--- _id: '12846' abstract: - lang: eng text: We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. acknowledgement: The authors acknowledge Chris Wojtan for his continuous support to the present work through discussions and advice. The second author thanks Anna Sisak for a fruitful discussion on prequantum bundles. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '2303.14555' article_processing_charge: No author: - first_name: Albert full_name: Chern, Albert last_name: Chern - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida citation: ama: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv. doi:10.48550/arXiv.2303.14555 apa: Chern, A., & Ishida, S. (n.d.). Area formula for spherical polygons via prequantization. arXiv. https://doi.org/10.48550/arXiv.2303.14555 chicago: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2303.14555. ieee: A. Chern and S. Ishida, “Area formula for spherical polygons via prequantization,” arXiv. . ista: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv, 2303.14555. mla: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, 2303.14555, doi:10.48550/arXiv.2303.14555. short: A. Chern, S. Ishida, ArXiv (n.d.). date_created: 2023-04-18T19:16:06Z date_published: 2023-03-25T00:00:00Z date_updated: 2023-04-25T06:51:21Z day: '25' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2303.14555 external_id: arxiv: - '2303.14555' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2303.14555 month: '03' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Area formula for spherical polygons via prequantization type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14628' abstract: - lang: eng text: We introduce a compact, intuitive procedural graph representation for cellular metamaterials, which are small-scale, tileable structures that can be architected to exhibit many useful material properties. Because the structures’ “architectures” vary widely—with elements such as beams, thin shells, and solid bulks—it is difficult to explore them using existing representations. Generic approaches like voxel grids are versatile, but it is cumbersome to represent and edit individual structures; architecture-specific approaches address these issues, but are incompatible with one another. By contrast, our procedural graph succinctly represents the construction process for any structure using a simple skeleton annotated with spatially varying thickness. To express the highly constrained triply periodic minimal surfaces (TPMS) in this manner, we present the first fully automated version of the conjugate surface construction method, which allows novices to create complex TPMS from intuitive input. We demonstrate our representation’s expressiveness, accuracy, and compactness by constructing a wide range of established structures and hundreds of novel structures with diverse architectures and material properties. We also conduct a user study to verify our representation’s ease-of-use and ability to expand engineers’ capacity for exploration. acknowledgement: "The authors thank Mina Konaković Luković and Michael Foshey for their early contributions to this project, David Palmer and Paul Zhang for their insightful discussions about minimal surfaces and the CSCM, Julian Panetta for providing the Elastic Textures code, and Hannes Hergeth for his feedback and support. We also thank our user study participants and anonymous reviewers.\r\nThis material is based upon work supported by the National Science Foundation\r\n(NSF) Graduate Research Fellowship under Grant No. 2141064; the MIT Morningside\r\nAcademy for Design Fellowship; the Defense Advanced Research Projects Agency\r\n(DARPA) Grant No. FA8750-20-C-0075; the ERC Consolidator Grant No. 101045083,\r\n“CoDiNA: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena”; and the NewSat project, which is co-funded by the Operational Program for Competitiveness and Internationalisation (COMPETE2020), Portugal 2020, the European Regional Development Fund (ERDF), and the Portuguese Foundation for Science and Technology (FTC) under the MIT Portugal program." article_number: '168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Liane full_name: Makatura, Liane last_name: Makatura - first_name: Bohan full_name: Wang, Bohan last_name: Wang - first_name: Yi-Lu full_name: Chen, Yi-Lu id: 0b467602-dbcd-11ea-9d1d-ed480aa46b70 last_name: Chen - first_name: Bolei full_name: Deng, Bolei last_name: Deng - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Wojciech full_name: Matusik, Wojciech last_name: Matusik citation: ama: 'Makatura L, Wang B, Chen Y-L, et al. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 2023;42(5). doi:10.1145/3605389' apa: 'Makatura, L., Wang, B., Chen, Y.-L., Deng, B., Wojtan, C., Bickel, B., & Matusik, W. (2023). Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3605389' chicago: 'Makatura, Liane, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd Bickel, and Wojciech Matusik. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3605389.' ieee: 'L. Makatura et al., “Procedural metamaterials: A unified procedural graph for metamaterial design,” ACM Transactions on Graphics, vol. 42, no. 5. Association for Computing Machinery, 2023.' ista: 'Makatura L, Wang B, Chen Y-L, Deng B, Wojtan C, Bickel B, Matusik W. 2023. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM Transactions on Graphics. 42(5), 168.' mla: 'Makatura, Liane, et al. “Procedural Metamaterials: A Unified Procedural Graph for Metamaterial Design.” ACM Transactions on Graphics, vol. 42, no. 5, 168, Association for Computing Machinery, 2023, doi:10.1145/3605389.' short: L. Makatura, B. Wang, Y.-L. Chen, B. Deng, C. Wojtan, B. Bickel, W. Matusik, ACM Transactions on Graphics 42 (2023). date_created: 2023-11-29T15:02:03Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-12-04T08:09:05Z day: '01' ddc: - '531' - '006' department: - _id: GradSch - _id: ChWo - _id: BeBi doi: 10.1145/3605389 file: - access_level: open_access checksum: 0192f597d7a2ceaf89baddfd6190d4c8 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14630' file_name: tog-22-0089-File004.zip file_size: 95467870 relation: main_file success: 1 - access_level: open_access checksum: 7fb024963be81933494f38de191e4710 content_type: application/zip creator: yichen date_created: 2023-11-29T15:16:01Z date_updated: 2023-11-29T15:16:01Z file_id: '14631' file_name: tog-22-0089-File005.zip file_size: 103731880 relation: main_file success: 1 - access_level: open_access checksum: b7d6829ce396e21cac9fae0ec7130a6b content_type: application/pdf creator: dernst date_created: 2023-12-04T08:04:14Z date_updated: 2023-12-04T08:04:14Z file_id: '14638' file_name: 2023_ACMToG_Makatura.pdf file_size: 57067476 relation: main_file success: 1 file_date_updated: 2023-12-04T08:04:14Z has_accepted_license: '1' intvolume: ' 42' issue: '5' keyword: - Computer Graphics and Computer-Aided Design language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 - 1557-7368 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: 'Procedural metamaterials: A unified procedural graph for metamaterial design' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '14703' abstract: - lang: eng text: We present a discretization of the dynamic optimal transport problem for which we can obtain the convergence rate for the value of the transport cost to its continuous value when the temporal and spatial stepsize vanish. This convergence result does not require any regularity assumption on the measures, though experiments suggest that the rate is not sharp. Via an analysis of the duality gap we also obtain the convergence rates for the gradient of the optimal potentials and the velocity field under mild regularity assumptions. To obtain such rates we discretize the dual formulation of the dynamic optimal transport problem and use the mature literature related to the error due to discretizing the Hamilton-Jacobi equation. acknowledgement: "The authors would like to thank Chris Wojtan for his continuous support and several interesting discussions. Part of this research was performed during two visits: one of SI to the BIDSA research center at Bocconi University, and one of HL to the Institute of Science and Technology Austria. Both host institutions are warmly acknowledged for the hospital-\r\nity. HL is partially supported by the MUR-Prin 2022-202244A7YL “Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning”, funded by the European Union - Next Generation EU. SI is supported in part by ERC Consolidator Grant 101045083 “CoDiNA” funded by the European Research Council." article_number: '2312.12213' article_processing_charge: No author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Hugo full_name: Lavenant, Hugo last_name: Lavenant citation: ama: Ishida S, Lavenant H. Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation. arXiv. doi:10.48550/arXiv.2312.12213 apa: Ishida, S., & Lavenant, H. (n.d.). Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation. arXiv. https://doi.org/10.48550/arXiv.2312.12213 chicago: Ishida, Sadashige, and Hugo Lavenant. “Quantitative Convergence of a Discretization of Dynamic Optimal Transport Using the Dual Formulation.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2312.12213. ieee: S. Ishida and H. Lavenant, “Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation,” arXiv. . ista: Ishida S, Lavenant H. Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation. arXiv, 2312.12213. mla: Ishida, Sadashige, and Hugo Lavenant. “Quantitative Convergence of a Discretization of Dynamic Optimal Transport Using the Dual Formulation.” ArXiv, 2312.12213, doi:10.48550/arXiv.2312.12213. short: S. Ishida, H. Lavenant, ArXiv (n.d.). date_created: 2023-12-21T10:14:37Z date_published: 2023-12-19T00:00:00Z date_updated: 2023-12-27T13:44:33Z day: '19' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2312.12213 external_id: arxiv: - '2312.12213' keyword: - Optimal transport - Hamilton-Jacobi equation - convex optimization language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2312.12213 month: '12' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Quantitative convergence of a discretization of dynamic optimal transport using the dual formulation type: preprint user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14240' abstract: - lang: eng text: This paper introduces a novel method for simulating large bodies of water as a height field. At the start of each time step, we partition the waves into a bulk flow (which approximately satisfies the assumptions of the shallow water equations) and surface waves (which approximately satisfy the assumptions of Airy wave theory). We then solve the two wave regimes separately using appropriate state-of-the-art techniques, and re-combine the resulting wave velocities at the end of each step. This strategy leads to the first heightfield wave model capable of simulating complex interactions between both deep and shallow water effects, like the waves from a boat wake sloshing up onto a beach, or a dam break producing wave interference patterns and eddies. We also analyze the numerical dispersion created by our method and derive an exact correction factor for waves at a constant water depth, giving us a numerically perfect re-creation of theoretical water wave dispersion patterns. acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank Georg Sperl for helping with early research for this paper, Mickael Ly and Yi-Lu Chen for proofreading, and members of the ISTA Visual Computing Group for general feedback. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA).\r\nThe motorboat and sailboat were modeled by Sergei and the palmtrees by YadroGames. The environment map was created by Emil Persson." article_number: '83' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. 2023;42(4). doi:10.1145/3592098 apa: Jeschke, S., & Wojtan, C. (2023). Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3592098 chicago: Jeschke, Stefan, and Chris Wojtan. “Generalizing Shallow Water Simulations with Dispersive Surface Waves.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3592098. ieee: S. Jeschke and C. Wojtan, “Generalizing shallow water simulations with dispersive surface waves,” ACM Transactions on Graphics, vol. 42, no. 4. Association for Computing Machinery, 2023. ista: Jeschke S, Wojtan C. 2023. Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. 42(4), 83. mla: Jeschke, Stefan, and Chris Wojtan. “Generalizing Shallow Water Simulations with Dispersive Surface Waves.” ACM Transactions on Graphics, vol. 42, no. 4, 83, Association for Computing Machinery, 2023, doi:10.1145/3592098. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 42 (2023). date_created: 2023-08-27T22:01:17Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-01-02T09:35:55Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/3592098 external_id: isi: - '001044671300049' file: - access_level: open_access checksum: 1d178bb2f8011d9f5aedda6427e18c7a content_type: video/mp4 creator: sjeschke date_created: 2023-12-21T12:26:40Z date_updated: 2023-12-21T12:26:40Z file_id: '14704' file_name: PaperVideo_final.mp4 file_size: 511572575 relation: main_file success: 1 - access_level: open_access checksum: a49b2e744d5cd1276bb8b2e0ce6dc638 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:34:27Z date_updated: 2024-01-02T09:34:27Z file_id: '14725' file_name: 2023_ACMToG_Jeschke.pdf file_size: 7469177 relation: main_file success: 1 file_date_updated: 2024-01-02T09:34:27Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '08' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Generalizing shallow water simulations with dispersive surface waves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '14748' acknowledged_ssus: - _id: ScienComp acknowledgement: We thank the anonymous reviewers and the members of the Visual Computing Group at ISTA for their helpful comments. This research was supported by the Scientific Service Units (SSU) of ISTA through resources provided by Scientific Computing, and was funded in part by the European Union (ERC-2021-COG 101045083 CoDiNA). article_number: '5' article_processing_charge: No author: - first_name: Yi-Lu full_name: Chen, Yi-Lu id: 0b467602-dbcd-11ea-9d1d-ed480aa46b70 last_name: Chen - first_name: Mickaël full_name: Ly, Mickaël id: 6340d7f0-b48d-11eb-b10d-b7487e71d9f1 last_name: Ly - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Chen Y-L, Ly M, Wojtan C. Unified treatment of contact, friction and shock-propagation in rigid body animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Association for Computing Machinery; 2023. doi:10.1145/3606037.3606836' apa: 'Chen, Y.-L., Ly, M., & Wojtan, C. (2023). Unified treatment of contact, friction and shock-propagation in rigid body animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3606037.3606836' chicago: Chen, Yi-Lu, Mickaël Ly, and Chris Wojtan. “Unified Treatment of Contact, Friction and Shock-Propagation in Rigid Body Animation.” In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Association for Computing Machinery, 2023. https://doi.org/10.1145/3606037.3606836. ieee: Y.-L. Chen, M. Ly, and C. Wojtan, “Unified treatment of contact, friction and shock-propagation in rigid body animation,” in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, United States, 2023. ista: 'Chen Y-L, Ly M, Wojtan C. 2023. Unified treatment of contact, friction and shock-propagation in rigid body animation. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA: Symposium on Computer Animation, 5.' mla: Chen, Yi-Lu, et al. “Unified Treatment of Contact, Friction and Shock-Propagation in Rigid Body Animation.” Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 5, Association for Computing Machinery, 2023, doi:10.1145/3606037.3606836. short: Y.-L. Chen, M. Ly, C. Wojtan, in:, Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Association for Computing Machinery, 2023. conference: end_date: 2023-08-06 location: Los Angeles, CA, United States name: 'SCA: Symposium on Computer Animation' start_date: 2023-08-04 date_created: 2024-01-08T13:00:24Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-02-28T12:51:40Z day: '01' department: - _id: ChWo doi: 10.1145/3606037.3606836 language: - iso: eng month: '08' oa_version: None project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation publication_identifier: isbn: - '9798400702686' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Unified treatment of contact, friction and shock-propagation in rigid body animation type: conference_abstract user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '11432' abstract: - lang: eng text: "This paper proposes a method for simulating liquids in large bodies of water by coupling together a water surface wave simulator with a 3D Navier-Stokes simulator. The surface wave simulation uses the equivalent sources method (ESM) to efficiently animate large bodies of water with precisely controllable wave propagation behavior. The 3D liquid simulator animates complex non-linear fluid behaviors like splashes and breaking waves using off-the-shelf simulators using FLIP or the level set method with semi-Lagrangian advection.\r\nWe combine the two approaches by using the 3D solver to animate localized non-linear behaviors, and the 2D wave solver to animate larger regions with linear surface physics. We use the surface motion from the 3D solver as boundary conditions for 2D surface wave simulator, and we use the velocity and surface heights from the 2D surface wave simulator as boundary conditions for the 3D fluid simulation. We also introduce a novel technique for removing visual artifacts caused by numerical errors in 3D fluid solvers: we use experimental data to estimate the artificial dispersion caused by the 3D solver and we then carefully tune the wave speeds of the 2D solver to match it, effectively eliminating any differences in wave behavior across the boundary. To the best of our knowledge, this is the first time such a empirically driven error compensation approach has been used to remove coupling errors from a physics simulator.\r\nOur coupled simulation approach leverages the strengths of each simulation technique, animating large environments with seamless transitions between 2D and 3D physics." acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria and MFX Team at INRIA for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Wojtan C. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. 2022;41(2):343-353. doi:10.1111/cgf.14478 apa: Schreck, C., & Wojtan, C. (2022). Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.14478 chicago: Schreck, Camille, and Chris Wojtan. “Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method.” Computer Graphics Forum. Wiley, 2022. https://doi.org/10.1111/cgf.14478. ieee: C. Schreck and C. Wojtan, “Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method,” Computer Graphics Forum, vol. 41, no. 2. Wiley, pp. 343–353, 2022. ista: Schreck C, Wojtan C. 2022. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum. 41(2), 343–353. mla: Schreck, Camille, and Chris Wojtan. “Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method.” Computer Graphics Forum, vol. 41, no. 2, Wiley, 2022, pp. 343–53, doi:10.1111/cgf.14478. short: C. Schreck, C. Wojtan, Computer Graphics Forum 41 (2022) 343–353. date_created: 2022-06-05T22:01:49Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-08-02T06:44:05Z day: '01' department: - _id: ChWo doi: 10.1111/cgf.14478 ec_funded: 1 external_id: isi: - '000802723900027' intvolume: ' 41' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.archives-ouvertes.fr/hal-03641349/ month: '05' oa: 1 oa_version: Submitted Version page: 343-353 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '11556' abstract: - lang: eng text: "We revisit two basic Direct Simulation Monte Carlo Methods to model aggregation kinetics and extend them for aggregation processes with collisional fragmentation (shattering). We test the performance and accuracy of the extended methods and compare their performance with efficient deterministic finite-difference method applied to the same model. We validate the stochastic methods on the test problems and apply them to verify the existence of oscillating regimes in the aggregation-fragmentation kinetics recently detected in deterministic simulations. We confirm the emergence of steady oscillations of densities in such systems and prove the stability of the\r\noscillations with respect to fluctuations and noise." acknowledgement: Zhores supercomputer of Skolkovo Institute of Science and Technology [68] has been used in the present research. S.A.M. was supported by Moscow Center for Fundamental and Applied Mathematics (the agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624). A.I.O. acknowledges RFBR project No. 20-31-90022. N.V.B. acknowledges the support of the Analytical Center (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021). article_number: '111439' article_processing_charge: No article_type: original author: - first_name: Aleksei full_name: Kalinov, Aleksei id: 44b7120e-eb97-11eb-a6c2-e1557aa81d02 last_name: Kalinov orcid: 0000-0003-2189-3904 - first_name: A.I. full_name: Osinskiy, A.I. last_name: Osinskiy - first_name: S.A. full_name: Matveev, S.A. last_name: Matveev - first_name: W. full_name: Otieno, W. last_name: Otieno - first_name: N.V. full_name: Brilliantov, N.V. last_name: Brilliantov citation: ama: Kalinov A, Osinskiy AI, Matveev SA, Otieno W, Brilliantov NV. Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. 2022;467. doi:10.1016/j.jcp.2022.111439 apa: Kalinov, A., Osinskiy, A. I., Matveev, S. A., Otieno, W., & Brilliantov, N. V. (2022). Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. Elsevier. https://doi.org/10.1016/j.jcp.2022.111439 chicago: Kalinov, Aleksei, A.I. Osinskiy, S.A. Matveev, W. Otieno, and N.V. Brilliantov. “Direct Simulation Monte Carlo for New Regimes in Aggregation-Fragmentation Kinetics.” Journal of Computational Physics. Elsevier, 2022. https://doi.org/10.1016/j.jcp.2022.111439. ieee: A. Kalinov, A. I. Osinskiy, S. A. Matveev, W. Otieno, and N. V. Brilliantov, “Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics,” Journal of Computational Physics, vol. 467. Elsevier, 2022. ista: Kalinov A, Osinskiy AI, Matveev SA, Otieno W, Brilliantov NV. 2022. Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics. 467, 111439. mla: Kalinov, Aleksei, et al. “Direct Simulation Monte Carlo for New Regimes in Aggregation-Fragmentation Kinetics.” Journal of Computational Physics, vol. 467, 111439, Elsevier, 2022, doi:10.1016/j.jcp.2022.111439. short: A. Kalinov, A.I. Osinskiy, S.A. Matveev, W. Otieno, N.V. Brilliantov, Journal of Computational Physics 467 (2022). date_created: 2022-07-11T12:19:59Z date_published: 2022-10-15T00:00:00Z date_updated: 2023-08-03T11:55:06Z day: '15' ddc: - '518' department: - _id: GradSch - _id: ChWo doi: 10.1016/j.jcp.2022.111439 external_id: arxiv: - '2103.09481' isi: - '000917225500013' intvolume: ' 467' isi: 1 keyword: - Computer Science Applications - Physics and Astronomy (miscellaneous) - Applied Mathematics - Computational Mathematics - Modeling and Simulation - Numerical Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2103.09481 month: '10' oa: 1 oa_version: Preprint publication: Journal of Computational Physics publication_identifier: issn: - 0021-9991 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 467 year: '2022' ... --- _id: '11736' abstract: - lang: eng text: "This paper introduces a methodology for inverse-modeling of yarn-level mechanics of cloth, based on the mechanical response of fabrics in the real world. We compiled a database from physical tests of several different knitted fabrics used in the textile industry. These data span different types of complex knit patterns, yarn compositions, and fabric finishes, and the results demonstrate diverse physical properties like stiffness, nonlinearity, and anisotropy.