processes?
O. Ovaskainen, J. Rybicki, N. Abrego, Ecography 42 (2019) 1877–1886.
View | Files available | DOI
 
2019 | Journal Article | IST-REx-ID: 6972 | OA
Self-stabilising Byzantine clock synchronisation is almost as easy as consensus
C. Lenzen, J. Rybicki, Journal of the ACM 66 (2019).
View | Files available | DOI | arXiv
 
2019 | Conference Paper | IST-REx-ID: 7122
Gradient compression for communication-limited convex optimization
S. Khirirat, M. Johansson, D.-A. Alistarh, in:, 2018 IEEE Conference on Decision and Control, IEEE, 2019.
View | DOI
 
2018 | Conference Paper | IST-REx-ID: 85 | OA
Snapshot based synchronization: A fast replacement for Hand-over-Hand locking
E. Gilad, T.A. Brown, M. Oskin, Y. Etsion, in:, Springer, 2018, pp. 465–479.
View | Files available | DOI
 
2018 | Journal Article | IST-REx-ID: 76 | OA
Near-optimal self-stabilising counting and firing squads
C. Lenzen, J. Rybicki, Distributed Computing (2018).
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 7812 | OA
Model compression via distillation and quantization
A. Polino, R. Pascanu, D.-A. Alistarh, in:, 6th International Conference on Learning Representations, 2018.
View | Files available | arXiv
 
2018 | Journal Article | IST-REx-ID: 536 | OA
Communication-efficient randomized consensus
D.-A. Alistarh, J. Aspnes, V. King, J. Saia, Distributed Computing 31 (2018) 489–501.
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 5961
A brief tutorial on distributed and concurrent machine learning
D.-A. Alistarh, in:, Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18, ACM Press, 2018, pp. 487–488.
View | DOI
 
2018 | Conference Paper | IST-REx-ID: 5962 | OA
The convergence of stochastic gradient descent in asynchronous shared memory
D.-A. Alistarh, C. De Sa, N.H. Konstantinov, in:, Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18, ACM Press, 2018, pp. 169–178.
View | DOI | Download Preprint (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 5963 | OA
Relaxed schedulers can efficiently parallelize iterative algorithms
D.-A. Alistarh, T.A. Brown, J. Kopinsky, G. Nadiradze, in:, Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18, ACM Press, 2018, pp. 377–386.
View | DOI | Download Preprint (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 5964 | OA
Brief Announcement: Performance prediction for coarse-grained locking
V. Aksenov, D.-A. Alistarh, P. Kuznetsov, in:, Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18, ACM Press, 2018, pp. 411–413.
View | DOI | Download Submitted Version (ext.)
 
2018 | Conference Paper | IST-REx-ID: 5965 | OA
Distributionally linearizable data structures
D.-A. Alistarh, T.A. Brown, J. Kopinsky, J.Z. Li, G. Nadiradze, in:, Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures  - SPAA ’18, ACM Press, 2018, pp. 133–142.
View | DOI | Download Preprint (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 5966 | OA
The transactional conflict problem
D.-A. Alistarh, S.K. Haider, R. Kübler, G. Nadiradze, in:, Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures  - SPAA ’18, ACM Press, 2018, pp. 383–392.
View | DOI | Download Preprint (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 6001
ThreadScan: Automatic and scalable memory reclamation
D.-A. Alistarh, W. Leiserson, A. Matveev, N. Shavit, ACM Transactions on Parallel Computing 4 (2018).
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 6031
Fast quantized arithmetic on x86: Trading compute for data movement
A. Stojanov, T.M. Smith, D.-A. Alistarh, M. Puschel, in:, 2018 IEEE International Workshop on Signal Processing Systems, IEEE, 2018.
View | DOI
 
2018 | Conference Paper | IST-REx-ID: 6558 | OA
Byzantine Stochastic Gradient Descent
D.-A. Alistarh, Z. Allen-Zhu, J. Li, in:, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2018, pp. 4613–4623.
View | Download Published Version (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 6589 | OA
The convergence of sparsified gradient methods
D.-A. Alistarh, T. Hoefler, M. Johansson, N.H. Konstantinov, S. Khirirat, C. Renggli, in:, Advances in Neural Information Processing Systems 31, Neural information processing systems, 2018, pp. 5973–5983.
View | Download Preprint (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 7116 | OA
Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study
D. Grubic, L. Tam, D.-A. Alistarh, C. Zhang, in:, Proceedings of the 21st International Conference on Extending Database Technology, OpenProceedings, 2018, pp. 145–156.
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 7123 | OA
Space-optimal majority in population protocols
D.-A. Alistarh, J. Aspnes, R. Gelashvili, in:, Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, 2018, pp. 2221–2239.
View | DOI | Download Preprint (ext.) | arXiv
 
2018 | Conference Paper | IST-REx-ID: 397
Harnessing epoch-based reclamation for efficient range queries
M. Arbel Raviv, T.A. Brown, in:, ACM, 2018, pp. 14–27.
View | DOI
 
2018 | Journal Article | IST-REx-ID: 43 | OA
Model of bacterial toxin-dependent pathogenesis explains infective dose
J. Rybicki, E. Kisdi, J. Anttila, PNAS 115 (2018) 10690–10695.
View | Files available | DOI
 
2017 | Conference Paper | IST-REx-ID: 791 | OA
The power of choice in priority scheduling
D.-A. Alistarh, J. Kopinsky, J. Li, G. Nadiradze, in:, Proceedings of the ACM Symposium on Principles of Distributed Computing, ACM, 2017, pp. 283–292.
View | DOI | Download Submitted Version (ext.)
 
2017 | Conference Paper | IST-REx-ID: 487
Towards unlicensed cellular networks in TV white spaces
G. Baig, B. Radunovic, D.-A. Alistarh, M. Balkwill, T. Karagiannis, L. Qiu, in:, Proceedings of the 2017 13th International Conference on Emerging Networking EXperiments and Technologies, ACM, 2017, pp. 2–14.
View | DOI
 
2017 | Conference Paper | IST-REx-ID: 431 | OA
QSGD: Communication-efficient SGD via gradient quantization and encoding
D.-A. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnović, in:, Neural Information Processing Systems Foundation, Inc., 2017, pp. 1710–1721.
View | Download Submitted Version (ext.) | arXiv
 
2017 | Conference Paper | IST-REx-ID: 432 | OA
ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning
H. Zhang, J. Li, K. Kara, D.-A. Alistarh, J. Liu, C. Zhang, in:, Proceedings of Machine Learning Research, PMLR, 2017, pp. 4035–4043.
View | Files available
 

Search

Filter Publications