TY - JOUR
AB - This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free-surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations.
AU - Ando, Ryoichi
AU - Thürey, Nils
AU - Wojtan, Christopher J
ID - 1735
IS - 2
JF - Computer Graphics Forum
TI - A dimension-reduced pressure solver for liquid simulations
VL - 34
ER -
TY - JOUR
AB - We present an efficient wavefront tracking algorithm for animating bodies of water that interact with their environment. Our contributions include: a novel wavefront tracking technique that enables dispersion, refraction, reflection, and diffraction in the same simulation; a unique multivalued function interpolation method that enables our simulations to elegantly sidestep the Nyquist limit; a dispersion approximation for efficiently amplifying the number of simulated waves by several orders of magnitude; and additional extensions that allow for time-dependent effects and interactive artistic editing of the resulting animation. Our contributions combine to give us multitudes more wave details than similar algorithms, while maintaining high frame rates and allowing close camera zooms.
AU - Jeschke, Stefan
AU - Wojtan, Christopher J
ID - 1814
IS - 3
JF - ACM Transactions on Graphics
TI - Water wave animation via wavefront parameter interpolation
VL - 34
ER -
TY - JOUR
AB - We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations.
AU - Guerrero, Paul
AU - Jeschke, Stefan
AU - Wimmer, Michael
AU - Wonka, Peter
ID - 1629
IS - 2
JF - ACM Transactions on Graphics
TI - Edit propagation using geometric relationship functions
VL - 33
ER -
TY - JOUR
AB - In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching. In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching.
AU - Guerrero, Paul
AU - Auzinger, Thomas
AU - Wimmer, Michael
AU - Jeschke, Stefan
ID - 1854
IS - 1
JF - Computer Graphics Forum
TI - Partial shape matching using transformation parameter similarity
VL - 34
ER -
TY - JOUR
AB - In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets.
AU - Arikan, Murat
AU - Preiner, Reinhold
AU - Scheiblauer, Claus
AU - Jeschke, Stefan
AU - Wimmer, Michael
ID - 1906
IS - 9
JF - IEEE Transactions on Visualization and Computer Graphics
TI - Large-scale point-cloud visualization through localized textured surface reconstruction
VL - 20
ER -
TY - JOUR
AB - We introduce a new method for efficiently simulating liquid with extreme amounts of spatial adaptivity. Our method combines several key components to drastically speed up the simulation of large-scale fluid phenomena: We leverage an alternative Eulerian tetrahedral mesh discretization to significantly reduce the complexity of the pressure solve while increasing the robustness with respect to element quality and removing the possibility of locking. Next, we enable subtle free-surface phenomena by deriving novel second-order boundary conditions consistent with our discretization. We couple this discretization with a spatially adaptive Fluid-Implicit Particle (FLIP) method, enabling efficient, robust, minimally-dissipative simulations that can undergo sharp changes in spatial resolution while minimizing artifacts. Along the way, we provide a new method for generating a smooth and detailed surface from a set of particles with variable sizes. Finally, we explore several new sizing functions for determining spatially adaptive simulation resolutions, and we show how to couple them to our simulator. We combine each of these elements to produce a simulation algorithm that is capable of creating animations at high maximum resolutions while avoiding common pitfalls like inaccurate boundary conditions and inefficient computation.
AU - Ando, Ryoichi
AU - Thuerey, Nils
AU - Wojtan, Christopher J
ID - 2466
IS - 4
JF - ACM Transactions on Graphics
TI - Highly adaptive liquid simulations on tetrahedral meshes
VL - 32
ER -
TY - JOUR
AB - This paper presents a method for computing topology changes for triangle meshes in an interactive geometric modeling environment. Most triangle meshes in practice do not exhibit desirable geometric properties, so we develop a solution that is independent of standard assumptions and robust to geometric errors. Specifically, we provide the first method for topology change applicable to arbitrary non-solid, non-manifold, non-closed, self-intersecting surfaces. We prove that this new method for topology change produces the expected conventional results when applied to solid (closed, manifold, non-self-intersecting) surfaces---that is, we prove a backwards-compatibility property relative to prior work. Beyond solid surfaces, we present empirical evidence that our method remains tolerant to a variety of surface aberrations through the incorporation of a novel error correction scheme. Finally, we demonstrate how topology change applied to non-solid objects enables wholly new and useful behaviors.
AU - Bernstein, Gilbert
AU - Wojtan, Christopher J
ID - 2467
IS - 4
JF - ACM Transactions on Graphics
TI - Putting holes in holey geometry: Topology change for arbitrary surfaces
VL - 32
ER -
TY - JOUR
AB - Our work concerns the combination of an Eulerian liquid simulation with a high-resolution surface tracker (e.g. the level set method or a Lagrangian triangle mesh). The naive application of a high-resolution surface tracker to a low-resolution velocity field can produce many visually disturbing physical and topological artifacts that limit their use in practice. We address these problems by defining an error function which compares the current state of the surface tracker to the set of physically valid surface states. By reducing this error with a gradient descent technique, we introduce a novel physics-based surface fairing method. Similarly, by treating this error function as a potential energy, we derive a new surface correction force that mimics the vortex sheet equations. We demonstrate our results with both level set and mesh-based surface trackers.