\r\n\r\nWe then develop a system for approximating these mechanical responses with yarn-level cloth simulation. To do so, we introduce an efficient pipeline for converting between fabric-level data and yarn-level simulation, including a novel swatch-level approximation for speeding up computation, and some small-but-necessary extensions to yarn-level models used in computer graphics. The dataset used for this paper can be found at http://mslab.es/projects/YarnLevelFabrics." acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers for their helpful comments. To develop this project, we were helped by many people both at Under Armour (Clay Dean, Randall Harward, Kyle Blakely, Craig Simile, Michael Seiz, Brooke Malone, Brittainy McFarland, Emilie Phan, Lindsey Kern, Courtney Oswald, Haley Barkley, Bob Chin, Adam Bayer, Connie Kwok, Marielle Newman, Nick Pence, Allison Hicks, Allison White, Candace Rubenstein, Jeremy Stangland, Fred Fagergren, Michael Mazzoleni, Nathaniel Berry, Manuel Frank) and SEDDI (Gabriel Cirio, Alejandro Rodríguez, Sofía Dominguez, Alicia Nicas, Elena Garcés, Daniel Rodríguez, David Pascual, Manuel Godoy, Sergio Suja, Sergio Ruiz, Roberto Condori, Alberto Martín, Graham Sullivan). We also thank the members of the Visual Computing Group at IST Austria and the Multimodal Simulation Lab at URJC for their feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing, and it was funded in part by the European Research Council (ERC Consolidator Grant 772738 TouchDesign). article_number: '65' article_processing_charge: No article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rosa M. full_name: Sánchez-Banderas, Rosa M. last_name: Sánchez-Banderas - first_name: Manwen full_name: Li, Manwen last_name: Li - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Miguel A. full_name: Otaduy, Miguel A. last_name: Otaduy citation: ama: Sperl G, Sánchez-Banderas RM, Li M, Wojtan C, Otaduy MA. Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. 2022;41(4). doi:10.1145/3528223.3530167 apa: Sperl, G., Sánchez-Banderas, R. M., Li, M., Wojtan, C., & Otaduy, M. A. (2022). Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3528223.3530167 chicago: Sperl, Georg, Rosa M. Sánchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A. Otaduy. “Estimation of Yarn-Level Simulation Models for Production Fabrics.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3528223.3530167. ieee: G. Sperl, R. M. Sánchez-Banderas, M. Li, C. Wojtan, and M. A. Otaduy, “Estimation of yarn-level simulation models for production fabrics,” ACM Transactions on Graphics, vol. 41, no. 4. Association for Computing Machinery, 2022. ista: Sperl G, Sánchez-Banderas RM, Li M, Wojtan C, Otaduy MA. 2022. Estimation of yarn-level simulation models for production fabrics. ACM Transactions on Graphics. 41(4), 65. mla: Sperl, Georg, et al. “Estimation of Yarn-Level Simulation Models for Production Fabrics.” ACM Transactions on Graphics, vol. 41, no. 4, 65, Association for Computing Machinery, 2022, doi:10.1145/3528223.3530167. short: G. Sperl, R.M. Sánchez-Banderas, M. Li, C. Wojtan, M.A. Otaduy, ACM Transactions on Graphics 41 (2022). date_created: 2022-08-07T22:01:58Z date_published: 2022-07-22T00:00:00Z date_updated: 2023-08-03T12:38:30Z day: '22' department: - _id: ChWo doi: 10.1145/3528223.3530167 external_id: isi: - '000830989200114' intvolume: ' 41' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3528223.3530167 month: '07' oa: 1 oa_version: Published Version publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/digital-yarn-real-socks/ record: - id: '12358' relation: dissertation_contains status: public scopus_import: '1' status: public title: Estimation of yarn-level simulation models for production fabrics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '12431' abstract: - lang: eng text: This paper presents a new representation of curve dynamics, with applications to vortex filaments in fluid dynamics. Instead of representing these filaments with explicit curve geometry and Lagrangian equations of motion, we represent curves implicitly with a new co-dimensional 2 level set description. Our implicit representation admits several redundant mathematical degrees of freedom in both the configuration and the dynamics of the curves, which can be tailored specifically to improve numerical robustness, in contrast to naive approaches for implicit curve dynamics that suffer from overwhelming numerical stability problems. Furthermore, we note how these hidden degrees of freedom perfectly map to a Clebsch representation in fluid dynamics. Motivated by these observations, we introduce untwisted level set functions and non-swirling dynamics which successfully regularize sources of numerical instability, particularly in the twisting modes around curve filaments. A consequence is a novel simulation method which produces stable dynamics for large numbers of interacting vortex filaments and effortlessly handles topological changes and re-connection events. acknowledgement: We thank the visual computing group at IST Austria for their valuable discussions and feedback. Houdini Education licenses were provided by SideFX software. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '241' article_processing_charge: No article_type: original author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Albert full_name: Chern, Albert last_name: Chern citation: ama: Ishida S, Wojtan C, Chern A. Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. 2022;41(6). doi:10.1145/3550454.3555459 apa: Ishida, S., Wojtan, C., & Chern, A. (2022). Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3550454.3555459 chicago: Ishida, Sadashige, Chris Wojtan, and Albert Chern. “Hidden Degrees of Freedom in Implicit Vortex Filaments.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3550454.3555459. ieee: S. Ishida, C. Wojtan, and A. Chern, “Hidden degrees of freedom in implicit vortex filaments,” ACM Transactions on Graphics, vol. 41, no. 6. Association for Computing Machinery, 2022. ista: Ishida S, Wojtan C, Chern A. 2022. Hidden degrees of freedom in implicit vortex filaments. ACM Transactions on Graphics. 41(6), 241. mla: Ishida, Sadashige, et al. “Hidden Degrees of Freedom in Implicit Vortex Filaments.” ACM Transactions on Graphics, vol. 41, no. 6, 241, Association for Computing Machinery, 2022, doi:10.1145/3550454.3555459. short: S. Ishida, C. Wojtan, A. Chern, ACM Transactions on Graphics 41 (2022). date_created: 2023-01-29T23:00:59Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-04T09:37:23Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/3550454.3555459 external_id: isi: - '000891651900061' file: - access_level: open_access checksum: a2fba257fdefe0e747182be6c0f7c70c content_type: application/pdf creator: dernst date_created: 2023-01-30T07:15:48Z date_updated: 2023-01-30T07:15:48Z file_id: '12433' file_name: 2022_ACM_Ishida.pdf file_size: 15551202 relation: main_file success: 1 file_date_updated: 2023-01-30T07:15:48Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Hidden degrees of freedom in implicit vortex filaments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '12358' abstract: - lang: eng text: "The complex yarn structure of knitted and woven fabrics gives rise to both a mechanical and\r\nvisual complexity. The small-scale interactions of yarns colliding with and pulling on each\r\nother result in drastically different large-scale stretching and bending behavior, introducing\r\nanisotropy, curling, and more. While simulating cloth as individual yarns can reproduce this\r\ncomplexity and match the quality of real fabric, it may be too computationally expensive for\r\nlarge fabrics. On the other hand, continuum-based approaches do not need to discretize the\r\ncloth at a stitch-level, but it is non-trivial to find a material model that would replicate the\r\nlarge-scale behavior of yarn fabrics, and they discard the intricate visual detail. In this thesis,\r\nwe discuss three methods to try and bridge the gap between small-scale and large-scale yarn\r\nmechanics using numerical homogenization: fitting a continuum model to periodic yarn simulations, adding mechanics-aware yarn detail onto thin-shell simulations, and quantitatively\r\nfitting yarn parameters to physical measurements of real fabric.\r\nTo start, we present a method for animating yarn-level cloth effects using a thin-shell solver.\r\nWe first use a large number of periodic yarn-level simulations to build a model of the potential\r\nenergy density of the cloth, and then use it to compute forces in a thin-shell simulator. The\r\nresulting simulations faithfully reproduce expected effects like the stiffening of woven fabrics\r\nand the highly deformable nature and anisotropy of knitted fabrics at a fraction of the cost of\r\nfull yarn-level simulation.\r\nWhile our thin-shell simulations are able to capture large-scale yarn mechanics, they lack\r\nthe rich visual detail of yarn-level simulations. Therefore, we propose a method to animate\r\nyarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware\r\nfashion in real time. Using triangle strains to interpolate precomputed yarn geometry, we are\r\nable to reproduce effects such as knit loops tightening under stretching at negligible cost.\r\nFinally, we introduce a methodology for inverse-modeling of yarn-level mechanics of cloth,\r\nbased on the mechanical response of fabrics in the real world. We compile a database from\r\nphysical tests of several knitted fabrics used in the textile industry spanning diverse physical\r\nproperties like stiffness, nonlinearity, and anisotropy. We then develop a system for approximating these mechanical responses with yarn-level cloth simulation, using homogenized\r\nshell models to speed up computation and adding some small-but-necessary extensions to\r\nyarn-level models used in computer graphics.\r\n" acknowledged_ssus: - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl citation: ama: 'Sperl G. Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. 2022. doi:10.15479/at:ista:12103' apa: 'Sperl, G. (2022). Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12103' chicago: 'Sperl, Georg. “Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12103.' ieee: 'G. Sperl, “Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting,” Institute of Science and Technology Austria, 2022.' ista: 'Sperl G. 2022. Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting. Institute of Science and Technology Austria.' mla: 'Sperl, Georg. Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12103.' short: 'G. Sperl, Homogenizing Yarn Simulations: Large-Scale Mechanics, Small-Scale Detail, and Quantitative Fitting, Institute of Science and Technology Austria, 2022.' date_created: 2023-01-24T10:49:46Z date_published: 2022-09-22T00:00:00Z date_updated: 2024-02-28T12:57:46Z day: '22' ddc: - '000' - '620' degree_awarded: PhD department: - _id: GradSch - _id: ChWo doi: 10.15479/at:ista:12103 ec_funded: 1 file: - access_level: open_access checksum: 083722acbb8115e52e3b0fdec6226769 content_type: application/pdf creator: cchlebak date_created: 2023-01-25T12:04:41Z date_updated: 2023-02-02T09:29:57Z description: 'This is the main PDF file of the thesis. File size: 105 MB' file_id: '12371' file_name: thesis_gsperl.pdf file_size: 104497530 relation: main_file title: Thesis - access_level: open_access checksum: 511f82025e5fcb70bff4731d6896ca07 content_type: application/pdf creator: cchlebak date_created: 2023-02-02T09:33:37Z date_updated: 2023-02-02T09:33:37Z description: This version of the thesis uses stronger image compression for a smaller file size of 23MB. file_id: '12483' file_name: thesis_gsperl_compressed.pdf file_size: 23183710 relation: main_file title: Thesis (compressed 23MB) - access_level: open_access checksum: ed4cb85225eedff761c25bddfc37a2ed content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-02-02T09:39:25Z date_updated: 2023-02-02T09:39:25Z file_id: '12484' file_name: thesis-source.zip file_size: 98382247 relation: source_file file_date_updated: 2023-02-02T09:39:25Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '138' project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_identifier: isbn: - 978-3-99078-020-6 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11736' relation: part_of_dissertation status: public - id: '9818' relation: part_of_dissertation status: public - id: '8385' relation: part_of_dissertation status: public status: public supervisor: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 title: 'Homogenizing yarn simulations: Large-scale mechanics, small-scale detail, and quantitative fitting' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '9818' abstract: - lang: eng text: Triangle mesh-based simulations are able to produce satisfying animations of knitted and woven cloth; however, they lack the rich geometric detail of yarn-level simulations. Naive texturing approaches do not consider yarn-level physics, while full yarn-level simulations may become prohibitively expensive for large garments. We propose a method to animate yarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware fashion. Using triangle strains to interpolate precomputed yarn geometry, we are able to reproduce effects such as knit loops tightening under stretching. In combination with precomputed mesh animation or real-time mesh simulation, our method is able to animate yarn-level cloth in real-time at large scales. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. We also thank Seddi Labs for providing the garment model with fold-over seams.\r\nThis research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific\r\nComputing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. Rahul Narain is supported by a Pankaj Gupta Young Faculty Fellowship and a gift from Adobe Inc." article_number: '168' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Sperl G, Narain R, Wojtan C. Mechanics-aware deformation of yarn pattern geometry. ACM Transactions on Graphics. 2021;40(4). doi:10.1145/3450626.3459816 apa: Sperl, G., Narain, R., & Wojtan, C. (2021). Mechanics-aware deformation of yarn pattern geometry. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3450626.3459816 chicago: Sperl, Georg, Rahul Narain, and Chris Wojtan. “Mechanics-Aware Deformation of Yarn Pattern Geometry.” ACM Transactions on Graphics. Association for Computing Machinery, 2021. https://doi.org/10.1145/3450626.3459816. ieee: G. Sperl, R. Narain, and C. Wojtan, “Mechanics-aware deformation of yarn pattern geometry,” ACM Transactions on Graphics, vol. 40, no. 4. Association for Computing Machinery, 2021. ista: Sperl G, Narain R, Wojtan C. 2021. Mechanics-aware deformation of yarn pattern geometry. ACM Transactions on Graphics. 40(4), 168. mla: Sperl, Georg, et al. “Mechanics-Aware Deformation of Yarn Pattern Geometry.” ACM Transactions on Graphics, vol. 40, no. 4, 168, Association for Computing Machinery, 2021, doi:10.1145/3450626.3459816. short: G. Sperl, R. Narain, C. Wojtan, ACM Transactions on Graphics 40 (2021). date_created: 2021-08-08T22:01:27Z date_published: 2021-08-01T00:00:00Z date_updated: 2023-08-10T14:24:36Z day: '01' department: - _id: GradSch - _id: ChWo doi: 10.1145/3450626.3459816 ec_funded: 1 external_id: isi: - '000674930900132' intvolume: ' 40' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3450626.3459816 month: '08' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/knitting-virtual-yarn/ record: - id: '12358' relation: dissertation_contains status: public - id: '9327' relation: software status: public scopus_import: '1' status: public title: Mechanics-aware deformation of yarn pattern geometry type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '9327' abstract: - lang: eng text: "This archive contains the missing sweater mesh animations and displacement models for the code of \"Mechanics-Aware Deformation of Yarn Pattern Geometry\"\r\n\r\nCode Repository: https://git.ist.ac.at/gsperl/MADYPG" author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Sperl G, Narain R, Wojtan C. Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data). 2021. doi:10.15479/AT:ISTA:9327 apa: Sperl, G., Narain, R., & Wojtan, C. (2021). Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data). IST Austria. https://doi.org/10.15479/AT:ISTA:9327 chicago: Sperl, Georg, Rahul Narain, and Chris Wojtan. “Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data).” IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:9327. ieee: G. Sperl, R. Narain, and C. Wojtan, “Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data).” IST Austria, 2021. ista: Sperl G, Narain R, Wojtan C. 2021. Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data), IST Austria, 10.15479/AT:ISTA:9327. mla: Sperl, Georg, et al. Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data). IST Austria, 2021, doi:10.15479/AT:ISTA:9327. short: G. Sperl, R. Narain, C. Wojtan, (2021). date_created: 2021-04-16T14:26:19Z date_published: 2021-05-01T00:00:00Z date_updated: 2023-08-10T14:24:36Z ddc: - '005' department: - _id: GradSch - _id: ChWo doi: 10.15479/AT:ISTA:9327 file: - access_level: open_access checksum: 0324cb519273371708743f3282e7c081 content_type: application/zip creator: gsperl date_created: 2021-04-16T14:15:12Z date_updated: 2021-04-16T14:15:12Z file_id: '9328' file_name: MADYPG_extra_data.zip file_size: 802586232 relation: main_file success: 1 - access_level: open_access checksum: 4c224551adf852b136ec21a4e13f0c1b content_type: application/gzip creator: pub-gitlab-bot date_created: 2021-04-26T09:33:44Z date_updated: 2021-04-26T09:33:44Z file_id: '9353' file_name: MADYPG.zip file_size: 64962865 relation: main_file file_date_updated: 2021-04-26T09:33:44Z gitlab_commit_id: 6a77e7e22769230ae5f5edaa090fb4b828e57573 gitlab_url: https://git.ist.ac.at/gsperl/MADYPG has_accepted_license: '1' license: https://opensource.org/licenses/MIT month: '05' oa: 1 publisher: IST Austria related_material: record: - id: '9818' relation: used_for_analysis_in status: public status: public title: Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data) tmp: legal_code_url: https://opensource.org/licenses/MIT name: The MIT License short: MIT type: software user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '8535' abstract: - lang: eng text: We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation. acknowledged_ssus: - _id: ScienComp acknowledgement: We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176 and Marie SkłodowskaCurie Grant Agreement No. 665385. article_number: '65' article_processing_charge: No article_type: original author: - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Andreas full_name: Soderstrom, Andreas last_name: Soderstrom - first_name: John full_name: Johansson, John last_name: Johansson - first_name: Christoph full_name: Sprenger, Christoph last_name: Sprenger - first_name: Ken full_name: Museth, Ken last_name: Museth - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Skrivan T, Soderstrom A, Johansson J, Sprenger C, Museth K, Wojtan C. Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics. 2020;39(4). doi:10.1145/3386569.3392466' apa: 'Skrivan, T., Soderstrom, A., Johansson, J., Sprenger, C., Museth, K., & Wojtan, C. (2020). Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3386569.3392466' chicago: 'Skrivan, Tomas, Andreas Soderstrom, John Johansson, Christoph Sprenger, Ken Museth, and Chris Wojtan. “Wave Curves: Simulating Lagrangian Water Waves on Dynamically Deforming Surfaces.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3386569.3392466.' ieee: 'T. Skrivan, A. Soderstrom, J. Johansson, C. Sprenger, K. Museth, and C. Wojtan, “Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces,” ACM Transactions on Graphics, vol. 39, no. 4. Association for Computing Machinery, 2020.' ista: 'Skrivan T, Soderstrom A, Johansson J, Sprenger C, Museth K, Wojtan C. 2020. Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics. 39(4), 65.' mla: 'Skrivan, Tomas, et al. “Wave Curves: Simulating Lagrangian Water Waves on Dynamically Deforming Surfaces.” ACM Transactions on Graphics, vol. 39, no. 4, 65, Association for Computing Machinery, 2020, doi:10.1145/3386569.3392466.' short: T. Skrivan, A. Soderstrom, J. Johansson, C. Sprenger, K. Museth, C. Wojtan, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-20T22:01:37Z date_published: 2020-07-08T00:00:00Z date_updated: 2023-08-22T09:28:27Z day: '08' ddc: - '000' department: - _id: ChWo doi: 10.1145/3386569.3392466 ec_funded: 1 external_id: isi: - '000583700300038' file: - access_level: open_access checksum: c3a680893f01cc4a9e961ff0a4cfa12f content_type: application/pdf creator: dernst date_created: 2020-09-21T07:51:44Z date_updated: 2020-09-21T07:51:44Z file_id: '8541' file_name: 2020_ACM_Skrivan.pdf file_size: 20223953 relation: main_file success: 1 file_date_updated: 2020-09-21T07:51:44Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '8765' abstract: - lang: eng text: This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. We would also like to thank Joseph Teran and Chenfanfu Jiang for the helpful discussions.\r\nThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No. 638176." article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Wojtan C. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. 2020;39(2):89-99. doi:10.1111/cgf.13914 apa: Schreck, C., & Wojtan, C. (2020). A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.13914 chicago: Schreck, Camille, and Chris Wojtan. “A Practical Method for Animating Anisotropic Elastoplastic Materials.” Computer Graphics Forum. Wiley, 2020. https://doi.org/10.1111/cgf.13914. ieee: C. Schreck and C. Wojtan, “A practical method for animating anisotropic elastoplastic materials,” Computer Graphics Forum, vol. 39, no. 2. Wiley, pp. 89–99, 2020. ista: Schreck C, Wojtan C. 2020. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum. 39(2), 89–99. mla: Schreck, Camille, and Chris Wojtan. “A Practical Method for Animating Anisotropic Elastoplastic Materials.” Computer Graphics Forum, vol. 39, no. 2, Wiley, 2020, pp. 89–99, doi:10.1111/cgf.13914. short: C. Schreck, C. Wojtan, Computer Graphics Forum 39 (2020) 89–99. date_created: 2020-11-17T09:35:10Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-09-05T16:00:13Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.13914 ec_funded: 1 external_id: isi: - '000548709600008' file: - access_level: open_access checksum: 7605f605acd84d0942b48bc7a1c2d72e content_type: application/pdf creator: dernst date_created: 2020-11-23T09:05:13Z date_updated: 2020-11-23T09:05:13Z file_id: '8796' file_name: 2020_poff_revisited.pdf file_size: 38969122 relation: main_file success: 1 file_date_updated: 2020-11-23T09:05:13Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '2' keyword: - Computer Networks and Communications language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 89-99 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: A practical method for animating anisotropic elastoplastic materials type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 39 year: '2020' ... --- _id: '5681' abstract: - lang: eng text: 'We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.' acknowledged_ssus: - _id: ScienComp acknowledgement: This work was partially supported by JSPS Grant-in-Aid forYoung Scientists (Start-up) 16H07410, the ERC StartingGrantsrealFlow(StG-2015-637014) andBigSplash(StG-2014-638176). This research was supported by the Scientific Ser-vice Units (SSU) of IST Austria through resources providedby Scientific Computing. We would like to express my grati-tude to Nobuyuki Umetani and Tomas Skrivan for insight-ful discussion. article_processing_charge: No article_type: original author: - first_name: Ibayashi full_name: Hikaru, Ibayashi last_name: Hikaru - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Takeo full_name: Igarashi, Takeo last_name: Igarashi - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando citation: ama: Hikaru I, Wojtan C, Thuerey N, Igarashi T, Ando R. Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics. 2020;26(6):2288-2302. doi:10.1109/TVCG.2018.2883628 apa: Hikaru, I., Wojtan, C., Thuerey, N., Igarashi, T., & Ando, R. (2020). Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2018.2883628 chicago: Hikaru, Ibayashi, Chris Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando. “Simulating Liquids on Dynamically Warping Grids.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2020. https://doi.org/10.1109/TVCG.2018.2883628. ieee: I. Hikaru, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando, “Simulating liquids on dynamically warping grids,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 6. IEEE, pp. 2288–2302, 2020. ista: Hikaru I, Wojtan C, Thuerey N, Igarashi T, Ando R. 2020. Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics. 26(6), 2288–2302. mla: Hikaru, Ibayashi, et al. “Simulating Liquids on Dynamically Warping Grids.” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 6, IEEE, 2020, pp. 2288–302, doi:10.1109/TVCG.2018.2883628. short: I. Hikaru, C. Wojtan, N. Thuerey, T. Igarashi, R. Ando, IEEE Transactions on Visualization and Computer Graphics 26 (2020) 2288–2302. date_created: 2018-12-16T22:59:21Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-09-18T09:30:01Z day: '01' ddc: - '006' department: - _id: ChWo doi: 10.1109/TVCG.2018.2883628 external_id: isi: - '000532295600014' pmid: - '30507534' file: - access_level: open_access checksum: 8d4c55443a0ee335bb5bb652de503042 content_type: application/pdf creator: wojtan date_created: 2020-10-08T08:34:53Z date_updated: 2020-10-08T08:34:53Z file_id: '8626' file_name: preprint.pdf file_size: 21910098 relation: main_file success: 1 file_date_updated: 2020-10-08T08:34:53Z has_accepted_license: '1' intvolume: ' 26' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 2288-2302 pmid: 1 publication: IEEE Transactions on Visualization and Computer Graphics publication_identifier: eissn: - '19410506' issn: - '10772626' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Simulating liquids on dynamically warping grids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 26 year: '2020' ... --- _id: '8384' abstract: - lang: eng text: Previous research on animations of soap bubbles, films, and foams largely focuses on the motion and geometric shape of the bubble surface. These works neglect the evolution of the bubble’s thickness, which is normally responsible for visual phenomena like surface vortices, Newton’s interference patterns, capillary waves, and deformation-dependent rupturing of films in a foam. In this paper, we model these natural phenomena by introducing the film thickness as a reduced degree of freedom in the Navier-Stokes equations and deriving their equations of motion. We discretize the equations on a nonmanifold triangle mesh surface and couple it to an existing bubble solver. In doing so, we also introduce an incompressible fluid solver for 2.5D films and a novel advection algorithm for convecting fields across non-manifold surface junctions. Our simulations enhance state-of-the-art bubble solvers with additional effects caused by convection, rippling, draining, and evaporation of the thin film. acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback, especially Camille Schreck for her help in rendering. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. We would like to thank the authors of [Belcour and Barla 2017] for providing their implementation, the authors of [Atkins and Elliott 2010] and [Seychelles et al. 2008] for allowing us to use their results, and Rok Grah for helpful discussions. Finally, we thank Ryoichi Ando for many discussions from the beginning of the project that resulted in important contents of the paper including our formulation, numerical scheme, and initial implementation. This project has received funding from the\r\nEuropean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176." article_number: '31' article_processing_charge: No article_type: original author: - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida - first_name: Peter full_name: Synak, Peter id: 331776E2-F248-11E8-B48F-1D18A9856A87 last_name: Synak - first_name: Fumiya full_name: Narita, Fumiya last_name: Narita - first_name: Toshiya full_name: Hachisuka, Toshiya last_name: Hachisuka - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Ishida S, Synak P, Narita F, Hachisuka T, Wojtan C. A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics. 2020;39(4). doi:10.1145/3386569.3392405 apa: Ishida, S., Synak, P., Narita, F., Hachisuka, T., & Wojtan, C. (2020). A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3386569.3392405 chicago: Ishida, Sadashige, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. “A Model for Soap Film Dynamics with Evolving Thickness.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3386569.3392405. ieee: S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan, “A model for soap film dynamics with evolving thickness,” ACM Transactions on Graphics, vol. 39, no. 4. Association for Computing Machinery, 2020. ista: Ishida S, Synak P, Narita F, Hachisuka T, Wojtan C. 2020. A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics. 39(4), 31. mla: Ishida, Sadashige, et al. “A Model for Soap Film Dynamics with Evolving Thickness.” ACM Transactions on Graphics, vol. 39, no. 4, 31, Association for Computing Machinery, 2020, doi:10.1145/3386569.3392405. short: S. Ishida, P. Synak, F. Narita, T. Hachisuka, C. Wojtan, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-13T22:01:18Z date_published: 2020-07-08T00:00:00Z date_updated: 2024-02-28T12:57:31Z day: '08' ddc: - '000' department: - _id: ChWo doi: 10.1145/3386569.3392405 ec_funded: 1 external_id: isi: - '000583700300004' file: - access_level: open_access checksum: 813831ca91319d794d9748c276b24578 content_type: application/pdf creator: dernst date_created: 2020-11-23T09:03:19Z date_updated: 2020-11-23T09:03:19Z file_id: '8795' file_name: 2020_soapfilm_submitted.pdf file_size: 14935529 relation: main_file success: 1 file_date_updated: 2020-11-23T09:03:19Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3386569.3392405 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: A model for soap film dynamics with evolving thickness type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '8385' abstract: - lang: eng text: 'We present a method for animating yarn-level cloth effects using a thin-shell solver. We accomplish this through numerical homogenization: we first use a large number of yarn-level simulations to build a model of the potential energy density of the cloth, and then use this energy density function to compute forces in a thin shell simulator. We model several yarn-based materials, including both woven and knitted fabrics. Our model faithfully reproduces expected effects like the stiffness of woven fabrics, and the highly deformable nature and anisotropy of knitted fabrics. Our approach does not require any real-world experiments nor measurements; because the method is based entirely on simulations, it can generate entirely new material models quickly, without the need for testing apparatuses or human intervention. We provide data-driven models of several woven and knitted fabrics, which can be used for efficient simulation with an off-the-shelf cloth solver.' acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. We also thank the creators of the Berkeley Garment Library [de Joya et al. 2012] for providing garment meshes, [Krishnamurthy and Levoy 1996] and [Turk and Levoy 1994] for the armadillo and bunny meshes, the creators of libWetCloth [Fei et al. 2018] for their implementation of discrete elastic rod forces, and Tomáš Skřivan for\r\ninspiring discussions and help with Mathematica code generation. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. Rahul Narain is supported by a Pankaj Gupta Young Faculty Fellowship and a gift from Adobe Inc." article_number: '48' article_processing_charge: No article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Sperl G, Narain R, Wojtan C. Homogenized yarn-level cloth. ACM Transactions on Graphics. 2020;39(4). doi:10.1145/3386569.3392412 apa: Sperl, G., Narain, R., & Wojtan, C. (2020). Homogenized yarn-level cloth. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3386569.3392412 chicago: Sperl, Georg, Rahul Narain, and Chris Wojtan. “Homogenized Yarn-Level Cloth.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3386569.3392412. ieee: G. Sperl, R. Narain, and C. Wojtan, “Homogenized yarn-level cloth,” ACM Transactions on Graphics, vol. 39, no. 4. Association for Computing Machinery, 2020. ista: Sperl G, Narain R, Wojtan C. 2020. Homogenized yarn-level cloth. ACM Transactions on Graphics. 39(4), 48. mla: Sperl, Georg, et al. “Homogenized Yarn-Level Cloth.” ACM Transactions on Graphics, vol. 39, no. 4, 48, Association for Computing Machinery, 2020, doi:10.1145/3386569.3392412. short: G. Sperl, R. Narain, C. Wojtan, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-13T22:01:18Z date_published: 2020-07-08T00:00:00Z date_updated: 2024-02-28T12:57:47Z day: '08' ddc: - '000' department: - _id: ChWo doi: 10.1145/3386569.3392412 ec_funded: 1 external_id: isi: - '000583700300021' file: - access_level: open_access checksum: cf4c1d361c3196c4bd424520a5588205 content_type: application/pdf creator: dernst date_created: 2020-11-23T09:01:22Z date_updated: 2020-11-23T09:01:22Z file_id: '8794' file_name: 2020_hylc_submitted.pdf file_size: 38922662 relation: main_file success: 1 file_date_updated: 2020-11-23T09:01:22Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3386569.3392412 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '12358' relation: dissertation_contains status: public scopus_import: '1' status: public title: Homogenized yarn-level cloth type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '8766' abstract: - lang: eng text: "The “procedural” approach to animating ocean waves is the dominant algorithm for animating larger bodies of water in\r\ninteractive applications as well as in off-line productions — it provides high visual quality with a low computational demand. In this paper, we widen the applicability of procedural water wave animation with an extension that guarantees the satisfaction of boundary conditions imposed by terrain while still approximating physical wave behavior. In combination with a particle system that models wave breaking, foam, and spray, this allows us to naturally model waves interacting with beaches and rocks. Our system is able to animate waves at large scales at interactive frame rates on a commodity PC." article_processing_charge: No article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Nuttapong full_name: Chentanez, Nuttapong last_name: Chentanez - first_name: Miles full_name: Macklin, Miles last_name: Macklin - first_name: Matthias full_name: Müller-Fischer, Matthias last_name: Müller-Fischer - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Hafner C, Chentanez N, Macklin M, Müller-Fischer M, Wojtan C. Making procedural water waves boundary-aware. Computer Graphics forum. 2020;39(8):47-54. doi:10.1111/cgf.14100 apa: 'Jeschke, S., Hafner, C., Chentanez, N., Macklin, M., Müller-Fischer, M., & Wojtan, C. (2020). Making procedural water waves boundary-aware. Computer Graphics Forum. Online Symposium: Wiley. https://doi.org/10.1111/cgf.14100' chicago: Jeschke, Stefan, Christian Hafner, Nuttapong Chentanez, Miles Macklin, Matthias Müller-Fischer, and Chris Wojtan. “Making Procedural Water Waves Boundary-Aware.” Computer Graphics Forum. Wiley, 2020. https://doi.org/10.1111/cgf.14100. ieee: S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-Fischer, and C. Wojtan, “Making procedural water waves boundary-aware,” Computer Graphics forum, vol. 39, no. 8. Wiley, pp. 47–54, 2020. ista: Jeschke S, Hafner C, Chentanez N, Macklin M, Müller-Fischer M, Wojtan C. 2020. Making procedural water waves boundary-aware. Computer Graphics forum. 39(8), 47–54. mla: Jeschke, Stefan, et al. “Making Procedural Water Waves Boundary-Aware.” Computer Graphics Forum, vol. 39, no. 8, Wiley, 2020, pp. 47–54, doi:10.1111/cgf.14100. short: S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-Fischer, C. Wojtan, Computer Graphics Forum 39 (2020) 47–54. conference: end_date: 2020-10-09 location: Online Symposium name: 'SCA: Symposium on Computer Animation' start_date: 2020-10-06 date_created: 2020-11-17T10:47:48Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-28T13:58:11Z day: '01' department: - _id: ChWo - _id: BeBi doi: 10.1111/cgf.14100 ec_funded: 1 external_id: isi: - '000591780400005' intvolume: ' 39' isi: 1 issue: '8' language: - iso: eng month: '12' oa_version: None page: 47-54 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics forum publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Making procedural water waves boundary-aware type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '6442' abstract: - lang: eng text: This paper investigates the use of fundamental solutions for animating detailed linear water surface waves. We first propose an analytical solution for efficiently animating circular ripples in closed form. We then show how to adapt the method of fundamental solutions (MFS) to create ambient waves interacting with complex obstacles. Subsequently, we present a novel wavelet-based discretization which outperforms the state of the art MFS approach for simulating time-varying water surface waves with moving obstacles. Our results feature high-resolution spatial details, interactions with complex boundaries, and large open ocean domains. Our method compares favorably with previous work as well as known analytical solutions. We also present comparisons between our method and real world examples. acknowledged_ssus: - _id: ScienComp article_number: '130' article_processing_charge: No author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Schreck C, Hafner C, Wojtan C. Fundamental solutions for water wave animation. ACM Transactions on Graphics. 2019;38(4). doi:10.1145/3306346.3323002 apa: Schreck, C., Hafner, C., & Wojtan, C. (2019). Fundamental solutions for water wave animation. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3306346.3323002 chicago: Schreck, Camille, Christian Hafner, and Chris Wojtan. “Fundamental Solutions for Water Wave Animation.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3306346.3323002. ieee: C. Schreck, C. Hafner, and C. Wojtan, “Fundamental solutions for water wave animation,” ACM Transactions on Graphics, vol. 38, no. 4. ACM, 2019. ista: Schreck C, Hafner C, Wojtan C. 2019. Fundamental solutions for water wave animation. ACM Transactions on Graphics. 38(4), 130. mla: Schreck, Camille, et al. “Fundamental Solutions for Water Wave Animation.” ACM Transactions on Graphics, vol. 38, no. 4, 130, ACM, 2019, doi:10.1145/3306346.3323002. short: C. Schreck, C. Hafner, C. Wojtan, ACM Transactions on Graphics 38 (2019). date_created: 2019-05-14T07:04:06Z date_published: 2019-07-01T00:00:00Z date_updated: 2023-08-25T10:18:46Z day: '01' ddc: - '000' - '005' department: - _id: ChWo doi: 10.1145/3306346.3323002 ec_funded: 1 external_id: isi: - '000475740600104' file: - access_level: open_access checksum: 1b737dfe3e051aba8f3f4ab1dceda673 content_type: application/pdf creator: dernst date_created: 2019-05-14T07:03:55Z date_updated: 2020-07-14T12:47:30Z file_id: '6443' file_name: 2019_ACM_Schreck.pdf file_size: 44328918 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ACM Transactions on Graphics publication_status: published publisher: ACM quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-method-makes-realistic-water-wave-animations-more-efficient/ scopus_import: '1' status: public title: Fundamental solutions for water wave animation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2019' ... --- _id: '7002' abstract: - lang: eng text: Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem. article_number: '37' article_processing_charge: No article_type: original author: - first_name: Ivo full_name: Kondapaneni, Ivo last_name: Kondapaneni - first_name: Petr full_name: Vevoda, Petr last_name: Vevoda - first_name: Pascal full_name: Grittmann, Pascal last_name: Grittmann - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Philipp full_name: Slusallek, Philipp last_name: Slusallek - first_name: Jaroslav full_name: Křivánek, Jaroslav last_name: Křivánek citation: ama: Kondapaneni I, Vevoda P, Grittmann P, Skrivan T, Slusallek P, Křivánek J. Optimal multiple importance sampling. ACM Transactions on Graphics. 2019;38(4). doi:10.1145/3306346.3323009 apa: Kondapaneni, I., Vevoda, P., Grittmann, P., Skrivan, T., Slusallek, P., & Křivánek, J. (2019). Optimal multiple importance sampling. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3306346.3323009 chicago: Kondapaneni, Ivo, Petr Vevoda, Pascal Grittmann, Tomas Skrivan, Philipp Slusallek, and Jaroslav Křivánek. “Optimal Multiple Importance Sampling.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3306346.3323009. ieee: I. Kondapaneni, P. Vevoda, P. Grittmann, T. Skrivan, P. Slusallek, and J. Křivánek, “Optimal multiple importance sampling,” ACM Transactions on Graphics, vol. 38, no. 4. ACM, 2019. ista: Kondapaneni I, Vevoda P, Grittmann P, Skrivan T, Slusallek P, Křivánek J. 2019. Optimal multiple importance sampling. ACM Transactions on Graphics. 38(4), 37. mla: Kondapaneni, Ivo, et al. “Optimal Multiple Importance Sampling.” ACM Transactions on Graphics, vol. 38, no. 4, 37, ACM, 2019, doi:10.1145/3306346.3323009. short: I. Kondapaneni, P. Vevoda, P. Grittmann, T. Skrivan, P. Slusallek, J. Křivánek, ACM Transactions on Graphics 38 (2019). date_created: 2019-11-12T13:05:40Z date_published: 2019-07-01T00:00:00Z date_updated: 2023-08-30T07:21:25Z day: '01' department: - _id: ChWo doi: 10.1145/3306346.3323009 ec_funded: 1 external_id: isi: - '000475740600011' intvolume: ' 38' isi: 1 issue: '4' language: - iso: eng month: '07' oa_version: None project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: Optimal multiple importance sampling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2019' ... --- _id: '7418' abstract: - lang: eng text: Multiple importance sampling (MIS) has become an indispensable tool in Monte Carlo rendering, widely accepted as a near-optimal solution for combining different sampling techniques. But an MIS combination, using the common balance or power heuristics, often results in an overly defensive estimator, leading to high variance. We show that by generalizing the MIS framework, variance can be substantially reduced. Specifically, we optimize one of the combined sampling techniques so as to decrease the overall variance of the resulting MIS estimator. We apply the approach to the computation of direct illumination due to an HDR environment map and to the computation of global illumination using a path guiding algorithm. The implementation can be as simple as subtracting a constant value from the tabulated sampling density done entirely in a preprocessing step. This produces a consistent noise reduction in all our tests with no negative influence on run time, no artifacts or bias, and no failure cases. article_number: '151' article_processing_charge: No article_type: original author: - first_name: Ondřej full_name: Karlík, Ondřej last_name: Karlík - first_name: Martin full_name: Šik, Martin last_name: Šik - first_name: Petr full_name: Vévoda, Petr last_name: Vévoda - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Jaroslav full_name: Křivánek, Jaroslav last_name: Křivánek citation: ama: 'Karlík O, Šik M, Vévoda P, Skrivan T, Křivánek J. MIS compensation: Optimizing sampling techniques in multiple importance sampling. ACM Transactions on Graphics. 2019;38(6). doi:10.1145/3355089.3356565' apa: 'Karlík, O., Šik, M., Vévoda, P., Skrivan, T., & Křivánek, J. (2019). MIS compensation: Optimizing sampling techniques in multiple importance sampling. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3355089.3356565' chicago: 'Karlík, Ondřej, Martin Šik, Petr Vévoda, Tomas Skrivan, and Jaroslav Křivánek. “MIS Compensation: Optimizing Sampling Techniques in Multiple Importance Sampling.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3355089.3356565.' ieee: 'O. Karlík, M. Šik, P. Vévoda, T. Skrivan, and J. Křivánek, “MIS compensation: Optimizing sampling techniques in multiple importance sampling,” ACM Transactions on Graphics, vol. 38, no. 6. ACM, 2019.' ista: 'Karlík O, Šik M, Vévoda P, Skrivan T, Křivánek J. 2019. MIS compensation: Optimizing sampling techniques in multiple importance sampling. ACM Transactions on Graphics. 38(6), 151.' mla: 'Karlík, Ondřej, et al. “MIS Compensation: Optimizing Sampling Techniques in Multiple Importance Sampling.” ACM Transactions on Graphics, vol. 38, no. 6, 151, ACM, 2019, doi:10.1145/3355089.3356565.' short: O. Karlík, M. Šik, P. Vévoda, T. Skrivan, J. Křivánek, ACM Transactions on Graphics 38 (2019). date_created: 2020-01-30T10:19:43Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-09-06T15:22:23Z day: '01' department: - _id: ChWo doi: 10.1145/3355089.3356565 external_id: isi: - '000498397300001' intvolume: ' 38' isi: 1 issue: '6' language: - iso: eng month: '11' oa_version: None publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: 'MIS compensation: Optimizing sampling techniques in multiple importance sampling' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 38 year: '2019' ... --- _id: '6642' abstract: - lang: eng text: We present a thermodynamically based approach to the design of models for viscoelastic fluids with stress diffusion effect. In particular, we show how to add a stress diffusion term to some standard viscoelastic rate-type models (Giesekus, FENE-P, Johnson–Segalman, Phan-Thien–Tanner and Bautista–Manero–Puig) so that the resulting models with the added stress diffusion term are thermodynamically consistent in the sense that they obey the first and the second law of thermodynamics. We point out the potential applications of the provided thermodynamical background in the study of flows of fluids described by the proposed models. article_number: '020002' article_processing_charge: No author: - first_name: Mark full_name: Dostalík, Mark last_name: Dostalík - first_name: Vít full_name: Pruša, Vít last_name: Pruša - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan citation: ama: 'Dostalík M, Pruša V, Skrivan T. On diffusive variants of some classical viscoelastic rate-type models. In: AIP Conference Proceedings. Vol 2107. AIP Publishing; 2019. doi:10.1063/1.5109493' apa: 'Dostalík, M., Pruša, V., & Skrivan, T. (2019). On diffusive variants of some classical viscoelastic rate-type models. In AIP Conference Proceedings (Vol. 2107). Zlin, Czech Republic: AIP Publishing. https://doi.org/10.1063/1.5109493' chicago: Dostalík, Mark, Vít Pruša, and Tomas Skrivan. “On Diffusive Variants of Some Classical Viscoelastic Rate-Type Models.” In AIP Conference Proceedings, Vol. 2107. AIP Publishing, 2019. https://doi.org/10.1063/1.5109493. ieee: M. Dostalík, V. Pruša, and T. Skrivan, “On diffusive variants of some classical viscoelastic rate-type models,” in AIP Conference Proceedings, Zlin, Czech Republic, 2019, vol. 2107. ista: Dostalík M, Pruša V, Skrivan T. 2019. On diffusive variants of some classical viscoelastic rate-type models. AIP Conference Proceedings. 8th International Conference on Novel Trends in Rheology vol. 2107, 020002. mla: Dostalík, Mark, et al. “On Diffusive Variants of Some Classical Viscoelastic Rate-Type Models.” AIP Conference Proceedings, vol. 2107, 020002, AIP Publishing, 2019, doi:10.1063/1.5109493. short: M. Dostalík, V. Pruša, T. Skrivan, in:, AIP Conference Proceedings, AIP Publishing, 2019. conference: end_date: 2019-07-31 location: Zlin, Czech Republic name: 8th International Conference on Novel Trends in Rheology start_date: 2019-07-30 date_created: 2019-07-15T10:07:09Z date_published: 2019-05-21T00:00:00Z date_updated: 2024-02-28T13:01:28Z day: '21' department: - _id: ChWo doi: 10.1063/1.5109493 external_id: arxiv: - '1902.07983' isi: - '000479303100002' intvolume: ' 2107' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.07983 month: '05' oa: 1 oa_version: Preprint publication: AIP Conference Proceedings publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: On diffusive variants of some classical viscoelastic rate-type models type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2107 year: '2019' ... --- _id: '135' abstract: - lang: eng text: The Fluid Implicit Particle method (FLIP) reduces numerical dissipation by combining particles with grids. To improve performance, the subsequent narrow band FLIP method (NB‐FLIP) uses a FLIP‐based fluid simulation only near the liquid surface and a traditional grid‐based fluid simulation away from the surface. This spatially‐limited FLIP simulation significantly reduces the number of particles and alleviates a computational bottleneck. In this paper, we extend the NB‐FLIP idea even further, by allowing a simulation to transition between a FLIP‐like fluid simulation and a grid‐based simulation in arbitrary locations, not just near the surface. This approach leads to even more savings in memory and computation, because we can concentrate the particles only in areas where they are needed. More importantly, this new method allows us to seamlessly transition to smooth implicit surface geometry wherever the particle‐based simulation is unnecessary. Consequently, our method leads to a practical algorithm for avoiding the noisy surface artifacts associated with particle‐based liquid simulations, while simultaneously maintaining the benefits of a FLIP simulation in regions of dynamic motion. alternative_title: - Eurographics article_processing_charge: No article_type: original author: - first_name: Takahiro full_name: Sato, Takahiro last_name: Sato - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Takeo full_name: Igarashi, Takeo last_name: Igarashi - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando citation: ama: Sato T, Wojtan C, Thuerey N, Igarashi T, Ando R. Extended narrow band FLIP for liquid simulations. Computer Graphics Forum. 