AU - Bojsen-Hansen, Morten
AU - Wojtan, Christopher J
ID - 2468
IS - 4
JF - ACM Transactions on Graphics
TI - Liquid surface tracking with error compensation
VL - 32
ER -
TY - CONF
AB - We present an approach for artist-directed animation of liquids using multiple levels of control over the simulation, ranging from the overall tracking of desired shapes to highly detailed secondary effects such as dripping streams, separating sheets of fluid, surface waves and ripples. The first portion of our technique is a volume preserving morph that allows the animator to produce a plausible fluid-like motion from a sparse set of control meshes. By rasterizing the resulting control meshes onto the simulation grid, the mesh velocities act as boundary conditions during the projection step of the fluid simulation. We can then blend this motion together with uncontrolled fluid velocities to achieve a more relaxed control over the fluid that captures natural inertial effects. Our method can produce highly detailed liquid surfaces with control over sub-grid details by using a mesh-based surface tracker on top of a coarse grid-based fluid simulation. We can create ripples and waves on the fluid surface attracting the surface mesh to the control mesh with spring-like forces and also by running a wave simulation over the surface mesh. Our video results demonstrate how our control scheme can be used to create animated characters and shapes that are made of water.
AU - Raveendran, Karthik
AU - Thuerey, Nils
AU - Wojtan, Christopher J
AU - Turk, Greg
ID - 3119
T2 - Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
TI - Controlling liquids using meshes
ER -
TY - CONF
AB - We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using nearby particle velocities to advect the mesh vertices. The mesh connectivity remains mostly unchanged across time-steps; it is only modified locally for topology change events or for the improvement of triangle quality. In order to ensure that the surface mesh does not diverge from the underlying particle simulation, we periodically project the mesh surface onto an implicit surface defined by the physics simulation. The mesh surface gives us several advantages over previous SPH surface tracking techniques. We demonstrate a new method for surface tension calculations that clearly outperforms the state of the art in SPH surface tension for computer graphics. We also demonstrate a method for tracking detailed surface information (like colors) that is less susceptible to numerical diffusion than competing techniques. Finally, our temporally-coherent surface mesh allows us to simulate high-resolution surface wave dynamics without being limited by the particle resolution of the SPH simulation.
AU - Yu, Jihun
AU - Wojtan, Christopher J
AU - Turk, Greg
AU - Yap, Chee
ID - 3123
IS - 2
T2 - Computer Graphics Forum
TI - Explicit mesh surfaces for particle based fluids
VL - 31
ER -
TY - JOUR
AB - We present a method for recovering a temporally coherent, deforming triangle mesh with arbitrarily changing topology from an incoherent sequence of static closed surfaces. We solve this problem using the surface geometry alone, without any prior information like surface templates or velocity fields. Our system combines a proven strategy for triangle mesh improvement, a robust multi-resolution non-rigid registration routine, and a reliable technique for changing surface mesh topology. We also introduce a novel topological constraint enforcement algorithm to ensure that the output and input always have similar topology. We apply our technique to a series of diverse input data from video reconstructions, physics simulations, and artistic morphs. The structured output of our algorithm allows us to efficiently track information like colors and displacement maps, recover velocity information, and solve PDEs on the mesh as a post process.
AU - Bojsen-Hansen, Morten
AU - Li, Hao
AU - Wojtan, Christopher J
ID - 3118
IS - 4
JF - ACM Transactions on Graphics
TI - Tracking surfaces with evolving topology
VL - 31
ER -
TY - CONF
AB - Animating detailed liquid surfaces has always been a challenge for computer graphics researchers and visual effects artists. Over the past few years, researchers in this field have focused on mesh-based surface tracking to synthesize extremely detailed liquid surfaces as efficiently as possible. This course provides a solid understanding of the steps required to create a fluid simulator with a mesh-based liquid surface.
The course begins with an overview of several existing liquid-surface-tracking techniques and the pros and cons of each method. Then it explains how to embed a triangle mesh into a finite-difference-based fluid simulator and describes several methods for allowing the liquid surface to merge together or break apart. The final section showcases the benefits and further applications of a mesh-based liquid surface, highlighting state-of-the-art methods for tracking colors and textures, maintaining liquid volume, preserving small surface features, and simulating realistic surface-tension waves.
AU - Wojtan, Christopher J
AU - Müller Fischer, Matthias
AU - Brochu, Tyson
ID - 3297
TI - Liquid simulation with mesh-based surface tracking
ER -
TY - CONF
AB - We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity ﬁeld, followed by a local density correction of the particles. This avoids typical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles. Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates convergence towards uniform density and permits a signiﬁcantly larger time step compared to earlier approaches while producing similar results. We demonstrate our approach in a variety of scenarios with signiﬁcant pressure gradients such as splashing liquids.
AU - Raveendran, Karthik
AU - Wojtan, Christopher J
AU - Turk, Greg
ED - Spencer, Stephen
ID - 3298
TI - Hybrid smoothed particle hydrodynamics
ER -