2018;37(2):169-177. doi:10.1111/cgf.13351 apa: Sato, T., Wojtan, C., Thuerey, N., Igarashi, T., & Ando, R. (2018). Extended narrow band FLIP for liquid simulations. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.13351 chicago: Sato, Takahiro, Chris Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando. “Extended Narrow Band FLIP for Liquid Simulations.” Computer Graphics Forum. Wiley, 2018. https://doi.org/10.1111/cgf.13351. ieee: T. Sato, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando, “Extended narrow band FLIP for liquid simulations,” Computer Graphics Forum, vol. 37, no. 2. Wiley, pp. 169–177, 2018. ista: Sato T, Wojtan C, Thuerey N, Igarashi T, Ando R. 2018. Extended narrow band FLIP for liquid simulations. Computer Graphics Forum. 37(2), 169–177. mla: Sato, Takahiro, et al. “Extended Narrow Band FLIP for Liquid Simulations.” Computer Graphics Forum, vol. 37, no. 2, Wiley, 2018, pp. 169–77, doi:10.1111/cgf.13351. short: T. Sato, C. Wojtan, N. Thuerey, T. Igarashi, R. Ando, Computer Graphics Forum 37 (2018) 169–177. date_created: 2018-12-11T11:44:49Z date_published: 2018-05-22T00:00:00Z date_updated: 2023-09-11T14:00:26Z day: '22' ddc: - '006' department: - _id: ChWo doi: 10.1111/cgf.13351 ec_funded: 1 external_id: isi: - '000434085600016' file: - access_level: open_access checksum: 8edb90da8a72395eb5d970580e0925b6 content_type: application/pdf creator: wojtan date_created: 2020-10-08T08:38:23Z date_updated: 2020-10-08T08:38:23Z file_id: '8627' file_name: exnbflip.pdf file_size: 54309947 relation: main_file success: 1 file_date_updated: 2020-10-08T08:38:23Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 169 - 177 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_identifier: issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Extended narrow band FLIP for liquid simulations type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2018' ... --- _id: '134' abstract: - lang: eng text: "The current state of the art in real-time two-dimensional water wave simulation requires developers to choose between efficient Fourier-based methods, which lack interactions with moving obstacles, and finite-difference or finite element methods, which handle environmental interactions but are significantly more expensive. This paper attempts to bridge this long-standing gap between complexity and performance, by proposing a new wave simulation method that can faithfully simulate wave interactions with moving obstacles in real time while simultaneously preserving minute details and accommodating very large simulation domains.\r\n\r\nPrevious methods for simulating 2D water waves directly compute the change in height of the water surface, a strategy which imposes limitations based on the CFL condition (fast moving waves require small time steps) and Nyquist's limit (small wave details require closely-spaced simulation variables). This paper proposes a novel wavelet transformation that discretizes the liquid motion in terms of amplitude-like functions that vary over space, frequency, and direction, effectively generalizing Fourier-based methods to handle local interactions. Because these new variables change much more slowly over space than the original water height function, our change of variables drastically reduces the limitations of the CFL condition and Nyquist limit, allowing us to simulate highly detailed water waves at very large visual resolutions. Our discretization is amenable to fast summation and easy to parallelize. We also present basic extensions like pre-computed wave paths and two-way solid fluid coupling. Finally, we argue that our discretization provides a convenient set of variables for artistic manipulation, which we illustrate with a novel wave-painting interface." acknowledged_ssus: - _id: ScienComp alternative_title: - SIGGRAPH article_number: '94' article_processing_charge: No author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Matthias full_name: Mueller Fischer, Matthias last_name: Mueller Fischer - first_name: Nuttapong full_name: Chentanez, Nuttapong last_name: Chentanez - first_name: Miles full_name: Macklin, Miles last_name: Macklin - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Skrivan T, Mueller Fischer M, Chentanez N, Macklin M, Wojtan C. Water surface wavelets. ACM Transactions on Graphics. 2018;37(4). doi:10.1145/3197517.3201336 apa: Jeschke, S., Skrivan, T., Mueller Fischer, M., Chentanez, N., Macklin, M., & Wojtan, C. (2018). Water surface wavelets. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3197517.3201336 chicago: Jeschke, Stefan, Tomas Skrivan, Matthias Mueller Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan. “Water Surface Wavelets.” ACM Transactions on Graphics. ACM, 2018. https://doi.org/10.1145/3197517.3201336. ieee: S. Jeschke, T. Skrivan, M. Mueller Fischer, N. Chentanez, M. Macklin, and C. Wojtan, “Water surface wavelets,” ACM Transactions on Graphics, vol. 37, no. 4. ACM, 2018. ista: Jeschke S, Skrivan T, Mueller Fischer M, Chentanez N, Macklin M, Wojtan C. 2018. Water surface wavelets. ACM Transactions on Graphics. 37(4), 94. mla: Jeschke, Stefan, et al. “Water Surface Wavelets.” ACM Transactions on Graphics, vol. 37, no. 4, 94, ACM, 2018, doi:10.1145/3197517.3201336. short: S. Jeschke, T. Skrivan, M. Mueller Fischer, N. Chentanez, M. Macklin, C. Wojtan, ACM Transactions on Graphics 37 (2018). date_created: 2018-12-11T11:44:48Z date_published: 2018-07-30T00:00:00Z date_updated: 2024-02-28T13:58:51Z day: '30' ddc: - '000' department: - _id: ChWo doi: 10.1145/3197517.3201336 ec_funded: 1 external_id: isi: - '000448185000055' file: - access_level: open_access checksum: db75ebabe2ec432bf41389e614d6ef62 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:59:23Z date_updated: 2020-07-14T12:44:45Z file_id: '5744' file_name: 2018_ACM_Jeschke.pdf file_size: 22185016 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '7789' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-water-simulation-captures-small-details-even-in-large-scenes/ scopus_import: '1' status: public title: Water surface wavelets tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2018' ... --- _id: '470' abstract: - lang: eng text: This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios. acknowledged_ssus: - _id: ScienComp article_number: '103' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Water wave packets. ACM Transactions on Graphics. 2017;36(4). doi:10.1145/3072959.3073678 apa: Jeschke, S., & Wojtan, C. (2017). Water wave packets. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3072959.3073678 chicago: Jeschke, Stefan, and Chris Wojtan. “Water Wave Packets.” ACM Transactions on Graphics. ACM, 2017. https://doi.org/10.1145/3072959.3073678. ieee: S. Jeschke and C. Wojtan, “Water wave packets,” ACM Transactions on Graphics, vol. 36, no. 4. ACM, 2017. ista: Jeschke S, Wojtan C. 2017. Water wave packets. ACM Transactions on Graphics. 36(4), 103. mla: Jeschke, Stefan, and Chris Wojtan. “Water Wave Packets.” ACM Transactions on Graphics, vol. 36, no. 4, 103, ACM, 2017, doi:10.1145/3072959.3073678. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 36 (2017). date_created: 2018-12-11T11:46:39Z date_published: 2017-07-01T00:00:00Z date_updated: 2023-02-23T12:20:26Z day: '01' ddc: - '006' department: - _id: ChWo doi: 10.1145/3072959.3073678 ec_funded: 1 file: - access_level: open_access checksum: 82a3b2bfeee4ddef16ecc21675d1a48a content_type: application/pdf creator: wojtan date_created: 2020-01-24T09:32:35Z date_updated: 2020-07-14T12:46:34Z file_id: '7359' file_name: wavepackets_final.pdf file_size: 13131683 relation: main_file file_date_updated: 2020-07-14T12:46:34Z has_accepted_license: '1' intvolume: ' 36' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: issn: - '07300301' publication_status: published publisher: ACM publist_id: '7350' quality_controlled: '1' scopus_import: 1 status: public title: Water wave packets type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2017' ... --- _id: '670' abstract: - lang: eng text: We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears. article_processing_charge: No article_type: original author: - first_name: Camille full_name: Schreck, Camille id: 2B14B676-F248-11E8-B48F-1D18A9856A87 last_name: Schreck - first_name: Damien full_name: Rohmer, Damien last_name: Rohmer - first_name: Stefanie full_name: Hahmann, Stefanie last_name: Hahmann citation: ama: Schreck C, Rohmer D, Hahmann S. Interactive paper tearing. Computer Graphics Forum. 2017;36(2):95-106. doi:10.1111/cgf.13110 apa: Schreck, C., Rohmer, D., & Hahmann, S. (2017). Interactive paper tearing. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.13110 chicago: Schreck, Camille, Damien Rohmer, and Stefanie Hahmann. “Interactive Paper Tearing.” Computer Graphics Forum. Wiley, 2017. https://doi.org/10.1111/cgf.13110. ieee: C. Schreck, D. Rohmer, and S. Hahmann, “Interactive paper tearing,” Computer Graphics Forum, vol. 36, no. 2. Wiley, pp. 95–106, 2017. ista: Schreck C, Rohmer D, Hahmann S. 2017. Interactive paper tearing. Computer Graphics Forum. 36(2), 95–106. mla: Schreck, Camille, et al. “Interactive Paper Tearing.” Computer Graphics Forum, vol. 36, no. 2, Wiley, 2017, pp. 95–106, doi:10.1111/cgf.13110. short: C. Schreck, D. Rohmer, S. Hahmann, Computer Graphics Forum 36 (2017) 95–106. date_created: 2018-12-11T11:47:49Z date_published: 2017-05-01T00:00:00Z date_updated: 2021-01-12T08:08:37Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.13110 intvolume: ' 36' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.inria.fr/hal-01647113/file/eg_2017_schreck_paper_tearing.pdf month: '05' oa: 1 oa_version: Published Version page: 95 - 106 project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication: Computer Graphics Forum publication_identifier: issn: - '01677055' publication_status: published publisher: Wiley publist_id: '7056' quality_controlled: '1' scopus_import: 1 status: public title: Interactive paper tearing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2017' ... --- _id: '1367' abstract: - lang: eng text: One of the major challenges in physically based modelling is making simulations efficient. Adaptive models provide an essential solution to these efficiency goals. These models are able to self-adapt in space and time, attempting to provide the best possible compromise between accuracy and speed. This survey reviews the adaptive solutions proposed so far in computer graphics. Models are classified according to the strategy they use for adaptation, from time-stepping and freezing techniques to geometric adaptivity in the form of structured grids, meshes and particles. Applications range from fluids, through deformable bodies, to articulated solids. acknowledgement: This work was partly supported by the starting grants ADAPT and BigSplash, as well as the advanced grant EXPRESSIVE from the European Research Council (ERC-2012-StG_20111012, ERC-2014-StG_638176 and ERC-2011-ADG_20110209). article_processing_charge: No author: - first_name: Pierre full_name: Manteaux, Pierre last_name: Manteaux - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Stéphane full_name: Redon, Stéphane last_name: Redon - first_name: François full_name: Faure, François last_name: Faure - first_name: Marie full_name: Cani, Marie last_name: Cani citation: ama: Manteaux P, Wojtan C, Narain R, Redon S, Faure F, Cani M. Adaptive physically based models in computer graphics. Computer Graphics Forum. 2017;36(6):312-337. doi:10.1111/cgf.12941 apa: Manteaux, P., Wojtan, C., Narain, R., Redon, S., Faure, F., & Cani, M. (2017). Adaptive physically based models in computer graphics. Computer Graphics Forum. Wiley-Blackwell. https://doi.org/10.1111/cgf.12941 chicago: Manteaux, Pierre, Chris Wojtan, Rahul Narain, Stéphane Redon, François Faure, and Marie Cani. “Adaptive Physically Based Models in Computer Graphics.” Computer Graphics Forum. Wiley-Blackwell, 2017. https://doi.org/10.1111/cgf.12941. ieee: P. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M. Cani, “Adaptive physically based models in computer graphics,” Computer Graphics Forum, vol. 36, no. 6. Wiley-Blackwell, pp. 312–337, 2017. ista: Manteaux P, Wojtan C, Narain R, Redon S, Faure F, Cani M. 2017. Adaptive physically based models in computer graphics. Computer Graphics Forum. 36(6), 312–337. mla: Manteaux, Pierre, et al. “Adaptive Physically Based Models in Computer Graphics.” Computer Graphics Forum, vol. 36, no. 6, Wiley-Blackwell, 2017, pp. 312–37, doi:10.1111/cgf.12941. short: P. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, M. Cani, Computer Graphics Forum 36 (2017) 312–337. date_created: 2018-12-11T11:51:37Z date_published: 2017-09-01T00:00:00Z date_updated: 2023-09-20T11:05:36Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.12941 external_id: isi: - '000408634200019' file: - access_level: open_access checksum: 7676e9a9ead6d58c3000988c97deb2ef content_type: application/pdf creator: system date_created: 2018-12-12T10:16:21Z date_updated: 2020-07-14T12:44:47Z file_id: '5208' file_name: IST-2016-634-v1+1_starAdaptivity-cgf.pdf file_size: 1434439 relation: main_file file_date_updated: 2020-07-14T12:44:47Z has_accepted_license: '1' intvolume: ' 36' isi: 1 issue: '6' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 312 - 337 publication: Computer Graphics Forum publication_identifier: issn: - '01677055' publication_status: published publisher: Wiley-Blackwell publist_id: '5873' pubrep_id: '634' quality_controlled: '1' scopus_import: '1' status: public title: Adaptive physically based models in computer graphics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 36 year: '2017' ... --- _id: '1152' abstract: - lang: eng text: We propose a new memetic strategy that can solve the multi-physics, complex inverse problems, formulated as the multi-objective optimization ones, in which objectives are misfits between the measured and simulated states of various governing processes. The multi-deme structure of the strategy allows for both, intensive, relatively cheap exploration with a moderate accuracy and more accurate search many regions of Pareto set in parallel. The special type of selection operator prefers the coherent alternative solutions, eliminating artifacts appearing in the particular processes. The additional accuracy increment is obtained by the parallel convex searches applied to the local scalarizations of the misfit vector. The strategy is dedicated for solving ill-conditioned problems, for which inverting the single physical process can lead to the ambiguous results. The skill of the selection in artifact elimination is shown on the benchmark problem, while the whole strategy was applied for identification of oil deposits, where the misfits are related to various frequencies of the magnetic and electric waves of the magnetotelluric measurements. 2016 Elsevier B.V. article_processing_charge: No author: - first_name: Ewa P full_name: Gajda-Zagorska, Ewa P id: 47794CF0-F248-11E8-B48F-1D18A9856A87 last_name: Gajda-Zagorska - first_name: Robert full_name: Schaefer, Robert last_name: Schaefer - first_name: Maciej full_name: Smołka, Maciej last_name: Smołka - first_name: David full_name: Pardo, David last_name: Pardo - first_name: Julen full_name: Alvarez Aramberri, Julen last_name: Alvarez Aramberri citation: ama: Gajda-Zagorska EP, Schaefer R, Smołka M, Pardo D, Alvarez Aramberri J. A multi objective memetic inverse solver reinforced by local optimization methods. Journal of Computational Science. 2017;18:85-94. doi:10.1016/j.jocs.2016.06.007 apa: Gajda-Zagorska, E. P., Schaefer, R., Smołka, M., Pardo, D., & Alvarez Aramberri, J. (2017). A multi objective memetic inverse solver reinforced by local optimization methods. Journal of Computational Science. Elsevier. https://doi.org/10.1016/j.jocs.2016.06.007 chicago: Gajda-Zagorska, Ewa P, Robert Schaefer, Maciej Smołka, David Pardo, and Julen Alvarez Aramberri. “A Multi Objective Memetic Inverse Solver Reinforced by Local Optimization Methods.” Journal of Computational Science. Elsevier, 2017. https://doi.org/10.1016/j.jocs.2016.06.007. ieee: E. P. Gajda-Zagorska, R. Schaefer, M. Smołka, D. Pardo, and J. Alvarez Aramberri, “A multi objective memetic inverse solver reinforced by local optimization methods,” Journal of Computational Science, vol. 18. Elsevier, pp. 85–94, 2017. ista: Gajda-Zagorska EP, Schaefer R, Smołka M, Pardo D, Alvarez Aramberri J. 2017. A multi objective memetic inverse solver reinforced by local optimization methods. Journal of Computational Science. 18, 85–94. mla: Gajda-Zagorska, Ewa P., et al. “A Multi Objective Memetic Inverse Solver Reinforced by Local Optimization Methods.” Journal of Computational Science, vol. 18, Elsevier, 2017, pp. 85–94, doi:10.1016/j.jocs.2016.06.007. short: E.P. Gajda-Zagorska, R. Schaefer, M. Smołka, D. Pardo, J. Alvarez Aramberri, Journal of Computational Science 18 (2017) 85–94. date_created: 2018-12-11T11:50:26Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T11:29:44Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1016/j.jocs.2016.06.007 external_id: isi: - '000393528700009' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-01-18T08:43:16Z date_updated: 2019-01-18T08:43:16Z file_id: '5842' file_name: 2016_jocs_ewa.pdf file_size: 1083911 relation: main_file success: 1 file_date_updated: 2019-01-18T08:43:16Z has_accepted_license: '1' intvolume: ' 18' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 85 - 94 publication: Journal of Computational Science publication_identifier: issn: - '18777503' publication_status: published publisher: Elsevier publist_id: '6206' quality_controlled: '1' scopus_import: '1' status: public title: A multi objective memetic inverse solver reinforced by local optimization methods type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 18 year: '2017' ... --- _id: '998' abstract: - lang: eng text: 'A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail. ' article_processing_charge: No author: - first_name: Sylvestre Alvise full_name: Rebuffi, Sylvestre Alvise last_name: Rebuffi - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 citation: ama: 'Rebuffi SA, Kolesnikov A, Sperl G, Lampert C. iCaRL: Incremental classifier and representation learning. In: Vol 2017. IEEE; 2017:5533-5542. doi:10.1109/CVPR.2017.587' apa: 'Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. (2017). iCaRL: Incremental classifier and representation learning (Vol. 2017, pp. 5533–5542). Presented at the CVPR: Computer Vision and Pattern Recognition, Honolulu, HA, United States: IEEE. https://doi.org/10.1109/CVPR.2017.587' chicago: 'Rebuffi, Sylvestre Alvise, Alexander Kolesnikov, Georg Sperl, and Christoph Lampert. “ICaRL: Incremental Classifier and Representation Learning,” 2017:5533–42. IEEE, 2017. https://doi.org/10.1109/CVPR.2017.587.' ieee: 'S. A. Rebuffi, A. Kolesnikov, G. Sperl, and C. Lampert, “iCaRL: Incremental classifier and representation learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Honolulu, HA, United States, 2017, vol. 2017, pp. 5533–5542.' ista: 'Rebuffi SA, Kolesnikov A, Sperl G, Lampert C. 2017. iCaRL: Incremental classifier and representation learning. CVPR: Computer Vision and Pattern Recognition vol. 2017, 5533–5542.' mla: 'Rebuffi, Sylvestre Alvise, et al. ICaRL: Incremental Classifier and Representation Learning. Vol. 2017, IEEE, 2017, pp. 5533–42, doi:10.1109/CVPR.2017.587.' short: S.A. Rebuffi, A. Kolesnikov, G. Sperl, C. Lampert, in:, IEEE, 2017, pp. 5533–5542. conference: end_date: 2017-07-26 location: Honolulu, HA, United States name: 'CVPR: Computer Vision and Pattern Recognition' start_date: 2017-07-21 date_created: 2018-12-11T11:49:37Z date_published: 2017-04-14T00:00:00Z date_updated: 2023-09-22T09:51:58Z day: '14' department: - _id: ChLa - _id: ChWo doi: 10.1109/CVPR.2017.587 ec_funded: 1 external_id: isi: - '000418371405066' intvolume: ' 2017' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1611.07725 month: '04' oa: 1 oa_version: Submitted Version page: 5533 - 5542 project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: isbn: - 978-153860457-1 publication_status: published publisher: IEEE publist_id: '6400' quality_controlled: '1' scopus_import: '1' status: public title: 'iCaRL: Incremental classifier and representation learning' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2017 year: '2017' ... --- _id: '839' abstract: - lang: eng text: 'This thesis describes a brittle fracture simulation method for visual effects applications. Building upon a symmetric Galerkin boundary element method, we first compute stress intensity factors following the theory of linear elastic fracture mechanics. We then use these stress intensities to simulate the motion of a propagating crack front at a significantly higher resolution than the overall deformation of the breaking object. Allowing for spatial variations of the material''s toughness during crack propagation produces visually realistic, highly-detailed fracture surfaces. Furthermore, we introduce approximations for stress intensities and crack opening displacements, resulting in both practical speed-up and theoretically superior runtime complexity compared to previous methods. While we choose a quasi-static approach to fracture mechanics, ignoring dynamic deformations, we also couple our fracture simulation framework to a standard rigid-body dynamics solver, enabling visual effects artists to simulate both large scale motion, as well as fracturing due to collision forces in a combined system. As fractures inside of an object grow, their geometry must be represented both in the coarse boundary element mesh, as well as at the desired fine output resolution. Using a boundary element method, we avoid complicated volumetric meshing operations. Instead we describe a simple set of surface meshing operations that allow us to progressively add cracks to the mesh of an object and still re-use all previously computed entries of the linear boundary element system matrix. On the high resolution level, we opt for an implicit surface representation. We then describe how to capture fracture surfaces during crack propagation, as well as separate the individual fragments resulting from the fracture process, based on this implicit representation. We show results obtained with our method, either solving the full boundary element system in every time step, or alternatively using our fast approximations. These results demonstrate that both of these methods perform well in basic test cases and produce realistic fracture surfaces. Furthermore we show that our fast approximations substantially out-perform the standard approach in more demanding scenarios. Finally, these two methods naturally combine, using the full solution while the problem size is manageably small and switching to the fast approximations later on. The resulting hybrid method gives the user a direct way to choose between speed and accuracy of the simulation. ' acknowledgement: "ERC H2020 programme (grant agreement no. 638176)\r\nFirst of all, let me thank my committee members, especially my supervisor, Chris\r\nWojtan, for supporting me throughout my PhD. Obviously, none of this work would\r\nhave been possible without you.\r\nFurthermore, Thank You to all the people who have contributed to this work in various\r\nways, in particular Martin Schanz and his group for providing and supporting the\r\nHyENA boundary element library, as well as Eder Miguel and Morten Bojsen-Hansen\r\nfor (repeatedly) proof reading and providing valuable suggestions during the writing\r\nof this thesis.\r\nI would also like to thank Bernd Bickel, and all the members – past and present – of his\r\nand Chris’ research groups at IST Austria for always providing honest and insightful\r\nfeedback throughout many joint group meetings, as well as Christopher Batty, Eitan\r\nGrinspun, and Fang Da for many insights into boundary element methods during our\r\ncollaboration.\r\nAs only virtual objects have been harmed in the process of creating this work, I would\r\nlike to acknowledge the Stanford scanning repository for providing the “Bunny” and\r\n“Armadillo” models, the AIM@SHAPE repository for “Pierre’s hand, watertight”, and\r\nS. Gainsbourg for the “Column” via Archive3D.net. Sorry for breaking these models\r\nin many different ways.\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: David full_name: Hahn, David id: 357A6A66-F248-11E8-B48F-1D18A9856A87 last_name: Hahn citation: ama: Hahn D. Brittle fracture simulation with boundary elements for computer graphics. 2017. doi:10.15479/AT:ISTA:th_855 apa: Hahn, D. (2017). Brittle fracture simulation with boundary elements for computer graphics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_855 chicago: Hahn, David. “Brittle Fracture Simulation with Boundary Elements for Computer Graphics.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_855. ieee: D. Hahn, “Brittle fracture simulation with boundary elements for computer graphics,” Institute of Science and Technology Austria, 2017. ista: Hahn D. 2017. Brittle fracture simulation with boundary elements for computer graphics. Institute of Science and Technology Austria. mla: Hahn, David. Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_855. short: D. Hahn, Brittle Fracture Simulation with Boundary Elements for Computer Graphics, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:47Z date_published: 2017-08-14T00:00:00Z date_updated: 2024-02-21T13:48:02Z day: '14' ddc: - '004' - '005' - '006' - '531' - '621' degree_awarded: PhD department: - _id: ChWo doi: 10.15479/AT:ISTA:th_855 ec_funded: 1 file: - access_level: open_access checksum: 6c1ae8c90bfaba5e089417fefbc4a272 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:46Z date_updated: 2020-07-14T12:48:13Z file_id: '5100' file_name: IST-2017-855-v1+1_thesis_online_pdfA.pdf file_size: 14596191 relation: main_file - access_level: closed checksum: 421672f68d563b029869c5cf1713f919 content_type: application/zip creator: dernst date_created: 2019-04-05T08:40:30Z date_updated: 2020-07-14T12:48:13Z file_id: '6207' file_name: 2017_thesis_Hahn_source.zip file_size: 15060566 relation: source_file file_date_updated: 2020-07-14T12:48:13Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ month: '08' oa: 1 oa_version: Published Version page: '124' project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6809' pubrep_id: '855' related_material: record: - id: '1362' relation: part_of_dissertation status: public - id: '1633' relation: part_of_dissertation status: public - id: '5568' relation: popular_science status: public status: public supervisor: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 title: Brittle fracture simulation with boundary elements for computer graphics tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '5568' abstract: - lang: eng text: Includes source codes, test cases, and example data used in the thesis Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Also includes pre-built binaries of the HyENA library, but not sources - please contact the HyENA authors to obtain these sources if required (https://mech.tugraz.at/hyena) article_processing_charge: No author: - first_name: David full_name: Hahn, David id: 357A6A66-F248-11E8-B48F-1D18A9856A87 last_name: Hahn citation: ama: 'Hahn D. Source codes: Brittle fracture simulation with boundary elements for computer graphics. 2017. doi:10.15479/AT:ISTA:73' apa: 'Hahn, D. (2017). Source codes: Brittle fracture simulation with boundary elements for computer graphics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:73' chicago: 'Hahn, David. “Source Codes: Brittle Fracture Simulation with Boundary Elements for Computer Graphics.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:73.' ieee: 'D. Hahn, “Source codes: Brittle fracture simulation with boundary elements for computer graphics.” Institute of Science and Technology Austria, 2017.' ista: 'Hahn D. 2017. Source codes: Brittle fracture simulation with boundary elements for computer graphics, Institute of Science and Technology Austria, 10.15479/AT:ISTA:73.' mla: 'Hahn, David. Source Codes: Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:73.' short: D. Hahn, (2017). datarep_id: '73' date_created: 2018-12-12T12:31:35Z date_published: 2017-08-16T00:00:00Z date_updated: 2024-02-21T13:48:02Z day: '16' ddc: - '004' department: - _id: ChWo doi: 10.15479/AT:ISTA:73 ec_funded: 1 file: - access_level: open_access checksum: 2323a755842a3399cbc47d76545fc9a0 content_type: application/zip creator: system date_created: 2018-12-12T13:02:57Z date_updated: 2020-07-14T12:47:04Z file_id: '5615' file_name: IST-2017-73-v1+1_FractureRB_v1.1_2017_07_20_final_public.zip file_size: 199353471 relation: main_file file_date_updated: 2020-07-14T12:47:04Z has_accepted_license: '1' keyword: - Boundary elements - brittle fracture - computer graphics - fracture simulation month: '08' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publisher: Institute of Science and Technology Austria related_material: record: - id: '839' relation: research_paper status: public status: public title: 'Source codes: Brittle fracture simulation with boundary elements for computer graphics' tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '1136' abstract: - lang: eng text: We propose an interactive sculpting system for seamlessly editing pre-computed animations of liquid, without the need for any resimulation. The input is a sequence of meshes without correspondences representing the liquid surface over time. Our method enables the efficient selection of consistent space-time parts of this animation, such as moving waves or droplets, which we call space-time features. Once selected, a feature can be copied, edited, or duplicated and then pasted back anywhere in space and time in the same or in another liquid animation sequence. Our method circumvents tedious user interactions by automatically computing the spatial and temporal ranges of the selected feature. We also provide space-time shape editing tools for non-uniform scaling, rotation, trajectory changes, and temporal editing to locally speed up or slow down motion. Using our tools, the user can edit and progressively refine any input simulation result, possibly using a library of precomputed space-time features extracted from other animations. In contrast to the trial-and-error loop usually required to edit animation results through the tuning of indirect simulation parameters, our method gives the user full control over the edited space-time behaviors. © 2016 Copyright held by the owner/author(s). acknowledgement: This work was partly supported by the starting grant BigSplash, as well as the advanced grant EXPRESSIVE from the European Research Council (ERC-2014-StG 638176 , and ERC-2011-ADG 20110209). article_number: '2994261' article_processing_charge: No author: - first_name: Pierre full_name: Manteaux, Pierre last_name: Manteaux - first_name: Ulysse full_name: Vimont, Ulysse last_name: Vimont - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Damien full_name: Rohmer, Damien last_name: Rohmer - first_name: Marie full_name: Cani, Marie last_name: Cani citation: ama: 'Manteaux P, Vimont U, Wojtan C, Rohmer D, Cani M. Space-time sculpting of liquid animation. In: Proceedings of the 9th International Conference on Motion in Games . ACM; 2016. doi:10.1145/2994258.2994261' apa: 'Manteaux, P., Vimont, U., Wojtan, C., Rohmer, D., & Cani, M. (2016). Space-time sculpting of liquid animation. In Proceedings of the 9th International Conference on Motion in Games . San Francisco, CA, USA: ACM. https://doi.org/10.1145/2994258.2994261' chicago: Manteaux, Pierre, Ulysse Vimont, Chris Wojtan, Damien Rohmer, and Marie Cani. “Space-Time Sculpting of Liquid Animation.” In Proceedings of the 9th International Conference on Motion in Games . ACM, 2016. https://doi.org/10.1145/2994258.2994261. ieee: P. Manteaux, U. Vimont, C. Wojtan, D. Rohmer, and M. Cani, “Space-time sculpting of liquid animation,” in Proceedings of the 9th International Conference on Motion in Games , San Francisco, CA, USA, 2016. ista: 'Manteaux P, Vimont U, Wojtan C, Rohmer D, Cani M. 2016. Space-time sculpting of liquid animation. Proceedings of the 9th International Conference on Motion in Games . MIG: Motion in Games, 2994261.' mla: Manteaux, Pierre, et al. “Space-Time Sculpting of Liquid Animation.” Proceedings of the 9th International Conference on Motion in Games , 2994261, ACM, 2016, doi:10.1145/2994258.2994261. short: P. Manteaux, U. Vimont, C. Wojtan, D. Rohmer, M. Cani, in:, Proceedings of the 9th International Conference on Motion in Games , ACM, 2016. conference: end_date: 2016-10-12 location: San Francisco, CA, USA name: 'MIG: Motion in Games' start_date: 2016-10-10 date_created: 2018-12-11T11:50:20Z date_published: 2016-10-10T00:00:00Z date_updated: 2023-02-21T09:49:49Z day: '10' ddc: - '004' department: - _id: ChWo doi: 10.1145/2994258.2994261 ec_funded: 1 has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.inria.fr/hal-01367181 month: '10' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: 'Proceedings of the 9th International Conference on Motion in Games ' publication_status: published publisher: ACM publist_id: '6222' quality_controlled: '1' scopus_import: '1' status: public title: Space-time sculpting of liquid animation type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1141' abstract: - lang: eng text: In this paper we introduce the Multiobjective Optimization Hierarchic Genetic Strategy with maturing (MO-mHGS), a meta-algorithm that performs evolutionary optimization in a hierarchy of populations. The maturing mechanism improves growth and reduces redundancy. The performance of MO-mHGS with selected state-of-the-art multiobjective evolutionary algorithms as internal algorithms is analysed on benchmark problems and their modifications for which single fitness evaluation time depends on the solution accuracy. We compare the proposed algorithm with the Island Model Genetic Algorithm as well as with single-deme methods, and discuss the impact of internal algorithms on the MO-mHGS meta-algorithm. © 2016 Elsevier B.V. acknowledgement: The work presented in this paper was partially supported by Polish National Science Centre grant nos. DEC-2012/05/N/ST6/03433 and DEC-2011/03/B/ST6/01393. Radosław Łazarz was supported by Polish National Science Centre grant no. DEC-2013/10/M/ST6/00531. author: - first_name: Radosław full_name: Łazarz, Radosław last_name: Łazarz - first_name: Michał full_name: Idzik, Michał last_name: Idzik - first_name: Konrad full_name: Gądek, Konrad last_name: Gądek - first_name: Ewa P full_name: Gajda-Zagorska, Ewa P id: 47794CF0-F248-11E8-B48F-1D18A9856A87 last_name: Gajda-Zagorska citation: ama: Łazarz R, Idzik M, Gądek K, Gajda-Zagorska EP. Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization. Journal of Computational Science. 2016;17(1):249-260. doi:10.1016/j.jocs.2016.03.004 apa: Łazarz, R., Idzik, M., Gądek, K., & Gajda-Zagorska, E. P. (2016). Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization. Journal of Computational Science. Elsevier. https://doi.org/10.1016/j.jocs.2016.03.004 chicago: Łazarz, Radosław, Michał Idzik, Konrad Gądek, and Ewa P Gajda-Zagorska. “Hierarchic Genetic Strategy with Maturing as a Generic Tool for Multiobjective Optimization.” Journal of Computational Science. Elsevier, 2016. https://doi.org/10.1016/j.jocs.2016.03.004. ieee: R. Łazarz, M. Idzik, K. Gądek, and E. P. Gajda-Zagorska, “Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization,” Journal of Computational Science, vol. 17, no. 1. Elsevier, pp. 249–260, 2016. ista: Łazarz R, Idzik M, Gądek K, Gajda-Zagorska EP. 2016. Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization. Journal of Computational Science. 17(1), 249–260. mla: Łazarz, Radosław, et al. “Hierarchic Genetic Strategy with Maturing as a Generic Tool for Multiobjective Optimization.” Journal of Computational Science, vol. 17, no. 1, Elsevier, 2016, pp. 249–60, doi:10.1016/j.jocs.2016.03.004. short: R. Łazarz, M. Idzik, K. Gądek, E.P. Gajda-Zagorska, Journal of Computational Science 17 (2016) 249–260. date_created: 2018-12-11T11:50:22Z date_published: 2016-11-01T00:00:00Z date_updated: 2021-01-12T06:48:35Z day: '01' department: - _id: ChWo doi: 10.1016/j.jocs.2016.03.004 intvolume: ' 17' issue: '1' language: - iso: eng month: '11' oa_version: None page: 249 - 260 publication: Journal of Computational Science publication_status: published publisher: Elsevier publist_id: '6217' quality_controlled: '1' scopus_import: 1 status: public title: Hierarchic genetic strategy with maturing as a generic tool for multiobjective optimization type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2016' ... --- _id: '1363' abstract: - lang: eng text: When aiming to seamlessly integrate a fluid simulation into a larger scenario (like an open ocean), careful attention must be paid to boundary conditions. In particular, one must implement special "non-reflecting" boundary conditions, which dissipate out-going waves as they exit the simulation. Unfortunately, the state of the art in non-reflecting boundary conditions (perfectly-matched layers, or PMLs) only permits trivially simple inflow/outflow conditions, so there is no reliable way to integrate a fluid simulation into a more complicated environment like a stormy ocean or a turbulent river. This paper introduces the first method for combining nonreflecting boundary conditions based on PMLs with inflow/outflow boundary conditions that vary arbitrarily throughout space and time. Our algorithm is a generalization of stateof- the-art mean-flow boundary conditions in the computational fluid dynamics literature, and it allows for seamless integration of a fluid simulation into much more complicated environments. Our method also opens the door for previously-unseen postprocess effects like retroactively changing the location of solid obstacles, and locally increasing the visual detail of a pre-existing simulation. acknowledged_ssus: - _id: ScienComp acknowledgement: 'We thank the IST Austria Visual Computing group for helpful feedback throughout the project. ' alternative_title: - ACM Transactions on Graphics article_number: '96' author: - first_name: Morten full_name: Bojsen-Hansen, Morten id: 439F0C8C-F248-11E8-B48F-1D18A9856A87 last_name: Bojsen-Hansen orcid: 0000-0002-4417-3224 - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Bojsen-Hansen M, Wojtan C. Generalized non-reflecting boundaries for fluid re-simulation. In: Vol 35. ACM; 2016. doi:10.1145/2897824.2925963' apa: 'Bojsen-Hansen, M., & Wojtan, C. (2016). Generalized non-reflecting boundaries for fluid re-simulation (Vol. 35). Presented at the ACM SIGGRAPH, Anaheim, CA, USA: ACM. https://doi.org/10.1145/2897824.2925963' chicago: Bojsen-Hansen, Morten, and Chris Wojtan. “Generalized Non-Reflecting Boundaries for Fluid Re-Simulation,” Vol. 35. ACM, 2016. https://doi.org/10.1145/2897824.2925963. ieee: M. Bojsen-Hansen and C. Wojtan, “Generalized non-reflecting boundaries for fluid re-simulation,” presented at the ACM SIGGRAPH, Anaheim, CA, USA, 2016, vol. 35, no. 4. ista: Bojsen-Hansen M, Wojtan C. 2016. Generalized non-reflecting boundaries for fluid re-simulation. ACM SIGGRAPH, ACM Transactions on Graphics, vol. 35, 96. mla: Bojsen-Hansen, Morten, and Chris Wojtan. Generalized Non-Reflecting Boundaries for Fluid Re-Simulation. Vol. 35, no. 4, 96, ACM, 2016, doi:10.1145/2897824.2925963. short: M. Bojsen-Hansen, C. Wojtan, in:, ACM, 2016. conference: end_date: 2016-07-28 location: Anaheim, CA, USA name: ACM SIGGRAPH start_date: 2016-07-24 date_created: 2018-12-11T11:51:35Z date_published: 2016-07-11T00:00:00Z date_updated: 2023-02-21T10:36:12Z day: '11' ddc: - '000' department: - _id: ChWo doi: 10.1145/2897824.2925963 ec_funded: 1 file: - access_level: open_access checksum: 140b5532f0a2a006a0149cab7c73c17c content_type: application/pdf creator: system date_created: 2018-12-12T10:13:00Z date_updated: 2020-07-14T12:44:47Z file_id: '4981' file_name: IST-2016-631-v1+2_a96-bojsen-hansen.pdf file_size: 12422760 relation: main_file file_date_updated: 2020-07-14T12:44:47Z has_accepted_license: '1' intvolume: ' 35' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_status: published publisher: ACM publist_id: '5879' pubrep_id: '631' quality_controlled: '1' status: public title: Generalized non-reflecting boundaries for fluid re-simulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1361' abstract: - lang: eng text: We propose a novel surface-only technique for simulating incompressible, inviscid and uniform-density liquids with surface tension in three dimensions. The liquid surface is captured by a triangle mesh on which a Lagrangian velocity field is stored. Because advection of the velocity field may violate the incompressibility condition, we devise an orthogonal projection technique to remove the divergence while requiring the evaluation of only two boundary integrals. The forces of surface tension, gravity, and solid contact are all treated by a boundary element solve, allowing us to perform detailed simulations of a wide range of liquid phenomena, including waterbells, droplet and jet collisions, fluid chains, and crown splashes. alternative_title: - ACM Transactions on Graphics article_number: a78 author: - first_name: Fang full_name: Da, Fang last_name: Da - first_name: David full_name: Hahn, David id: 357A6A66-F248-11E8-B48F-1D18A9856A87 last_name: Hahn - first_name: Christopher full_name: Batty, Christopher last_name: Batty - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Eitan full_name: Grinspun, Eitan last_name: Grinspun citation: ama: 'Da F, Hahn D, Batty C, Wojtan C, Grinspun E. Surface only liquids. In: Vol 35. ACM; 2016. doi:10.1145/2897824.2925899' apa: 'Da, F., Hahn, D., Batty, C., Wojtan, C., & Grinspun, E. (2016). Surface only liquids (Vol. 35). Presented at the ACM SIGGRAPH, Anaheim, CA, USA: ACM. https://doi.org/10.1145/2897824.2925899' chicago: Da, Fang, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. “Surface Only Liquids,” Vol. 35. ACM, 2016. https://doi.org/10.1145/2897824.2925899. ieee: F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun, “Surface only liquids,” presented at the ACM SIGGRAPH, Anaheim, CA, USA, 2016, vol. 35, no. 4. ista: Da F, Hahn D, Batty C, Wojtan C, Grinspun E. 2016. Surface only liquids. ACM SIGGRAPH, ACM Transactions on Graphics, vol. 35, a78. mla: Da, Fang, et al. Surface Only Liquids. Vol. 35, no. 4, a78, ACM, 2016, doi:10.1145/2897824.2925899. short: F. Da, D. Hahn, C. Batty, C. Wojtan, E. Grinspun, in:, ACM, 2016. conference: end_date: 2016-07-28 location: Anaheim, CA, USA name: ACM SIGGRAPH start_date: 2016-07-24 date_created: 2018-12-11T11:51:35Z date_published: 2016-07-11T00:00:00Z date_updated: 2023-02-21T10:36:07Z day: '11' ddc: - '000' department: - _id: ChWo doi: 10.1145/2897824.2925899 ec_funded: 1 file: - access_level: open_access checksum: 6d662893bd447d4f575b4961a2247811 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:01Z date_updated: 2020-07-14T12:44:46Z file_id: '4660' file_name: IST-2016-637-v1+1_2016_Da_SOL.pdf file_size: 10561865 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 35' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_status: published publisher: ACM publist_id: '5881' pubrep_id: '637' quality_controlled: '1' scopus_import: 1 status: public title: Surface only liquids type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1412' abstract: - lang: eng text: Combining high-resolution level set surface tracking with lower resolution physics is an inexpensive method for achieving highly detailed liquid animations. Unfortunately, the inherent resolution mismatch introduces several types of disturbing visual artifacts. We identify the primary sources of these artifacts and present simple, efficient, and practical solutions to address them. First, we propose an unconditionally stable filtering method that selectively removes sub-grid surface artifacts not seen by the fluid physics, while preserving fine detail in dynamic splashing regions. It provides comparable results to recent error-correction techniques at lower cost, without substepping, and with better scaling behavior. Second, we show how a modified narrow-band scheme can ensure accurate free surface boundary conditions in the presence of large resolution mismatches. Our scheme preserves the efficiency of the narrow-band methodology, while eliminating objectionable stairstep artifacts observed in prior work. Third, we demonstrate that the use of linear interpolation of velocity during advection of the high-resolution level set surface is responsible for visible grid-aligned kinks; we therefore advocate higher-order velocity interpolation, and show that it dramatically reduces this artifact. While these three contributions are orthogonal, our results demonstrate that taken together they efficiently address the dominant sources of visual artifacts arising with high-resolution embedded liquid surfaces; the proposed approach offers improved visual quality, a straightforward implementation, and substantially greater scalability than competing methods. acknowledgement: 'This research was supported by NSERC (RGPIN-04360-2014) and IST Austria. ' author: - first_name: Ryan full_name: Goldade, Ryan last_name: Goldade - first_name: Christopher full_name: Batty, Christopher last_name: Batty - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Goldade R, Batty C, Wojtan C. A practical method for high-resolution embedded liquid surfaces. Computer Graphics Forum. 2016;35(2):233-242. doi:10.1111/cgf.12826 apa: Goldade, R., Batty, C., & Wojtan, C. (2016). A practical method for high-resolution embedded liquid surfaces. Computer Graphics Forum. Wiley-Blackwell. https://doi.org/10.1111/cgf.12826 chicago: Goldade, Ryan, Christopher Batty, and Chris Wojtan. “A Practical Method for High-Resolution Embedded Liquid Surfaces.” Computer Graphics Forum. Wiley-Blackwell, 2016. https://doi.org/10.1111/cgf.12826. ieee: R. Goldade, C. Batty, and C. Wojtan, “A practical method for high-resolution embedded liquid surfaces,” Computer Graphics Forum, vol. 35, no. 2. Wiley-Blackwell, pp. 233–242, 2016. ista: Goldade R, Batty C, Wojtan C. 2016. A practical method for high-resolution embedded liquid surfaces. Computer Graphics Forum. 35(2), 233–242. mla: Goldade, Ryan, et al. “A Practical Method for High-Resolution Embedded Liquid Surfaces.” Computer Graphics Forum, vol. 35, no. 2, Wiley-Blackwell, 2016, pp. 233–42, doi:10.1111/cgf.12826. short: R. Goldade, C. Batty, C. Wojtan, Computer Graphics Forum 35 (2016) 233–242. date_created: 2018-12-11T11:51:52Z date_published: 2016-05-27T00:00:00Z date_updated: 2023-02-21T10:38:30Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.12826 ec_funded: 1 file: - access_level: open_access checksum: 8e61387ee2e3bd0e776fbe301629bfd9 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:18Z date_updated: 2020-07-14T12:44:53Z file_id: '5000' file_name: IST-2016-612-v1+2_Wojtan_APracticalMethod_PostPrint_2016.pdf file_size: 15873858 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 35' issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 233 - 242 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: Computer Graphics Forum publication_status: published publisher: Wiley-Blackwell publist_id: '5795' pubrep_id: '612' quality_controlled: '1' scopus_import: 1 status: public title: A practical method for high-resolution embedded liquid surfaces type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1413' abstract: - lang: eng text: This paper generalizes the well-known Diffusion Curves Images (DCI), which are composed of a set of Bezier curves with colors specified on either side. These colors are diffused as Laplace functions over the image domain, which results in smooth color gradients interrupted by the Bezier curves. Our new formulation allows for more color control away from the boundary, providing a similar expressive power as recent Bilaplace image models without introducing associated issues and computational costs. The new model is based on a special Laplace function blending and a new edge blur formulation. We demonstrate that given some user-defined boundary curves over an input raster image, fitting colors and edge blur from the image to the new model and subsequent editing and animation is equally convenient as with DCIs. Numerous examples and comparisons to DCIs are presented. author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke citation: ama: 'Jeschke S. Generalized diffusion curves: An improved vector representation for smooth-shaded images. Computer Graphics Forum. 2016;35(2):71-79. doi:10.1111/cgf.12812' apa: 'Jeschke, S. (2016). Generalized diffusion curves: An improved vector representation for smooth-shaded images. Computer Graphics Forum. Wiley-Blackwell. https://doi.org/10.1111/cgf.12812' chicago: 'Jeschke, Stefan. “Generalized Diffusion Curves: An Improved Vector Representation for Smooth-Shaded Images.” Computer Graphics Forum. Wiley-Blackwell, 2016. https://doi.org/10.1111/cgf.12812.' ieee: 'S. Jeschke, “Generalized diffusion curves: An improved vector representation for smooth-shaded images,” Computer Graphics Forum, vol. 35, no. 2. Wiley-Blackwell, pp. 71–79, 2016.' ista: 'Jeschke S. 2016. Generalized diffusion curves: An improved vector representation for smooth-shaded images. Computer Graphics Forum. 35(2), 71–79.' mla: 'Jeschke, Stefan. “Generalized Diffusion Curves: An Improved Vector Representation for Smooth-Shaded Images.” Computer Graphics Forum, vol. 35, no. 2, Wiley-Blackwell, 2016, pp. 71–79, doi:10.1111/cgf.12812.' short: S. Jeschke, Computer Graphics Forum 35 (2016) 71–79. date_created: 2018-12-11T11:51:53Z date_published: 2016-05-01T00:00:00Z date_updated: 2021-01-12T06:50:34Z day: '01' department: - _id: ChWo doi: 10.1111/cgf.12812 intvolume: ' 35' issue: '2' language: - iso: eng month: '05' oa_version: None page: 71 - 79 project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication: Computer Graphics Forum publication_status: published publisher: Wiley-Blackwell publist_id: '5794' quality_controlled: '1' scopus_import: 1 status: public title: 'Generalized diffusion curves: An improved vector representation for smooth-shaded images' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1415' abstract: - lang: eng text: The Fluid Implicit Particle method (FLIP) for liquid simulations uses particles to reduce numerical dissipation and provide important visual cues for events like complex splashes and small-scale features near the liquid surface. Unfortunately, FLIP simulations can be computationally expensive, because they require a dense sampling of particles to fill the entire liquid volume. Furthermore, the vast majority of these FLIP particles contribute nothing to the fluid's visual appearance, especially for larger volumes of liquid. We present a method that only uses FLIP particles within a narrow band of the liquid surface, while efficiently representing the remaining inner volume on a regular grid. We show that a naïve realization of this idea introduces unstable and uncontrollable energy fluctuations, and we propose a novel coupling scheme between FLIP particles and regular grid which overcomes this problem. Our method drastically reduces the particle count and simulation times while yielding results that are nearly indistinguishable from regular FLIP simulations. Our approach is easy to integrate into any existing FLIP implementation. author: - first_name: Florian full_name: Ferstl, Florian last_name: Ferstl - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Rüdiger full_name: Westermann, Rüdiger last_name: Westermann - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey citation: ama: Ferstl F, Ando R, Wojtan C, Westermann R, Thuerey N. Narrow band FLIP for liquid simulations. Computer Graphics Forum. 2016;35(2):225-232. doi:10.1111/cgf.12825 apa: Ferstl, F., Ando, R., Wojtan, C., Westermann, R., & Thuerey, N. (2016). Narrow band FLIP for liquid simulations. Computer Graphics Forum. Wiley-Blackwell. https://doi.org/10.1111/cgf.12825 chicago: Ferstl, Florian, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. “Narrow Band FLIP for Liquid Simulations.” Computer Graphics Forum. Wiley-Blackwell, 2016. https://doi.org/10.1111/cgf.12825. ieee: F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey, “Narrow band FLIP for liquid simulations,” Computer Graphics Forum, vol. 35, no. 2. Wiley-Blackwell, pp. 225–232, 2016. ista: Ferstl F, Ando R, Wojtan C, Westermann R, Thuerey N. 2016. Narrow band FLIP for liquid simulations. Computer Graphics Forum. 35(2), 225–232. mla: Ferstl, Florian, et al. “Narrow Band FLIP for Liquid Simulations.” Computer Graphics Forum, vol. 35, no. 2, Wiley-Blackwell, 2016, pp. 225–32, doi:10.1111/cgf.12825. short: F. Ferstl, R. Ando, C. Wojtan, R. Westermann, N. Thuerey, Computer Graphics Forum 35 (2016) 225–232. date_created: 2018-12-11T11:51:53Z date_published: 2016-05-01T00:00:00Z date_updated: 2023-02-21T10:38:38Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.12825 file: - access_level: open_access checksum: 984afbe510ed48019025dff1dcc7baad content_type: application/pdf creator: system date_created: 2018-12-12T10:12:22Z date_updated: 2020-07-14T12:44:53Z file_id: '4940' file_name: IST-2016-611-v1+3_CW_nbflip_postprint_2016.pdf file_size: 5938324 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 35' issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 225 - 232 publication: Computer Graphics Forum publication_status: published publisher: Wiley-Blackwell publist_id: '5793' pubrep_id: '611' quality_controlled: '1' scopus_import: 1 status: public title: Narrow band FLIP for liquid simulations type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1362' abstract: - lang: eng text: We present a boundary element based method for fast simulation of brittle fracture. By introducing simplifying assumptions that allow us to quickly estimate stress intensities and opening displacements during crack propagation, we build a fracture algorithm where the cost of each time step scales linearly with the length of the crackfront. The transition from a full boundary element method to our faster variant is possible at the beginning of any time step. This allows us to build a hybrid method, which uses the expensive but more accurate BEM while the number of degrees of freedom is low, and uses the fast method once that number exceeds a given threshold as the crack geometry becomes more complicated. Furthermore, we integrate this fracture simulation with a standard rigid-body solver. Our rigid-body coupling solves a Neumann boundary value problem by carefully separating translational, rotational and deformational components of the collision forces and then applying a Tikhonov regularizer to the resulting linear system. We show that our method produces physically reasonable results in standard test cases and is capable of dealing with complex scenes faster than previous finite- or boundary element approaches. alternative_title: - ACM Transactions on Graphics article_number: '104' author: - first_name: David full_name: Hahn, David id: 357A6A66-F248-11E8-B48F-1D18A9856A87 last_name: Hahn - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Hahn D, Wojtan C. Fast approximations for boundary element based brittle fracture simulation. In: Vol 35. ACM; 2016. doi:10.1145/2897824.2925902' apa: 'Hahn, D., & Wojtan, C. (2016). Fast approximations for boundary element based brittle fracture simulation (Vol. 35). Presented at the ACM SIGGRAPH, Anaheim, CA, USA: ACM. https://doi.org/10.1145/2897824.2925902' chicago: Hahn, David, and Chris Wojtan. “Fast Approximations for Boundary Element Based Brittle Fracture Simulation,” Vol. 35. ACM, 2016. https://doi.org/10.1145/2897824.2925902. ieee: D. Hahn and C. Wojtan, “Fast approximations for boundary element based brittle fracture simulation,” presented at the ACM SIGGRAPH, Anaheim, CA, USA, 2016, vol. 35, no. 4. ista: Hahn D, Wojtan C. 2016. Fast approximations for boundary element based brittle fracture simulation. ACM SIGGRAPH, ACM Transactions on Graphics, vol. 35, 104. mla: Hahn, David, and Chris Wojtan. Fast Approximations for Boundary Element Based Brittle Fracture Simulation. Vol. 35, no. 4, 104, ACM, 2016, doi:10.1145/2897824.2925902. short: D. Hahn, C. Wojtan, in:, ACM, 2016. conference: end_date: 2016-07-28 location: Anaheim, CA, USA name: ACM SIGGRAPH start_date: 2016-07-24 date_created: 2018-12-11T11:51:35Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-09-07T12:02:56Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2897824.2925902 ec_funded: 1 file: - access_level: open_access checksum: 943712d9c9dc8bb5048d4adc561d7d38 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:04Z date_updated: 2020-07-14T12:44:46Z file_id: '5121' file_name: IST-2016-632-v1+2_a104-hahn.pdf file_size: 12453704 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 35' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_status: published publisher: ACM publist_id: '5880' pubrep_id: '632' quality_controlled: '1' related_material: record: - id: '839' relation: dissertation_contains status: public status: public title: Fast approximations for boundary element based brittle fracture simulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1122' abstract: - lang: eng text: "Computer graphics is an extremely exciting field for two reasons. On the one hand,\r\nthere is a healthy injection of pragmatism coming from the visual effects industry\r\nthat want robust algorithms that work so they can produce results at an increasingly\r\nfrantic pace. On the other hand, they must always try to push the envelope and\r\nachieve the impossible to wow their audiences in the next blockbuster, which means\r\nthat the industry has not succumb to conservatism, and there is plenty of room to\r\ntry out new and crazy ideas if there is a chance that it will pan into something\r\nuseful.\r\nWater simulation has been in visual effects for decades, however it still remains\r\nextremely challenging because of its high computational cost and difficult artdirectability.\r\nThe work in this thesis tries to address some of these difficulties.\r\nSpecifically, we make the following three novel contributions to the state-of-the-art\r\nin water simulation for visual effects.\r\nFirst, we develop the first algorithm that can convert any sequence of closed\r\nsurfaces in time into a moving triangle mesh. State-of-the-art methods at the time\r\ncould only handle surfaces with fixed connectivity, but we are the first to be able to\r\nhandle surfaces that merge and split apart. This is important for water simulation\r\npractitioners, because it allows them to convert splashy water surfaces extracted\r\nfrom particles or simulated using grid-based level sets into triangle meshes that can\r\nbe either textured and enhanced with extra surface dynamics as a post-process.\r\nWe also apply our algorithm to other phenomena that merge and split apart, such\r\nas morphs and noisy reconstructions of human performances.\r\nSecond, we formulate a surface-based energy that measures the deviation of a\r\nwater surface froma physically valid state. Such discrepancies arise when there is a\r\nmismatch in the degrees of freedom between the water surface and the underlying\r\nphysics solver. This commonly happens when practitioners use a moving triangle\r\nmesh with a grid-based physics solver, or when high-resolution grid-based surfaces\r\nare combined with low-resolution physics. Following the direction of steepest\r\ndescent on our surface-based energy, we can either smooth these artifacts or turn\r\nthem into high-resolution waves by interpreting the energy as a physical potential.\r\nThird, we extend state-of-the-art techniques in non-reflecting boundaries to handle spatially and time-varying background flows. This allows a novel new\r\nworkflow where practitioners can re-simulate part of an existing simulation, such\r\nas removing a solid obstacle, adding a new splash or locally changing the resolution.\r\nSuch changes can easily lead to new waves in the re-simulated region that would\r\nreflect off of the new simulation boundary, effectively ruining the illusion of a\r\nseamless simulation boundary between the existing and new simulations. Our\r\nnon-reflecting boundaries makes sure that such waves are absorbed." acknowledgement: "First and foremost I would like to thank Chris. I have been incredibly lucky to have\r\nyou as my advisor. Your integrity and aspiration to do the right thing in all walks of\r\nlife is something I admire and aspire to. I also really appreciate the fact that when\r\nworking with you it felt like we were equals. I think we had a very synergetic work\r\nrelationship: I learned immensely from you, but I dare say that you learned a few\r\nthings from me as well. ;)\r\nNext, I would like to thank my amazing committee. Hao, it was a fantastic\r\nexperience working with you. You showed me how to persevere and keep morale\r\nhigh when things were looking the most bleak before the deadline. You are an\r\nincredible motivator and super fun to be around! Vladimir, thanks for the shared\r\nlunches and the poker games. Sorry for not bringing them back when I got busy.\r\nAlso, sorry for embarrassing you by asking about your guitar playing that one\r\ntime. You really are quite awesome! Nils, one of the friendliest and most humble\r\npeople you will meet and a top notch researcher to boot! Thank you for joining\r\nmy committee late!\r\nI would also like to acknowledge the Visual Computing group at IST Austria\r\nfrom whom I have learned so much. The excellent discussions we had in reading\r\ngroups and research meetings really helped me become a better researcher!\r\nNext, I would like to thank all the amazing people that I met during my PhD\r\nstudies, both at IST Austria, in Vienna and elsewhere. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Morten full_name: Bojsen-Hansen, Morten id: 439F0C8C-F248-11E8-B48F-1D18A9856A87 last_name: Bojsen-Hansen orcid: 0000-0002-4417-3224 citation: ama: Bojsen-Hansen M. Tracking, correcting and absorbing water surface waves. 2016. doi:10.15479/AT:ISTA:th_640 apa: Bojsen-Hansen, M. (2016). Tracking, correcting and absorbing water surface waves. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_640 chicago: Bojsen-Hansen, Morten. “Tracking, Correcting and Absorbing Water Surface Waves.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:th_640. ieee: M. Bojsen-Hansen, “Tracking, correcting and absorbing water surface waves,” Institute of Science and Technology Austria, 2016. ista: Bojsen-Hansen M. 2016. Tracking, correcting and absorbing water surface waves. Institute of Science and Technology Austria. mla: Bojsen-Hansen, Morten. Tracking, Correcting and Absorbing Water Surface Waves. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:th_640. short: M. Bojsen-Hansen, Tracking, Correcting and Absorbing Water Surface Waves, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:16Z date_published: 2016-07-15T00:00:00Z date_updated: 2024-02-21T13:50:48Z day: '15' ddc: - '004' - '005' - '006' - '532' - '621' degree_awarded: PhD department: - _id: ChWo doi: 10.15479/AT:ISTA:th_640 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:13:02Z date_updated: 2018-12-12T10:13:02Z file_id: '4982' file_name: IST-2016-640-v1+1_2016_Bojsen-Hansen_TCaAWSW.pdf file_size: 13869345 relation: main_file file_date_updated: 2018-12-12T10:13:02Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '114' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6238' related_material: record: - id: '5558' relation: other status: public status: public supervisor: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 title: Tracking, correcting and absorbing water surface waves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '5558' abstract: - lang: eng text: PhD thesis LaTeX source code article_processing_charge: No author: - first_name: Morten full_name: Bojsen-Hansen, Morten id: 439F0C8C-F248-11E8-B48F-1D18A9856A87 last_name: Bojsen-Hansen orcid: 0000-0002-4417-3224 citation: ama: Bojsen-Hansen M. Tracking, Correcting and Absorbing Water Surface Waves. 2016. doi:10.15479/AT:ISTA:48 apa: Bojsen-Hansen, M. (2016). Tracking, Correcting and Absorbing Water Surface Waves. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:48 chicago: Bojsen-Hansen, Morten. “Tracking, Correcting and Absorbing Water Surface Waves.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:48. ieee: M. Bojsen-Hansen, “Tracking, Correcting and Absorbing Water Surface Waves.” Institute of Science and Technology Austria, 2016. ista: Bojsen-Hansen M. 2016. Tracking, Correcting and Absorbing Water Surface Waves, Institute of Science and Technology Austria, 10.15479/AT:ISTA:48. mla: Bojsen-Hansen, Morten. Tracking, Correcting and Absorbing Water Surface Waves. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:48. short: M. Bojsen-Hansen, (2016). datarep_id: '48' date_created: 2018-12-12T12:31:31Z date_published: 2016-09-23T00:00:00Z date_updated: 2024-02-21T13:50:48Z day: '23' ddc: - '004' department: - _id: ChWo doi: 10.15479/AT:ISTA:48 file: - access_level: open_access checksum: 5b1b256ad796fbddb4b7729f5e45e444 content_type: application/x-bzip2 creator: system date_created: 2018-12-12T13:02:18Z date_updated: 2020-07-14T12:47:02Z file_id: '5589' file_name: IST-2016-48-v1+1_2016_Bojsen-Hansen_TCaAWSW.tar.bz2 file_size: 55237885 relation: main_file file_date_updated: 2020-07-14T12:47:02Z has_accepted_license: '1' month: '09' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria publist_id: '6238' pubrep_id: '640' related_material: record: - id: '1122' relation: other status: public status: public title: Tracking, Correcting and Absorbing Water Surface Waves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1634' abstract: - lang: eng text: Simulating the delightful dynamics of soap films, bubbles, and foams has traditionally required the use of a fully three-dimensional many-phase Navier-Stokes solver, even though their visual appearance is completely dominated by the thin liquid surface. We depart from earlier work on soap bubbles and foams by noting that their dynamics are naturally described by a Lagrangian vortex sheet model in which circulation is the primary variable. This leads us to derive a novel circulation-preserving surface-only discretization of foam dynamics driven by surface tension on a non-manifold triangle mesh. We represent the surface using a mesh-based multimaterial surface tracker which supports complex bubble topology changes, and evolve the surface according to the ambient air flow induced by a scalar circulation field stored on the mesh. Surface tension forces give rise to a simple update rule for circulation, even at non-manifold Plateau borders, based on a discrete measure of signed scalar mean curvature. We further incorporate vertex constraints to enable the interaction of soap films with wires. The result is a method that is at once simple, robust, and efficient, yet able to capture an array of soap films behaviors including foam rearrangement, catenoid collapse, blowing bubbles, and double bubbles being pulled apart. article_number: '149' author: - first_name: Fang full_name: Da, Fang last_name: Da - first_name: Christopher full_name: Batty, Christopher last_name: Batty - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Eitan full_name: Grinspun, Eitan last_name: Grinspun citation: ama: 'Da F, Batty C, Wojtan C, Grinspun E. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. In: Vol 34. ACM; 2015. doi:10.1145/2767003' apa: 'Da, F., Batty, C., Wojtan, C., & Grinspun, E. (2015). Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2767003' chicago: 'Da, Fang, Christopher Batty, Chris Wojtan, and Eitan Grinspun. “Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2767003.' ieee: 'F. Da, C. Batty, C. Wojtan, and E. Grinspun, “Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Da F, Batty C, Wojtan C, Grinspun E. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 149.' mla: 'Da, Fang, et al. Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. Vol. 34, no. 4, 149, ACM, 2015, doi:10.1145/2767003.' short: F. Da, C. Batty, C. Wojtan, E. Grinspun, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:09Z date_published: 2015-07-27T00:00:00Z date_updated: 2023-02-23T10:07:42Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2767003 ec_funded: 1 file: - access_level: open_access checksum: 57b07d78d2d612a8052744b37d4a71fa content_type: application/pdf creator: system date_created: 2018-12-12T10:11:14Z date_updated: 2020-07-14T12:45:07Z file_id: '4867' file_name: IST-2016-608-v1+1_doublebubbles.pdf file_size: 8973215 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_status: published publisher: ACM publist_id: '5521' pubrep_id: '608' quality_controlled: '1' scopus_import: 1 status: public title: 'Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1632' abstract: - lang: eng text: "This paper presents a liquid simulation technique that enforces the incompressibility condition using a stream function solve instead of a pressure projection. Previous methods have used stream function techniques for the simulation of detailed single-phase flows, but a formulation for liquid simulation has proved elusive in part due to the free surface boundary conditions. In this paper, we introduce a stream function approach to liquid simulations with novel boundary conditions for free surfaces, solid obstacles, and solid-fluid coupling.\r\n\r\nAlthough our approach increases the dimension of the linear system necessary to enforce incompressibility, it provides interesting and surprising benefits. First, the resulting flow is guaranteed to be divergence-free regardless of the accuracy of the solve. Second, our free-surface boundary conditions guarantee divergence-free motion even in the un-simulated air phase, which enables two-phase flow simulation by only computing a single phase. We implemented this method using a variant of FLIP simulation which only samples particles within a narrow band of the liquid surface, and we illustrate the effectiveness of our method for detailed two-phase flow simulations with complex boundaries, detailed bubble interactions, and two-way solid-fluid coupling." acknowledgement: The first author was supported by a JSPS Postdoctoral Fellowship for Research Abroad. This work was also supported by the ERC projects ERC-2014-StG-637014 realFlow and ERC-2014- StG-638176 BigSplash. alternative_title: - ACM Transactions on Graphics article_number: '53' author: - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Ando R, Thuerey N, Wojtan C. A stream function solver for liquid simulations. In: Vol 34. ACM; 2015. doi:10.1145/2766935' apa: 'Ando, R., Thuerey, N., & Wojtan, C. (2015). A stream function solver for liquid simulations (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA: ACM. https://doi.org/10.1145/2766935' chicago: Ando, Ryoichi, Nils Thuerey, and Chris Wojtan. “A Stream Function Solver for Liquid Simulations,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766935. ieee: 'R. Ando, N. Thuerey, and C. Wojtan, “A stream function solver for liquid simulations,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 2015, vol. 34, no. 4.' ista: 'Ando R, Thuerey N, Wojtan C. 2015. A stream function solver for liquid simulations. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, ACM Transactions on Graphics, vol. 34, 53.' mla: Ando, Ryoichi, et al. A Stream Function Solver for Liquid Simulations. Vol. 34, no. 4, 53, ACM, 2015, doi:10.1145/2766935. short: R. Ando, N. Thuerey, C. Wojtan, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, USA name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:09Z date_published: 2015-07-27T00:00:00Z date_updated: 2023-02-23T10:07:37Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2766935 file: - access_level: open_access checksum: 7a9afdfaba9209157ce19376e15bc90b content_type: application/pdf creator: system date_created: 2018-12-12T10:11:52Z date_updated: 2020-07-14T12:45:07Z file_id: '4909' file_name: IST-2016-610-v1+1_vecpotential.pdf file_size: 21831121 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication_status: published publisher: ACM publist_id: '5523' pubrep_id: '610' quality_controlled: '1' scopus_import: 1 status: public title: A stream function solver for liquid simulations type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1630' abstract: - lang: eng text: We present a method to learn and propagate shape placements in 2D polygonal scenes from a few examples provided by a user. The placement of a shape is modeled as an oriented bounding box. Simple geometric relationships between this bounding box and nearby scene polygons define a feature set for the placement. The feature sets of all example placements are then used to learn a probabilistic model over all possible placements and scenes. With this model, we can generate a new set of placements with similar geometric relationships in any given scene. We introduce extensions that enable propagation and generation of shapes in 3D scenes, as well as the application of a learned modeling session to large scenes without additional user interaction. These concepts allow us to generate complex scenes with thousands of objects with relatively little user interaction. acknowledgement: This publication is based upon work supported by the KAUST Office of Competitive Research Funds (OCRF) under Award No. 62140401, the KAUST Visual Computing Center and the Austrian Science Fund (FWF) projects DEEP PICTURES (no. P24352-N23) and Data-Driven Procedural Modeling of Interiors (no. P24600-N23). article_number: '108' author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Peter full_name: Wonka, Peter last_name: Wonka citation: ama: 'Guerrero P, Jeschke S, Wimmer M, Wonka P. Learning shape placements by example. In: Vol 34. ACM; 2015. doi:10.1145/2766933' apa: 'Guerrero, P., Jeschke, S., Wimmer, M., & Wonka, P. (2015). Learning shape placements by example (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766933' chicago: Guerrero, Paul, Stefan Jeschke, Michael Wimmer, and Peter Wonka. “Learning Shape Placements by Example,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766933. ieee: 'P. Guerrero, S. Jeschke, M. Wimmer, and P. Wonka, “Learning shape placements by example,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Guerrero P, Jeschke S, Wimmer M, Wonka P. 2015. Learning shape placements by example. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 108.' mla: Guerrero, Paul, et al. Learning Shape Placements by Example. Vol. 34, no. 4, 108, ACM, 2015, doi:10.1145/2766933. short: P. Guerrero, S. Jeschke, M. Wimmer, P. Wonka, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:08Z date_published: 2015-07-27T00:00:00Z date_updated: 2021-01-12T06:52:07Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2766933 file: - access_level: open_access checksum: 8b05a51e372c9b0b5af9a00098a9538b content_type: application/pdf creator: system date_created: 2018-12-12T10:07:49Z date_updated: 2020-07-14T12:45:07Z file_id: '4647' file_name: IST-2016-576-v1+1_guerrero-2015-lsp-paper.pdf file_size: 11902290 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication_status: published publisher: ACM publist_id: '5525' pubrep_id: '576' quality_controlled: '1' scopus_import: 1 status: public title: Learning shape placements by example type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1735' abstract: - lang: eng text: This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free-surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations. acknowledgement: The first author was supported by a JSPS Postdoctoral Fellowship for Research Abroad author: - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando - first_name: Nils full_name: Thürey, Nils last_name: Thürey - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Ando R, Thürey N, Wojtan C. A dimension-reduced pressure solver for liquid simulations. Computer Graphics Forum. 2015;34(2):473-480. doi:10.1111/cgf.12576 apa: Ando, R., Thürey, N., & Wojtan, C. (2015). A dimension-reduced pressure solver for liquid simulations. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.12576 chicago: Ando, Ryoichi, Nils Thürey, and Chris Wojtan. “A Dimension-Reduced Pressure Solver for Liquid Simulations.” Computer Graphics Forum. Wiley, 2015. https://doi.org/10.1111/cgf.12576. ieee: R. Ando, N. Thürey, and C. Wojtan, “A dimension-reduced pressure solver for liquid simulations,” Computer Graphics Forum, vol. 34, no. 2. Wiley, pp. 473–480, 2015. ista: Ando R, Thürey N, Wojtan C. 2015. A dimension-reduced pressure solver for liquid simulations. Computer Graphics Forum. 34(2), 473–480. mla: Ando, Ryoichi, et al. “A Dimension-Reduced Pressure Solver for Liquid Simulations.” Computer Graphics Forum, vol. 34, no. 2, Wiley, 2015, pp. 473–80, doi:10.1111/cgf.12576. short: R. Ando, N. Thürey, C. Wojtan, Computer Graphics Forum 34 (2015) 473–480. date_created: 2018-12-11T11:53:44Z date_published: 2015-05-01T00:00:00Z date_updated: 2023-02-23T10:12:11Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.12576 file: - access_level: open_access checksum: 590752bf977855b337a80f78a9bc2404 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:30Z date_updated: 2020-07-14T12:45:15Z file_id: '5218' file_name: IST-2016-607-v1+1_coarsegrid.pdf file_size: 6312352 relation: main_file file_date_updated: 2020-07-14T12:45:15Z has_accepted_license: '1' intvolume: ' 34' issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 473 - 480 publication: Computer Graphics Forum publication_status: published publisher: Wiley publist_id: '5389' pubrep_id: '607' quality_controlled: '1' scopus_import: 1 status: public title: A dimension-reduced pressure solver for liquid simulations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1814' abstract: - lang: eng text: 'We present an efficient wavefront tracking algorithm for animating bodies of water that interact with their environment. Our contributions include: a novel wavefront tracking technique that enables dispersion, refraction, reflection, and diffraction in the same simulation; a unique multivalued function interpolation method that enables our simulations to elegantly sidestep the Nyquist limit; a dispersion approximation for efficiently amplifying the number of simulated waves by several orders of magnitude; and additional extensions that allow for time-dependent effects and interactive artistic editing of the resulting animation. Our contributions combine to give us multitudes more wave details than similar algorithms, while maintaining high frame rates and allowing close camera zooms.' article_number: '27' author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics. 2015;34(3). doi:10.1145/2714572 apa: Jeschke, S., & Wojtan, C. (2015). Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2714572 chicago: Jeschke, Stefan, and Chris Wojtan. “Water Wave Animation via Wavefront Parameter Interpolation.” ACM Transactions on Graphics. ACM, 2015. https://doi.org/10.1145/2714572. ieee: S. Jeschke and C. Wojtan, “Water wave animation via wavefront parameter interpolation,” ACM Transactions on Graphics, vol. 34, no. 3. ACM, 2015. ista: Jeschke S, Wojtan C. 2015. Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics. 34(3), 27. mla: Jeschke, Stefan, and Chris Wojtan. “Water Wave Animation via Wavefront Parameter Interpolation.” ACM Transactions on Graphics, vol. 34, no. 3, 27, ACM, 2015, doi:10.1145/2714572. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 34 (2015). date_created: 2018-12-11T11:54:09Z date_published: 2015-04-01T00:00:00Z date_updated: 2023-02-23T10:15:40Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2714572 ec_funded: 1 file: - access_level: open_access checksum: 67c9f4fa370def68cdf31299e48bc91f content_type: application/pdf creator: system date_created: 2018-12-12T10:12:15Z date_updated: 2020-07-14T12:45:17Z file_id: '4933' file_name: IST-2016-575-v1+1_wavefront_preprint.pdf file_size: 23712153 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 34' issue: '3' language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '5292' pubrep_id: '575' quality_controlled: '1' scopus_import: 1 status: public title: Water wave animation via wavefront parameter interpolation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1633' abstract: - lang: eng text: "We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front.\r\n\r\nOur system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation.\r\n\r\nSeparating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix." article_number: '151' author: - first_name: David full_name: Hahn, David id: 357A6A66-F248-11E8-B48F-1D18A9856A87 last_name: Hahn - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Hahn D, Wojtan C. High-resolution brittle fracture simulation with boundary elements. In: Vol 34. ACM; 2015. doi:10.1145/2766896' apa: 'Hahn, D., & Wojtan, C. (2015). High-resolution brittle fracture simulation with boundary elements (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766896' chicago: Hahn, David, and Chris Wojtan. “High-Resolution Brittle Fracture Simulation with Boundary Elements,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766896. ieee: 'D. Hahn and C. Wojtan, “High-resolution brittle fracture simulation with boundary elements,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Hahn D, Wojtan C. 2015. High-resolution brittle fracture simulation with boundary elements. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 151.' mla: Hahn, David, and Chris Wojtan. High-Resolution Brittle Fracture Simulation with Boundary Elements. Vol. 34, no. 4, 151, ACM, 2015, doi:10.1145/2766896. short: D. Hahn, C. Wojtan, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:09Z date_published: 2015-07-27T00:00:00Z date_updated: 2023-09-07T12:02:56Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2766896 ec_funded: 1 file: - access_level: open_access checksum: 955aee971983f6b6152bcc1c9b4a7c20 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:13Z date_updated: 2020-07-14T12:45:07Z file_id: '5131' file_name: IST-2016-609-v1+1_FractureBEM.pdf file_size: 20154270 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_status: published publisher: ACM publist_id: '5522' pubrep_id: '609' quality_controlled: '1' related_material: record: - id: '839' relation: dissertation_contains status: public scopus_import: 1 status: public title: High-resolution brittle fracture simulation with boundary elements type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1629' abstract: - lang: eng text: We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. article_number: '15' author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Peter full_name: Wonka, Peter last_name: Wonka citation: ama: Guerrero P, Jeschke S, Wimmer M, Wonka P. Edit propagation using geometric relationship functions. ACM Transactions on Graphics. 2014;33(2). doi:10.1145/2591010 apa: Guerrero, P., Jeschke, S., Wimmer, M., & Wonka, P. (2014). Edit propagation using geometric relationship functions. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2591010 chicago: Guerrero, Paul, Stefan Jeschke, Michael Wimmer, and Peter Wonka. “Edit Propagation Using Geometric Relationship Functions.” ACM Transactions on Graphics. ACM, 2014. https://doi.org/10.1145/2591010. ieee: P. Guerrero, S. Jeschke, M. Wimmer, and P. Wonka, “Edit propagation using geometric relationship functions,” ACM Transactions on Graphics, vol. 33, no. 2. ACM, 2014. ista: Guerrero P, Jeschke S, Wimmer M, Wonka P. 2014. Edit propagation using geometric relationship functions. ACM Transactions on Graphics. 33(2), 15. mla: Guerrero, Paul, et al. “Edit Propagation Using Geometric Relationship Functions.” ACM Transactions on Graphics, vol. 33, no. 2, 15, ACM, 2014, doi:10.1145/2591010. short: P. Guerrero, S. Jeschke, M. Wimmer, P. Wonka, ACM Transactions on Graphics 33 (2014). date_created: 2018-12-11T11:53:08Z date_published: 2014-03-01T00:00:00Z date_updated: 2021-01-12T06:52:06Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2591010 file: - access_level: open_access checksum: 7f91e588a4e888610313b98271e6418e content_type: application/pdf creator: system date_created: 2018-12-12T10:11:22Z date_updated: 2020-07-14T12:45:07Z file_id: '4876' file_name: IST-2016-577-v1+1_2014.TOG.Paul.EditingPropagation.final.pdf file_size: 9832561 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 33' issue: '2' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '5526' pubrep_id: '577' quality_controlled: '1' status: public title: Edit propagation using geometric relationship functions type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2014' ... --- _id: '1854' abstract: - lang: eng text: In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching. In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching. author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke citation: ama: Guerrero P, Auzinger T, Wimmer M, Jeschke S. Partial shape matching using transformation parameter similarity. Computer Graphics Forum. 2014;34(1):239-252. doi:10.1111/cgf.12509 apa: Guerrero, P., Auzinger, T., Wimmer, M., & Jeschke, S. (2014). Partial shape matching using transformation parameter similarity. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.12509 chicago: Guerrero, Paul, Thomas Auzinger, Michael Wimmer, and Stefan Jeschke. “Partial Shape Matching Using Transformation Parameter Similarity.” Computer Graphics Forum. Wiley, 2014. https://doi.org/10.1111/cgf.12509. ieee: P. Guerrero, T. Auzinger, M. Wimmer, and S. Jeschke, “Partial shape matching using transformation parameter similarity,” Computer Graphics Forum, vol. 34, no. 1. Wiley, pp. 239–252, 2014. ista: Guerrero P, Auzinger T, Wimmer M, Jeschke S. 2014. Partial shape matching using transformation parameter similarity. Computer Graphics Forum. 34(1), 239–252. mla: Guerrero, Paul, et al. “Partial Shape Matching Using Transformation Parameter Similarity.” Computer Graphics Forum, vol. 34, no. 1, Wiley, 2014, pp. 239–52, doi:10.1111/cgf.12509. short: P. Guerrero, T. Auzinger, M. Wimmer, S. Jeschke, Computer Graphics Forum 34 (2014) 239–252. date_created: 2018-12-11T11:54:22Z date_published: 2014-11-05T00:00:00Z date_updated: 2021-01-12T06:53:38Z day: '05' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.12509 file: - access_level: open_access checksum: 91946bfc509c77f5fd3151a3ff2b2c8f content_type: application/pdf creator: system date_created: 2018-12-12T10:15:58Z date_updated: 2020-07-14T12:45:19Z file_id: '5182' file_name: IST-2016-574-v1+1_Guerrero-2014-TPS-paper.pdf file_size: 24817484 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 34' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 239 - 252 publication: Computer Graphics Forum publication_status: published publisher: Wiley publist_id: '5246' pubrep_id: '574' quality_controlled: '1' scopus_import: 1 status: public title: Partial shape matching using transformation parameter similarity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2014' ... --- _id: '1906' abstract: - lang: eng text: In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets. acknowledgement: This research was supported by the Austrian Research Promotion Agency (FFG) project REPLICATE (no. 835948), the EU FP7 project HARVEST4D (no. 323567). author: - first_name: Murat full_name: Arikan, Murat last_name: Arikan - first_name: Reinhold full_name: Preiner, Reinhold last_name: Preiner - first_name: Claus full_name: Scheiblauer, Claus last_name: Scheiblauer - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer citation: ama: Arikan M, Preiner R, Scheiblauer C, Jeschke S, Wimmer M. Large-scale point-cloud visualization through localized textured surface reconstruction. IEEE Transactions on Visualization and Computer Graphics. 2014;20(9):1280-1292. doi:10.1109/TVCG.2014.2312011 apa: Arikan, M., Preiner, R., Scheiblauer, C., Jeschke, S., & Wimmer, M. (2014). Large-scale point-cloud visualization through localized textured surface reconstruction. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2014.2312011 chicago: Arikan, Murat, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, and Michael Wimmer. “Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2312011. ieee: M. Arikan, R. Preiner, C. Scheiblauer, S. Jeschke, and M. Wimmer, “Large-scale point-cloud visualization through localized textured surface reconstruction,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 9. IEEE, pp. 1280–1292, 2014. ista: Arikan M, Preiner R, Scheiblauer C, Jeschke S, Wimmer M. 2014. Large-scale point-cloud visualization through localized textured surface reconstruction. IEEE Transactions on Visualization and Computer Graphics. 20(9), 1280–1292. mla: Arikan, Murat, et al. “Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 9, IEEE, 2014, pp. 1280–92, doi:10.1109/TVCG.2014.2312011. short: M. Arikan, R. Preiner, C. Scheiblauer, S. Jeschke, M. Wimmer, IEEE Transactions on Visualization and Computer Graphics 20 (2014) 1280–1292. date_created: 2018-12-11T11:54:39Z date_published: 2014-09-09T00:00:00Z date_updated: 2021-01-12T06:53:59Z day: '09' ddc: - '000' department: - _id: ChWo doi: 10.1109/TVCG.2014.2312011 file: - access_level: open_access checksum: 5bf58942d2eb20adf03c7f9ea2e68124 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:41Z date_updated: 2020-07-14T12:45:20Z file_id: '5297' file_name: IST-2016-573-v1+1_arikan-2014-pcvis-draft.pdf file_size: 13594598 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 20' issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 1280 - 1292 project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication: IEEE Transactions on Visualization and Computer Graphics publication_status: published publisher: IEEE publist_id: '5189' pubrep_id: '573' scopus_import: 1 status: public title: Large-scale point-cloud visualization through localized textured surface reconstruction type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2014' ... --- _id: '2058' abstract: - lang: eng text: We present a method for smoothly blending between existing liquid animations. We introduce a semi-automatic method for matching two existing liquid animations, which we use to create new fluid motion that plausibly interpolates the input. Our contributions include a new space-time non-rigid iterative closest point algorithm that incorporates user guidance, a subsampling technique for efficient registration of meshes with millions of vertices, and a fast surface extraction algorithm that produces 3D triangle meshes from a 4D space-time surface. Our technique can be used to instantly create hundreds of new simulations, or to interactively explore complex parameter spaces. Our method is guaranteed to produce output that does not deviate from the input animations, and it generalizes to multiple dimensions. Because our method runs at interactive rates after the initial precomputation step, it has potential applications in games and training simulations. article_number: '137' article_processing_charge: No author: - first_name: Karthik full_name: Raveendran, Karthik last_name: Raveendran - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Greg full_name: Türk, Greg last_name: Türk citation: ama: 'Raveendran K, Wojtan C, Thuerey N, Türk G. Blending liquids. In: ACM Transactions on Graphics. Vol 33. ACM; 2014. doi:10.1145/2601097.2601126' apa: 'Raveendran, K., Wojtan, C., Thuerey, N., & Türk, G. (2014). Blending liquids. In ACM Transactions on Graphics (Vol. 33). Vancouver, Canada: ACM. https://doi.org/10.1145/2601097.2601126' chicago: Raveendran, Karthik, Chris Wojtan, Nils Thuerey, and Greg Türk. “Blending Liquids.” In ACM Transactions on Graphics, Vol. 33. ACM, 2014. https://doi.org/10.1145/2601097.2601126. ieee: K. Raveendran, C. Wojtan, N. Thuerey, and G. Türk, “Blending liquids,” in ACM Transactions on Graphics, Vancouver, Canada, 2014, vol. 33, no. 4. ista: 'Raveendran K, Wojtan C, Thuerey N, Türk G. 2014. Blending liquids. ACM Transactions on Graphics. SIGGRAPH: International Conference and Exhibition on Computer Graphics and Interactive Techniques vol. 33, 137.' mla: Raveendran, Karthik, et al. “Blending Liquids.” ACM Transactions on Graphics, vol. 33, no. 4, 137, ACM, 2014, doi:10.1145/2601097.2601126. short: K. Raveendran, C. Wojtan, N. Thuerey, G. Türk, in:, ACM Transactions on Graphics, ACM, 2014. conference: end_date: 2014-08-14 location: Vancouver, Canada name: 'SIGGRAPH: International Conference and Exhibition on Computer Graphics and Interactive Techniques' start_date: 2014-08-10 date_created: 2018-12-11T11:55:28Z date_published: 2014-07-01T00:00:00Z date_updated: 2022-08-25T14:02:46Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2601097.2601126 file: - access_level: open_access checksum: 1752760a2e71e254537f31c0d10d9c6c content_type: application/pdf creator: system date_created: 2018-12-12T10:08:27Z date_updated: 2020-07-14T12:45:27Z file_id: '4688' file_name: IST-2016-606-v1+1_BlendingLiquids-Preprint.pdf file_size: 8387384 relation: main_file file_date_updated: 2020-07-14T12:45:27Z has_accepted_license: '1' intvolume: ' 33' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 25636330-B435-11E9-9278-68D0E5697425 grant_number: 11-NSF-1070 name: ROOTS Genome-wide Analysis of Root Traits publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '4988' pubrep_id: '606' quality_controlled: '1' scopus_import: '1' status: public title: Blending liquids type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2014' ... --- _id: '2466' abstract: - lang: eng text: 'We introduce a new method for efficiently simulating liquid with extreme amounts of spatial adaptivity. Our method combines several key components to drastically speed up the simulation of large-scale fluid phenomena: We leverage an alternative Eulerian tetrahedral mesh discretization to significantly reduce the complexity of the pressure solve while increasing the robustness with respect to element quality and removing the possibility of locking. Next, we enable subtle free-surface phenomena by deriving novel second-order boundary conditions consistent with our discretization. We couple this discretization with a spatially adaptive Fluid-Implicit Particle (FLIP) method, enabling efficient, robust, minimally-dissipative simulations that can undergo sharp changes in spatial resolution while minimizing artifacts. Along the way, we provide a new method for generating a smooth and detailed surface from a set of particles with variable sizes. Finally, we explore several new sizing functions for determining spatially adaptive simulation resolutions, and we show how to couple them to our simulator. We combine each of these elements to produce a simulation algorithm that is capable of creating animations at high maximum resolutions while avoiding common pitfalls like inaccurate boundary conditions and inefficient computation.' article_number: '103' author: - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Ando R, Thuerey N, Wojtan C. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics. 2013;32(4). doi:10.1145/2461912.2461982 apa: Ando, R., Thuerey, N., & Wojtan, C. (2013). Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2461912.2461982 chicago: Ando, Ryoichi, Nils Thuerey, and Chris Wojtan. “Highly Adaptive Liquid Simulations on Tetrahedral Meshes.” ACM Transactions on Graphics. ACM, 2013. https://doi.org/10.1145/2461912.2461982. ieee: R. Ando, N. Thuerey, and C. Wojtan, “Highly adaptive liquid simulations on tetrahedral meshes,” ACM Transactions on Graphics, vol. 32, no. 4. ACM, 2013. ista: Ando R, Thuerey N, Wojtan C. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics. 32(4), 103. mla: Ando, Ryoichi, et al. “Highly Adaptive Liquid Simulations on Tetrahedral Meshes.” ACM Transactions on Graphics, vol. 32, no. 4, 103, ACM, 2013, doi:10.1145/2461912.2461982. short: R. Ando, N. Thuerey, C. Wojtan, ACM Transactions on Graphics 32 (2013). date_created: 2018-12-11T11:57:50Z date_published: 2013-07-01T00:00:00Z date_updated: 2023-02-23T10:44:14Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2461912.2461982 file: - access_level: open_access checksum: aeea6b0ff2b27c695aeb8408c7d2fc50 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:25Z date_updated: 2020-07-14T12:45:41Z file_id: '5279' file_name: IST-2016-605-v1+1_tetflip_fixed.pdf file_size: 8601561 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 32' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '4436' pubrep_id: '605' quality_controlled: '1' scopus_import: 1 status: public title: Highly adaptive liquid simulations on tetrahedral meshes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '2467' abstract: - lang: eng text: This paper presents a method for computing topology changes for triangle meshes in an interactive geometric modeling environment. Most triangle meshes in practice do not exhibit desirable geometric properties, so we develop a solution that is independent of standard assumptions and robust to geometric errors. Specifically, we provide the first method for topology change applicable to arbitrary non-solid, non-manifold, non-closed, self-intersecting surfaces. We prove that this new method for topology change produces the expected conventional results when applied to solid (closed, manifold, non-self-intersecting) surfaces---that is, we prove a backwards-compatibility property relative to prior work. Beyond solid surfaces, we present empirical evidence that our method remains tolerant to a variety of surface aberrations through the incorporation of a novel error correction scheme. Finally, we demonstrate how topology change applied to non-solid objects enables wholly new and useful behaviors. article_number: '34' author: - first_name: Gilbert full_name: Bernstein, Gilbert last_name: Bernstein - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Bernstein G, Wojtan C. Putting holes in holey geometry: Topology change for arbitrary surfaces. ACM Transactions on Graphics. 2013;32(4). doi:10.1145/2461912.2462027' apa: 'Bernstein, G., & Wojtan, C. (2013). Putting holes in holey geometry: Topology change for arbitrary surfaces. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2461912.2462027' chicago: 'Bernstein, Gilbert, and Chris Wojtan. “Putting Holes in Holey Geometry: Topology Change for Arbitrary Surfaces.” ACM Transactions on Graphics. ACM, 2013. https://doi.org/10.1145/2461912.2462027.' ieee: 'G. Bernstein and C. Wojtan, “Putting holes in holey geometry: Topology change for arbitrary surfaces,” ACM Transactions on Graphics, vol. 32, no. 4. ACM, 2013.' ista: 'Bernstein G, Wojtan C. 2013. Putting holes in holey geometry: Topology change for arbitrary surfaces. ACM Transactions on Graphics. 32(4), 34.' mla: 'Bernstein, Gilbert, and Chris Wojtan. “Putting Holes in Holey Geometry: Topology Change for Arbitrary Surfaces.” ACM Transactions on Graphics, vol. 32, no. 4, 34, ACM, 2013, doi:10.1145/2461912.2462027.' short: G. Bernstein, C. Wojtan, ACM Transactions on Graphics 32 (2013). date_created: 2018-12-11T11:57:50Z date_published: 2013-07-01T00:00:00Z date_updated: 2023-02-23T10:44:16Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2461912.2462027 file: - access_level: open_access checksum: 9c8425d62246996ca632c5a01870515b content_type: application/pdf creator: system date_created: 2018-12-12T10:09:43Z date_updated: 2020-07-14T12:45:41Z file_id: '4768' file_name: IST-2016-604-v1+1_toptop2013.pdf file_size: 3514674 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 32' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '4435' pubrep_id: '604' quality_controlled: '1' scopus_import: 1 status: public title: 'Putting holes in holey geometry: Topology change for arbitrary surfaces' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '2468' abstract: - lang: eng text: Our work concerns the combination of an Eulerian liquid simulation with a high-resolution surface tracker (e.g. the level set method or a Lagrangian triangle mesh). The naive application of a high-resolution surface tracker to a low-resolution velocity field can produce many visually disturbing physical and topological artifacts that limit their use in practice. We address these problems by defining an error function which compares the current state of the surface tracker to the set of physically valid surface states. By reducing this error with a gradient descent technique, we introduce a novel physics-based surface fairing method. Similarly, by treating this error function as a potential energy, we derive a new surface correction force that mimics the vortex sheet equations. We demonstrate our results with both level set and mesh-based surface trackers. article_number: '68' author: - first_name: Morten full_name: Bojsen-Hansen, Morten id: 439F0C8C-F248-11E8-B48F-1D18A9856A87 last_name: Bojsen-Hansen orcid: 0000-0002-4417-3224 - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Bojsen-Hansen M, Wojtan C. Liquid surface tracking with error compensation. ACM Transactions on Graphics. 2013;32(4). doi:10.1145/2461912.2461991 apa: Bojsen-Hansen, M., & Wojtan, C. (2013). Liquid surface tracking with error compensation. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2461912.2461991 chicago: Bojsen-Hansen, Morten, and Chris Wojtan. “Liquid Surface Tracking with Error Compensation.” ACM Transactions on Graphics. ACM, 2013. https://doi.org/10.1145/2461912.2461991. ieee: M. Bojsen-Hansen and C. Wojtan, “Liquid surface tracking with error compensation,” ACM Transactions on Graphics, vol. 32, no. 4. ACM, 2013. ista: Bojsen-Hansen M, Wojtan C. 2013. Liquid surface tracking with error compensation. ACM Transactions on Graphics. 32(4), 68. mla: Bojsen-Hansen, Morten, and Chris Wojtan. “Liquid Surface Tracking with Error Compensation.” ACM Transactions on Graphics, vol. 32, no. 4, 68, ACM, 2013, doi:10.1145/2461912.2461991. short: M. Bojsen-Hansen, C. Wojtan, ACM Transactions on Graphics 32 (2013). date_created: 2018-12-11T11:57:50Z date_published: 2013-07-01T00:00:00Z date_updated: 2023-02-23T10:44:18Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2461912.2461991 file: - access_level: open_access checksum: 53d905e0180e23ef3e813b969ffed4e1 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:37Z date_updated: 2020-07-14T12:45:41Z file_id: '4761' file_name: IST-2016-603-v1+1_liquidError_web.pdf file_size: 5813685 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 32' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '4434' pubrep_id: '603' quality_controlled: '1' scopus_import: 1 status: public title: Liquid surface tracking with error compensation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '3119' abstract: - lang: eng text: "We present an approach for artist-directed animation of liquids using multiple levels of control over the simulation, ranging from the overall tracking of desired shapes to highly detailed secondary effects such as dripping streams, separating sheets of fluid, surface waves and ripples. The first portion of our technique is a volume preserving morph that allows the animator to produce a plausible fluid-like motion from a sparse set of control meshes. By rasterizing the resulting control meshes onto the simulation grid, the mesh velocities act as boundary conditions during the projection step of the fluid simulation. We can then blend this motion together with uncontrolled fluid velocities to achieve a more relaxed control over the fluid that captures natural inertial effects. Our method can produce highly detailed liquid surfaces with control over sub-grid details by using a mesh-based surface tracker on top of a coarse grid-based fluid simulation. We can create ripples and waves on the fluid surface attracting the surface mesh to the control mesh with spring-like forces and also by running a wave simulation over the surface mesh. Our video results demonstrate how our control scheme can be used to create animated characters and shapes that are made of water.\r\n" acknowledgement: This work was partially funded by NSF grants CCF-0811485 and IIS-1130934. We would like to thank Scanline VFX for additional funding. We would like to thank Jie Tan as well as our anonymous reviewers for their useful suggestions and feedback. author: - first_name: Karthik full_name: Raveendran, Karthik last_name: Raveendran - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Greg full_name: Turk, Greg last_name: Turk citation: ama: 'Raveendran K, Thuerey N, Wojtan C, Turk G. Controlling liquids using meshes. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM; 2012:255-264.' apa: 'Raveendran, K., Thuerey, N., Wojtan, C., & Turk, G. (2012). Controlling liquids using meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 255–264). Aire-la-Ville, Switzerland: ACM.' chicago: Raveendran, Karthik, Nils Thuerey, Chris Wojtan, and Greg Turk. “Controlling Liquids Using Meshes.” In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 255–64. ACM, 2012. ieee: K. Raveendran, N. Thuerey, C. Wojtan, and G. Turk, “Controlling liquids using meshes,” in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aire-la-Ville, Switzerland, 2012, pp. 255–264. ista: 'Raveendran K, Thuerey N, Wojtan C, Turk G. 2012. Controlling liquids using meshes. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, 255–264.' mla: Raveendran, Karthik, et al. “Controlling Liquids Using Meshes.” Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 2012, pp. 255–64. short: K. Raveendran, N. Thuerey, C. Wojtan, G. Turk, in:, Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 2012, pp. 255–264. conference: end_date: 2012-07-31 location: Aire-la-Ville, Switzerland name: 'SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation' start_date: 2012-07-29 date_created: 2018-12-11T12:01:30Z date_published: 2012-07-29T00:00:00Z date_updated: 2023-02-23T11:13:07Z day: '29' ddc: - '000' department: - _id: ChWo file: - access_level: open_access checksum: babda64c24cf90a4d05ae86d712bed08 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:23Z date_updated: 2020-07-14T12:46:00Z file_id: '4877' file_name: IST-2016-600-v1+1_ControllingLiquids_Preprint.pdf file_size: 4939370 relation: main_file file_date_updated: 2020-07-14T12:46:00Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 255 - 264 publication: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation publication_status: published publisher: ACM publist_id: '3580' pubrep_id: '600' quality_controlled: '1' related_material: link: - relation: table_of_contents url: http://dl.acm.org/citation.cfm?id=2422393 scopus_import: 1 status: public title: Controlling liquids using meshes type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2012' ... --- _id: '3118' abstract: - lang: eng text: We present a method for recovering a temporally coherent, deforming triangle mesh with arbitrarily changing topology from an incoherent sequence of static closed surfaces. We solve this problem using the surface geometry alone, without any prior information like surface templates or velocity fields. Our system combines a proven strategy for triangle mesh improvement, a robust multi-resolution non-rigid registration routine, and a reliable technique for changing surface mesh topology. We also introduce a novel topological constraint enforcement algorithm to ensure that the output and input always have similar topology. We apply our technique to a series of diverse input data from video reconstructions, physics simulations, and artistic morphs. The structured output of our algorithm allows us to efficiently track information like colors and displacement maps, recover velocity information, and solve PDEs on the mesh as a post process. acknowledgement: "This work is supported by the SNF fellowship PBEZP2-134464.\r\nWe would like to thank Xiaochen Hu for implementing mesh con- version tools, Duygu Ceylan for helping with the rendering, and Art Tevs for the human performance data comparison. We also thank Nils Thuerey and Christopher Batty for helpful discussions. " alternative_title: - SIGGRAPH article_number: '53' article_processing_charge: No article_type: original author: - first_name: Morten full_name: Bojsen-Hansen, Morten id: 439F0C8C-F248-11E8-B48F-1D18A9856A87 last_name: Bojsen-Hansen orcid: 0000-0002-4417-3224 - first_name: Hao full_name: Li, Hao last_name: Li - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Bojsen-Hansen M, Li H, Wojtan C. Tracking surfaces with evolving topology. ACM Transactions on Graphics. 2012;31(4). doi:10.1145/2185520.2185549 apa: Bojsen-Hansen, M., Li, H., & Wojtan, C. (2012). Tracking surfaces with evolving topology. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2185520.2185549 chicago: Bojsen-Hansen, Morten, Hao Li, and Chris Wojtan. “Tracking Surfaces with Evolving Topology.” ACM Transactions on Graphics. ACM, 2012. https://doi.org/10.1145/2185520.2185549. ieee: M. Bojsen-Hansen, H. Li, and C. Wojtan, “Tracking surfaces with evolving topology,” ACM Transactions on Graphics, vol. 31, no. 4. ACM, 2012. ista: Bojsen-Hansen M, Li H, Wojtan C. 2012. Tracking surfaces with evolving topology. ACM Transactions on Graphics. 31(4), 53. mla: Bojsen-Hansen, Morten, et al. “Tracking Surfaces with Evolving Topology.” ACM Transactions on Graphics, vol. 31, no. 4, 53, ACM, 2012, doi:10.1145/2185520.2185549. short: M. Bojsen-Hansen, H. Li, C. Wojtan, ACM Transactions on Graphics 31 (2012). date_created: 2018-12-11T12:01:29Z date_published: 2012-07-01T00:00:00Z date_updated: 2022-05-24T08:21:11Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2185520.2185549 file: - access_level: open_access checksum: 1e219c5bf4e5552c1290c62eefa5cd60 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:37Z date_updated: 2020-07-14T12:46:00Z file_id: '5359' file_name: IST-2016-602-v1+1_topoReg.pdf file_size: 44538518 relation: main_file file_date_updated: 2020-07-14T12:46:00Z has_accepted_license: '1' intvolume: ' 31' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '3581' pubrep_id: '602' quality_controlled: '1' scopus_import: '1' status: public title: Tracking surfaces with evolving topology type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2012' ... --- _id: '3123' abstract: - lang: eng text: We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using nearby particle velocities to advect the mesh vertices. The mesh connectivity remains mostly unchanged across time-steps; it is only modified locally for topology change events or for the improvement of triangle quality. In order to ensure that the surface mesh does not diverge from the underlying particle simulation, we periodically project the mesh surface onto an implicit surface defined by the physics simulation. The mesh surface gives us several advantages over previous SPH surface tracking techniques. We demonstrate a new method for surface tension calculations that clearly outperforms the state of the art in SPH surface tension for computer graphics. We also demonstrate a method for tracking detailed surface information (like colors) that is less susceptible to numerical diffusion than competing techniques. Finally, our temporally-coherent surface mesh allows us to simulate high-resolution surface wave dynamics without being limited by the particle resolution of the SPH simulation. acknowledgement: This work was funded by NSF grant IIS-1017014 and CCF- 0917093. alternative_title: - Eurographics article_processing_charge: No author: - first_name: Jihun full_name: Yu, Jihun last_name: Yu - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Greg full_name: Turk, Greg last_name: Turk - first_name: Chee full_name: Yap, Chee last_name: Yap citation: ama: 'Yu J, Wojtan C, Turk G, Yap C. Explicit mesh surfaces for particle based fluids. In: Computer Graphics Forum. Vol 31. Wiley; 2012:815-824. doi:10.1111/j.1467-8659.2012.03062.x' apa: 'Yu, J., Wojtan, C., Turk, G., & Yap, C. (2012). Explicit mesh surfaces for particle based fluids. In Computer Graphics Forum (Vol. 31, pp. 815–824). Cagliari, Sardinia, Italy: Wiley. https://doi.org/10.1111/j.1467-8659.2012.03062.x' chicago: Yu, Jihun, Chris Wojtan, Greg Turk, and Chee Yap. “Explicit Mesh Surfaces for Particle Based Fluids.” In Computer Graphics Forum, 31:815–24. Wiley, 2012. https://doi.org/10.1111/j.1467-8659.2012.03062.x. ieee: J. Yu, C. Wojtan, G. Turk, and C. Yap, “Explicit mesh surfaces for particle based fluids,” in Computer Graphics Forum, Cagliari, Sardinia, Italy, 2012, vol. 31, no. 2, pp. 815–824. ista: 'Yu J, Wojtan C, Turk G, Yap C. 2012. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum. EUROGRAPHICS: Conference on European Association for Computer Graphics, Eurographics, vol. 31, 815–824.' mla: Yu, Jihun, et al. “Explicit Mesh Surfaces for Particle Based Fluids.” Computer Graphics Forum, vol. 31, no. 2, Wiley, 2012, pp. 815–24, doi:10.1111/j.1467-8659.2012.03062.x. short: J. Yu, C. Wojtan, G. Turk, C. Yap, in:, Computer Graphics Forum, Wiley, 2012, pp. 815–824. conference: end_date: 2012-05-18 location: Cagliari, Sardinia, Italy name: 'EUROGRAPHICS: Conference on European Association for Computer Graphics' start_date: 2012-05-13 date_created: 2018-12-11T12:01:31Z date_published: 2012-05-01T00:00:00Z date_updated: 2023-10-16T09:54:40Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1111/j.1467-8659.2012.03062.x file: - access_level: open_access checksum: acb325dd1e31859bedd30e013f61d0b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:39Z date_updated: 2020-07-14T12:46:00Z file_id: '5092' file_name: IST-2016-601-v1+1_meshSPH.pdf file_size: 5740527 relation: main_file file_date_updated: 2020-07-14T12:46:00Z has_accepted_license: '1' intvolume: ' 31' issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 815 - 824 publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley publist_id: '3576' pubrep_id: '601' quality_controlled: '1' scopus_import: '1' status: public title: Explicit mesh surfaces for particle based fluids type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 31 year: '2012' ... --- _id: '3298' abstract: - lang: eng text: We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity field, followed by a local density correction of the particles. This avoids typical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles. Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates convergence towards uniform density and permits a significantly larger time step compared to earlier approaches while producing similar results. We demonstrate our approach in a variety of scenarios with significant pressure gradients such as splashing liquids. author: - first_name: Karthik full_name: Raveendran, Karthik last_name: Raveendran - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Greg full_name: Turk, Greg last_name: Turk citation: ama: 'Raveendran K, Wojtan C, Turk G. Hybrid smoothed particle hydrodynamics. In: Spencer S, ed. ACM; 2011:33-42. doi:10.1145/2019406.2019411' apa: 'Raveendran, K., Wojtan, C., & Turk, G. (2011). Hybrid smoothed particle hydrodynamics. In S. Spencer (Ed.) (pp. 33–42). Presented at the SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, Vancouver, Canada: ACM. https://doi.org/10.1145/2019406.2019411' chicago: Raveendran, Karthik, Chris Wojtan, and Greg Turk. “Hybrid Smoothed Particle Hydrodynamics.” edited by Stephen Spencer, 33–42. ACM, 2011. https://doi.org/10.1145/2019406.2019411. ieee: 'K. Raveendran, C. Wojtan, and G. Turk, “Hybrid smoothed particle hydrodynamics,” presented at the SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, Vancouver, Canada, 2011, pp. 33–42.' ista: 'Raveendran K, Wojtan C, Turk G. 2011. Hybrid smoothed particle hydrodynamics. SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, 33–42.' mla: Raveendran, Karthik, et al. Hybrid Smoothed Particle Hydrodynamics. Edited by Stephen Spencer, ACM, 2011, pp. 33–42, doi:10.1145/2019406.2019411. short: K. Raveendran, C. Wojtan, G. Turk, in:, S. Spencer (Ed.), ACM, 2011, pp. 33–42. conference: end_date: 2011-08-07 location: Vancouver, Canada name: 'SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation' start_date: 2011-08-05 date_created: 2018-12-11T12:02:32Z date_published: 2011-08-05T00:00:00Z date_updated: 2023-02-23T11:21:05Z day: '05' ddc: - '000' department: - _id: ChWo doi: 10.1145/2019406.2019411 editor: - first_name: Stephen full_name: Spencer, Stephen last_name: Spencer file: - access_level: open_access checksum: 6579d27709946e0eefbfa60a456b4913 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:44Z date_updated: 2020-07-14T12:46:06Z file_id: '4769' file_name: IST-2016-598-v1+1_HybridSPH_Preprint.pdf file_size: 2536216 relation: main_file file_date_updated: 2020-07-14T12:46:06Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 33 - 42 publication_status: published publisher: ACM publist_id: '3343' pubrep_id: '598' quality_controlled: '1' scopus_import: 1 status: public title: Hybrid smoothed particle hydrodynamics type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 year: '2011' ... --- _id: '3297' abstract: - lang: eng text: "Animating detailed liquid surfaces has always been a challenge for computer graphics researchers and visual effects artists. Over the past few years, researchers in this field have focused on mesh-based surface tracking to synthesize extremely detailed liquid surfaces as efficiently as possible. This course provides a solid understanding of the steps required to create a fluid simulator with a mesh-based liquid surface.\r\n\r\nThe course begins with an overview of several existing liquid-surface-tracking techniques and the pros and cons of each method. Then it explains how to embed a triangle mesh into a finite-difference-based fluid simulator and describes several methods for allowing the liquid surface to merge together or break apart. The final section showcases the benefits and further applications of a mesh-based liquid surface, highlighting state-of-the-art methods for tracking colors and textures, maintaining liquid volume, preserving small surface features, and simulating realistic surface-tension waves." article_number: '8' author: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Matthias full_name: Müller Fischer, Matthias last_name: Müller Fischer - first_name: Tyson full_name: Brochu, Tyson last_name: Brochu citation: ama: 'Wojtan C, Müller Fischer M, Brochu T. Liquid simulation with mesh-based surface tracking. In: ACM; 2011. doi:10.1145/2037636.2037644' apa: 'Wojtan, C., Müller Fischer, M., & Brochu, T. (2011). Liquid simulation with mesh-based surface tracking. Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Vancouver, BC, Canada: ACM. https://doi.org/10.1145/2037636.2037644' chicago: Wojtan, Chris, Matthias Müller Fischer, and Tyson Brochu. “Liquid Simulation with Mesh-Based Surface Tracking.” ACM, 2011. https://doi.org/10.1145/2037636.2037644. ieee: 'C. Wojtan, M. Müller Fischer, and T. Brochu, “Liquid simulation with mesh-based surface tracking,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Vancouver, BC, Canada, 2011.' ista: 'Wojtan C, Müller Fischer M, Brochu T. 2011. Liquid simulation with mesh-based surface tracking. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, 8.' mla: Wojtan, Chris, et al. Liquid Simulation with Mesh-Based Surface Tracking. 8, ACM, 2011, doi:10.1145/2037636.2037644. short: C. Wojtan, M. Müller Fischer, T. Brochu, in:, ACM, 2011. conference: end_date: 2011-08-11 location: Vancouver, BC, Canada name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2011-08-07 date_created: 2018-12-11T12:02:31Z date_published: 2011-08-07T00:00:00Z date_updated: 2023-02-23T11:21:02Z day: '07' ddc: - '000' department: - _id: ChWo doi: 10.1145/2037636.2037644 file: - access_level: open_access checksum: 8d508ad7c82f50978acbaa4170ee0a75 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:34Z date_updated: 2020-07-14T12:46:06Z file_id: '5018' file_name: IST-2016-599-v1+1_meshyFluidsCourseSIGGRAPH2011.pdf file_size: 34672096 relation: main_file file_date_updated: 2020-07-14T12:46:06Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication_status: published publisher: ACM publist_id: '3344' pubrep_id: '599' quality_controlled: '1' scopus_import: 1 status: public title: Liquid simulation with mesh-based surface tracking type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2011' ...